Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86606
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周佳靚(Chia-Ching Chou)
dc.contributor.authorSiang-Rong Linen
dc.contributor.author林湘容zh_TW
dc.date.accessioned2023-03-20T00:06:04Z-
dc.date.copyright2022-08-18
dc.date.issued2022
dc.date.submitted2022-08-08
dc.identifier.citation1. Organization, W.H., World health statistics 2019: monitoring health for the SDGs, sustainable development goals. 2019: World Health Organization. 2. Organization, W.H., World health statistics 2021: monitoring health for the SDGs, sustainable development goals. 2021: World Health Organization. 7-21. 3. Welfare, M.o.H.a. 2020 Cause of Death Statistics. 2021 January 18, 2022]; Available from: https://www.mohw.gov.tw/lp-5256-2.html. 4. Liu, L., et al., Global, regional, and national causes of under-5 mortality in 2000–15: an updated systematic analysis with implications for the Sustainable Development Goals. The Lancet, 2016. 388(10063): p. 3027-3035. 5. Eber, E. and F. Midula, ERS Handbook of paediatric respiratory medicine. 2021: European Respiratory Society. 253-254. 6. Hayden, L.P., et al., Childhood pneumonia increases risk for chronic obstructive pulmonary disease: the COPDGene study. Respiratory research, 2015. 16(1): p. 1-9. 7. Stocks, J. and S. Sonnappa, Early life influences on the development of chronic obstructive pulmonary disease. Therapeutic advances in respiratory disease, 2013. 7(3): p. 161-173. 8. Chan, J.Y., et al., Pneumonia in childhood and impaired lung function in adults: a longitudinal study. Pediatrics, 2015. 135(4): p. 607-616. 9. Chu, T.-B., et al., Household out-of-pocket medical expenditures and national health insurance in Taiwan: income and regional inequality. BMC Health services research, 2005. 5(1): p. 1-9. 10. Heath, B., et al., Pediatric critical care telemedicine in rural underserved emergency departments. Pediatric Critical Care Medicine, 2009. 10(5): p. 588-591. 11. Fine, M.J., et al., A prediction rule to identify low-risk patients with community-acquired pneumonia. New England journal of medicine, 1997. 336(4): p. 243-250. 12. Lim, W., et al., Defining community acquired pneumonia severity on presentation to hospital: an international derivation and validation study. Thorax, 2003. 58(5): p. 377-382. 13. Metlay, J.P., et al., Diagnosis and treatment of adults with community-acquired pneumonia. An official clinical practice guideline of the American Thoracic Society and Infectious Diseases Society of America. American journal of respiratory and critical care medicine, 2019. 200(7): p. e45-e67. 14. Mandell, L.A., et al., Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clinical infectious diseases, 2007. 44(Supplement_2): p. S27-S72. 15. Liapikou, A., et al., Severe community-acquired pneumonia: validation of the Infectious Diseases Society of America/American Thoracic Society guidelines to predict an intensive care unit admission. Clinical Infectious Diseases, 2009. 48(4): p. 377-385. 16. Phua, J., et al., Validation and clinical implications of the IDSA/ATS minor criteria for severe community-acquired pneumonia. Thorax, 2009. 64(7): p. 598-603. 17. Czaja, A.S., Children Are Not Just Little Adults…. Pediatric Critical Care Medicine, 2016. 17(2): p. 178-180. 18. Goel, R., M.M. Cushing, and A.A. Tobian, Pediatric patient blood management programs: not just transfusing little adults. Transfusion medicine reviews, 2016. 30(4): p. 235-241. 19. Zeng, X., et al., PIC, a paediatric-specific intensive care database. Scientific data, 2020. 7(1): p. 1-8. 20. Lee, B., et al., Development of a machine learning model for predicting pediatric mortality in the early stages of intensive care unit admission. Scientific reports, 2021. 11(1): p. 1-7. 21. Hammer, J., Acute respiratory failure in children. Paediatric respiratory reviews, 2013. 14(2): p. 64-69. 22. Peters, C., et al., Mortality risk using a pediatric quick sequential (sepsis-related) organ failure assessment varies with vital sign thresholds. Pediatric critical care medicine, 2018. 19(8): p. e394-e402. 23. Reed, C., et al., Development of the Respiratory Index of Severity in Children (RISC) score among young children with respiratory infections in South Africa. PloS one, 2012. 7(1): p. e27793. 24. Emukule, G.O., et al., Predicting mortality among hospitalized children with respiratory illness in Western Kenya, 2009–2012. PloS one, 2014. 9(3): p. e92968. 25. Hooli, S., et al., Predicting hospitalised paediatric pneumonia mortality risk: an external validation of RISC and mRISC, and local tool development (RISC-Malawi) from Malawi. PLoS One, 2016. 11(12): p. e0168126. 26. Bradley, J.S., et al., The management of community-acquired pneumonia in infants and children older than 3 months of age: clinical practice guidelines by the Pediatric Infectious Diseases Society and the Infectious Diseases Society of America. Clinical infectious diseases, 2011. 53(7): p. e25-e76. 27. Duncan, H., J. Hutchison, and C.S. Parshuram, The Pediatric Early Warning System score: a severity of illness score to predict urgent medical need in hospitalized children. Journal of critical care, 2006. 21(3): p. 271-278. 28. Florin, T.A., et al., Validation of the pediatric infectious diseases society–infectious diseases society of america severity criteria in children with community-acquired pneumonia. Clinical Infectious Diseases, 2018. 67(1): p. 112-119. 29. Cox, D.R., Regression models and life‐tables. Journal of the Royal Statistical Society: Series B (Methodological), 1972. 34(2): p. 187-220. 30. Rajula, H.S.R., et al., Comparison of conventional statistical methods with machine learning in medicine: diagnosis, drug development, and treatment. Medicina, 2020. 56(9): p. 455. 31. Ngiam, K.Y. and W. Khor, Big data and machine learning algorithms for health-care delivery. The Lancet Oncology, 2019. 20(5): p. e262-e273. 32. Brajer, N., et al., Prospective and external evaluation of a machine learning model to predict in-hospital mortality of adults at time of admission. JAMA network open, 2020. 3(2): p. e1920733-e1920733. 33. Thorsen-Meyer, H.-C., et al., Dynamic and explainable machine learning prediction of mortality in patients in the intensive care unit: a retrospective study of high-frequency data in electronic patient records. The Lancet Digital Health, 2020. 2(4): p. e179-e191. 34. Yadaw, A.S., et al., Clinical features of COVID-19 mortality: development and validation of a clinical prediction model. The Lancet Digital Health, 2020. 2(10): p. e516-e525. 35. Caicedo-Torres, W. and J. Gutierrez, ISeeU: Visually interpretable deep learning for mortality prediction inside the ICU. Journal of biomedical informatics, 2019. 98: p. 103269. 36. Straney, L., et al., Paediatric index of mortality 3: an updated model for predicting mortality in pediatric intensive care. Pediatric critical care medicine, 2013. 14(7): p. 673-681. 37. Kim, S.Y., et al., A deep learning model for real-time mortality prediction in critically ill children. Critical care, 2019. 23(1): p. 1-10. 38. Liu, Y.-C., et al., Evaluation of the Need for Intensive Care in Children With Pneumonia: Machine Learning Approach. JMIR medical informatics, 2022. 10(1): p. e28934. 39. Ho, T.K., The random subspace method for constructing decision forests. IEEE transactions on pattern analysis and machine intelligence, 1998. 20(8): p. 832-844. 40. Chen, T. and C. Guestrin. Xgboost: A scalable tree boosting system. in Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. 2016. 41. Hochreiter, S. and J. Schmidhuber, Long short-term memory. Neural computation, 1997. 9(8): p. 1735-1780. 42. Youden, W.J., Index for rating diagnostic tests. Cancer, 1950. 3(1): p. 32-35. 43. Lundberg, S.M. and S.-I. Lee, A unified approach to interpreting model predictions. Advances in neural information processing systems, 2017. 30. 44. Ribeiro, M.T., S. Singh, and C. Guestrin. ' Why should i trust you?' Explaining the predictions of any classifier. in Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. 2016. 45. Young, H.P., Monotonic solutions of cooperative games. International Journal of Game Theory, 1985. 14(2): p. 65-72. 46. Chawla, N.V., et al., SMOTE: synthetic minority over-sampling technique. Journal of artificial intelligence research, 2002. 16: p. 321-357. 47. Van Der Walt, S., S.C. Colbert, and G. Varoquaux, The NumPy array: a structure for efficient numerical computation. Computing in science & engineering, 2011. 13(2): p. 22-30. 48. McKinney, W. Data structures for statistical computing in python. in Proceedings of the 9th Python in Science Conference. 2010. Austin, TX. 49. Bird, S., E. Klein, and E. Loper, Natural language processing with Python: analyzing text with the natural language toolkit. 2009: ' O'Reilly Media, Inc.'. 50. Virtanen, P., et al., SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature methods, 2020. 17(3): p. 261-272. 51. Pedregosa, F., et al., Scikit-learn: Machine learning in Python. the Journal of machine Learning research, 2011. 12: p. 2825-2830. 52. Abadi, M., et al. {TensorFlow}: a system for {Large-Scale} machine learning. in 12th USENIX symposium on operating systems design and implementation (OSDI 16). 2016. 53. Hunter, J.D., Matplotlib: A 2D graphics environment. Computing in science & engineering, 2007. 9(03): p. 90-95. 54. Lundberg, S.M., G.G. Erion, and S.-I. Lee, Consistent individualized feature attribution for tree ensembles. arXiv preprint arXiv:1802.03888, 2018. 55. Lundberg, S.M. and S.-I. Lee. A unified approach to interpreting model predictions. in Proceedings of the 31st international conference on neural information processing systems. 2017. 56. Pollack, M.M., et al., The pediatric risk of mortality score: update 2015. Pediatric critical care medicine: a journal of the Society of Critical Care Medicine and the World Federation of Pediatric Intensive and Critical Care Societies, 2016. 17(1): p. 2. 57. Rivera, E.A.T., et al., Dynamic Mortality Risk Predictions for Children in ICUs: Development and Validation of Machine Learning Models. Pediatric Critical Care Medicine, 2022. 23(5): p. 344-352. 58. Leteurtre, S., et al., PELOD-2: an update of the PEdiatric logistic organ dysfunction score. Critical care medicine, 2013. 41(7): p. 1761-1773. 59. Slater, A., F. Shann, and G. Pearson, PIM2: a revised version of the Paediatric Index of Mortality. Intensive care medicine, 2003. 29(2): p. 278-285. 60. Leteurtre, S., et al., Validation of the paediatric logistic organ dysfunction (PELOD) score: prospective, observational, multicentre study. The Lancet, 2003. 362(9379): p. 192-197.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86606-
dc.description.abstract肺炎在台灣與全球是造成兒童住院與死亡的主要原因之一。能及時辨別肺炎病童的嚴重度與死亡率對於醫療決策、提供家屬諮詢與討論病情是至關重要的,並可能改善治療後的結果。但目前未有適用於台灣臨床環境中的兒童呼吸道感染嚴重程度的評分系統。近年來隨著電子病歷系統的普及與機器學習技術的蓬勃發展,已有諸多研究展示數據挖掘與機器學習方法應用於臨床的可能性,但在兒科研究中的應用範圍尚未得到充分的探索。因此,我們旨在開發一種機器學習模型來預測肺炎病童在加護病房中的死亡率,並辨別重要的臨床指標以支持醫療決策。我們在2010年1月至2019年12月期間從國立臺灣大學附屬醫院中納入了932名肺炎病童,共組成1,231筆加護病房入院紀錄與1,144入院紀錄。我們感興趣的結果是肺炎病童在加護病房的死亡率及其在接下來24小時內的死亡率。藉由病患之生理數據與機器學習方法提供個人化的死亡率評估,並計算特徵重要性以獲得模型解釋性。首先,本研究開發了加護病房住院早期的死亡率預測模型。該模型顯示出良好的預測性能,受試者工作特徵曲線下面積為0.85。另外,我們更進一步開發了動態死亡預測模型,該模型考慮了病童隨時間變化的生理狀況,並實現了受試者工作特徵曲線下面積為0.98 的出色預測性能(95% CI,0.96-0.99)。此動態預測模型能隨著肺炎病童在不同時間下的病程發展,提供能每日更新的個人死亡率評估,以利醫師提出即時且精準的臨床決策。該模型性能優於現有的嚴重程度評分系統,並且更符合台灣兒童的臨床特徵。透過機器學習模型,我們識別了重要的死亡風險因子,包括較低的體溫、收縮壓和較高的肌酐檢驗值等,符合醫師的臨床知識與經驗。zh_TW
dc.description.abstractIdentifying the severity and mortality of children with pneumonia in time is crucial to medical decision-making, counseling, and discussion of the disease situation. It has the opportunity to improve the outcomes after treatment. However, there is no scoring system for the severity of childhood respiratory infections in the clinical setting in Taiwan. In recent years, with the popularity of electronic health records and the boom in machine learning technology, numerous studies have demonstrated the potential of data mining and machine learning methods for clinical applications. Still, they have not been fully explored in pediatric research. Therefore, we aimed to develop a machine learning model to predict ICU mortality for children with pneumonia and discriminate important clinical indices for supported decision-making. We enrolled 1,231 ICU admissions from 1,144 hospitalizations and 932 unique patients with pneumonia in the cohort from National Taiwan University Hospital between January 2010 and December 2019. First, a mortality prediction model in the early stages of ICU admission was developed. The model showed good prediction performance with 0.85 of the area under the receiver operating characteristic curve (AUROC). Second, we further develop a dynamic prediction model that consider the patients’ disease situations over time and achieve an excellent AUROC of 0.98 (95% CI, 0.96-0.99). The model performance outperforms existing severity scoring systems and is better adapted to the clinical characteristics of Taiwanese children. The relative important clinical indices identified by the model, including lower body temperature, systolic blood pressure, and higher creatinine et al., are consistent with the physician’s clinical knowledge and experience.en
dc.description.provenanceMade available in DSpace on 2023-03-20T00:06:04Z (GMT). No. of bitstreams: 1
U0001-0208202215373000.pdf: 4764509 bytes, checksum: d89044e215413fea535a1f96fff48403 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents誌謝 i 中文摘要 ii Abstract iii List of Figures vii List of Tables xi Chapter 1 Introduction 1 1.1 Background 1 1.2 Prognostic models in patients with pneumonia 3 1.3 Severity scoring system for children with pneumonia 9 1.4 Machine learning on clinical tasks 11 1.5 Objectives 14 1.6 Structure of the thesis 15 Chapter 2 Methodology 16 2.1 Data source and cohort selection 16 2.2 Collection of clinically relevant features 18 2.3 Data pre-processing 19 2.3.1 Structured medical records 19 2.3.2 Text-based medical records 20 2.4 Classification models 23 2.4.1 Logistic regression 23 2.4.2 Random forest 23 2.4.3 eXtreme Gradient Boosting (XGboost) 24 2.4.4 Long Short-Term Memory (LSTM) 25 2.5 Model training 26 2.6 Performance evaluation 27 2.7 SHapley Additive exPlanations (SHAP) 30 2.8 Oversampling 31 2.9 Software 33 Chapter 3 Cohort and feature description 34 3.1 Development cohort and holdout test cohort 34 3.2 Features description 37 3.3 Between-group comparison of clinical characteristics 38 Chapter 4 Prediction model of mortality in the early stages of ICU admission 44 4.1 Definition of “early” 44 4.2 Dataset visualization and statistics 46 4.3. Model development 49 4.4 Model prediction performance 52 4.5 The compact model without laboratory examination results 58 4.6 Feature importance analysis 61 4.7 Comparisons with prior work 65 Chapter 5 Dynamic prognostic model of mortality 67 5.1 Definition of “dynamic” 67 5.2 Model development 68 5.3 Model prediction performance 77 5.4 Feature importance analysis 80 5.5 Dynamic mortality prediction for a single patient 84 5.6 Comparisons with prior works 88 Chapter 6 Conclusions 91 References 94 Appendix a
dc.language.isoen
dc.subject肺炎zh_TW
dc.subject兒科患者zh_TW
dc.subject肺炎zh_TW
dc.subject加護病房zh_TW
dc.subject死亡預測zh_TW
dc.subject機器學習zh_TW
dc.subject臨床指標zh_TW
dc.subject臨床指標zh_TW
dc.subject機器學習zh_TW
dc.subject兒科患者zh_TW
dc.subject死亡預測zh_TW
dc.subject加護病房zh_TW
dc.subjectpneumoniaen
dc.subjectpediatric patientsen
dc.subjectintensive care uniten
dc.subjectmortality predictionen
dc.subjectmachine learningen
dc.subjectclinical indicesen
dc.subjectpediatric patientsen
dc.subjectpneumoniaen
dc.subjectintensive care uniten
dc.subjectmortality predictionen
dc.subjectmachine learningen
dc.subjectclinical indicesen
dc.title以機器學習模型預測加護病房內肺炎病童死亡風險zh_TW
dc.titleUsing Machine Learning Model to Predict Mortality for Children with Pneumonia in the Intensive Care Uniten
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee賴飛羆(Feipei Lai),張鑾英(Luan-Yin Chang)
dc.subject.keyword兒科患者,肺炎,加護病房,死亡預測,機器學習,臨床指標,zh_TW
dc.subject.keywordpediatric patients,pneumonia,intensive care unit,mortality prediction,machine learning,clinical indices,en
dc.relation.page104
dc.identifier.doi10.6342/NTU202201973
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-08-09
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
dc.date.embargo-lift2022-08-18-
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
U0001-0208202215373000.pdf4.65 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved