請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86602完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 許輔 | zh_TW |
| dc.contributor.advisor | Fuu Sheu | en |
| dc.contributor.author | 呂冠誼 | zh_TW |
| dc.contributor.author | Guan-Yi Lu | en |
| dc.date.accessioned | 2023-03-20T00:05:48Z | - |
| dc.date.available | 2023-12-26 | - |
| dc.date.copyright | 2022-08-22 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | 王英誌 (2017)。還原劑與界面活性劑於提升米蛋白功能性之應用。國立臺灣大學園藝暨景觀學系學位論文。台北。 李思葶 (2019)。由碎米提取米蛋白之可行性。國立臺灣大學園藝暨景觀學系學位論文。台北。 陳立於 (2017)。米蛋白之磷酸化與應用於米蛋白磷酸胜肽之製備。國立臺灣大學園藝暨景觀學系學位論文。台北。 葉采青 (2018)。改善米蛋白水解物的水溶性與苦味減量之研究。國立臺灣大學園藝暨景觀學系學位論文。台北。 詹元妤 (2020)。低熱變性米蛋白與米糠蛋白之品質分析。國立臺灣大學園藝暨景觀學系學位論文。台北。 廖紜荻 (2019)。蒸煮時間對蒸穀糙米物化性質與植酸含量之影響。國立臺灣大學食品科技研究所學位論文。台北。 劉思辰 (2016)。不同米種之米蛋白組成及其功能性之研究。國立臺灣大學園藝暨景觀學系學位論文。台北。 Abdel‐Aal, E. S., & Hucl, P. (1999). A rapid method for quantifying total anthocyanins in blue aleurone and purple pericarp wheats. Cereal Chemistry, 76(3), 350-354. Abdul-Hamid, A., & Luan, Y. S. (2000). Functional properties of dietary fibre prepared from defatted rice bran. Food Chemistry, 68(1), 15-19. Adebiyi, A. P., Adebiyi, A. O., Hasegawa, Y., Ogawa, T., & Muramoto, K. (2009). Isolation and characterization of protein fractions from deoiled rice bran. European Food Research and Technology, 228(3), 391-401. Adebiyi, A. P., Adebiyi, A. O., Ogawa, T., & Muramoto, K. (2007). Preparation and characterization of high‐quality rice bran proteins. Journal of the Science of Food and Agriculture, 87(7), 1219-1227. Adebowale, T. O., Yao, K., & Oso, A. O. (2019). Major cereal carbohydrates in relation to intestinal health of monogastric animals: A review. Animal Nutrition, 5(4), 331-339. Adenekan, M. K., Fadimu, G. J., Odunmbaku, L. A., & Oke, E. K. (2018). Effect of isolation techniques on the characteristics of pigeon pea (Cajanus cajan) protein isolates. Food Science & Nutrition, 6(1), 146-152. Agboola, S., Ng, D., & Mills, D. (2005). Characterisation and functional properties of Australian rice protein isolates. Journal of Cereal Science, 41(3), 283-290. Aibara, S., Ismail, I. A., Yamashita, H., Ohta, H., Sekiyama, F., & Morita, Y. (1986). Changes in rice bran lipids and free amino acids during storage. Agricultural and Biological Chemistry, 50(3), 665-673. Aiking, H. (2011). Future protein supply. Trends in Food Science & Technology, 22(2-3), 112-120. Akande, K., Doma, U., Agu, H., & Adamu, H. (2010). Major antinutrients found in plant protein sources: their effect on nutrition. Pakistan Journal of Nutrition, 9(8), 827-832. Al‐Doury, M. K., Hettiarachchy, N. S., & Horax, R. (2018). Rice‐endosperm and rice‐bran proteins: A review. Journal of the American Oil Chemists' Society, 95(8), 943-956. Aletor, O., Oshodi, A., & Ipinmoroti, K. (2002). Chemical composition of common leafy vegetables and functional properties of their leaf protein concentrates. Food Chemistry, 78(1), 63-68. Amagliani, L., O'Regan, J., Kelly, A. L., & O'Mahony, J. A. (2017). The composition, extraction, functionality and applications of rice proteins: A review. Trends in Food Science & Technology, 64, 1-12. Anderson, A. K., & Guraya, H. S. (2001). Extractability of protein in physically processed rice bran. Journal of the American Oil Chemists' Society, 78(9), 969-972. Arbach, C. T., Alves, I. A., Serafini, M. R., Stephani, R., Perrone, Í. T., & de Carvalho da Costa, J. (2021). Recent patent applications in beverages enriched with plant proteins. npj Science of Food, 5(1), 1-20. Bandumula, N. (2018). Rice production in Asia: Key to global food security. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 88(4), 1323-1328. Bach Knudsen, K. E., Nørskov, N. P., Bolvig, A. K., Hedemann, M. S., & Laerke, H. N. (2017). Dietary fibers and associated phytochemicals in cereals. Molecular Nutrition & Food Research, 61(7), 1600518. Balindong, J. L., Ward, R. M., Liu, L., Rose, T. J., Pallas, L. A., Ovenden, B. W., & Waters, D. L. (2018). Rice grain protein composition influences instrumental measures of rice cooking and eating quality. Journal of Cereal Science, 79, 35-42. Bandyopadhyay, K., Misra, G., & Ghosh, S. (2008). Preparation and characterisation of protein hydrolysates from Indian defatted rice bran meal. Journal of Oleo Science, 57(1), 47-52. Bera, M., & Mukherjee, R. (1989). Solubility, emulsifying, and foaming properties of rice bran protein concentrates. Journal of Food Science, 54(1), 142-145. Bernardi, S., Corso, M., Baraldi, I., Colla, E., & Canan, C. (2018). Obtaining concentrated rice bran protein by alkaline extraction and stirring–optimization of conditions. International Food Research Journal, 25(3), 1133-1139. Bhosale, S., & Vijayalakshmi, D. (2015). Processing and nutritional composition of rice bran. Current Research in Nutrition and Food Science Journal, 3(1), 74-80. Bohn, L., Josefsen, L., Meyer, A. S., & Rasmussen, S. K. (2007). Quantitative analysis of phytate globoids isolated from wheat bran and characterization of their sequential dephosphorylation by wheat phytase. Journal of Agricultural and Food Chemistry, 55(18), 7547-7552. Boye, J. I. (2012). Food allergies in developing and emerging economies: need for comprehensive data on prevalence rates. Clinical and Translational Allergy, 2(1), 1-9. Burger, T. G., & Zhang, Y. (2019). Recent progress in the utilization of pea protein as an emulsifier for food applications. Trends in Food Science & Technology, 86, 25-33. Brinch-Pedersen, H., Sørensen, L. D., & Holm, P. B. (2002). Engineering crop plants: getting a handle on phosphate. Trends in plant science, 7(3), 118-125. Cagampang, G. B., Cruz, L. J., Espiritu, S. G., Santiago, R. G., & Juliano, B. O. (1966). Studies on the extraction and composition of rice proteins. Cereal Chemistry, 43, 145-155. Canan, C., Cruz, F. T. L., Delaroza, F., Casagrande, R., Sarmento, C. P. M., Shimokomaki, M., & Ida, E. I. (2011). Studies on the extraction and purification of phytic acid from rice bran. Journal of Food Composition and Analysis, 24(7), 1057-1063. Cao, L., Wang, W., Yang, Y., Yang, C., Yuan, Z., Xiong, S., & Diana, J. (2007). Environmental impact of aquaculture and countermeasures to aquaculture pollution in China. Environmental Science and Pollution Research-International, 14(7), 452-462. Cao, X., Wen, H., Li, C., & Gu, Z. (2009). Differences in functional properties and biochemical characteristics of congenetic rice proteins. Journal of Cereal Science, 50(2), 184-189. Chandi, G. K., & Sogi, D. (2007). Functional properties of rice bran protein concentrates. Journal of Food Engineering, 79(2), 592-597. Champagne, E. T., Wood, D. F., Juliano, B. O., & Bechtel, D. B. (2004). The rice grain and its gross composition. Rice Chemistry and Technology, 3, 77-107. Charalampopoulos, D., Wang, R., Pandiella, S., & Webb, C. (2002). Application of cereals and cereal components in functional foods: A review. International Journal of Food Microbiology, 79(1-2), 131-141. Chen, X., & Wu, H. (2019). Transformation and release of phosphorus during rice bran pyrolysis: Effect of reactor configurations under various conditions. Fuel, 255, 115755. Cheryan, M., & Rackis, J. J. (1980). Phytic acid interactions in food systems. Critical Reviews in Food Science & Nutrition, 13(4), 297-335. Chinma, C. E., Ramakrishnan, Y., Ilowefah, M., Hanis‐Syazwani, M., & Muhammad, K. (2015). Properties of cereal brans: A review. Cereal Chemistry, 92(1), 1-7. Chirdo, F., Ben, R., Saldungaray, I., & Villalobos, R. (2002). Evaluation of coeliac disease serological markers in Down syndrome patients. Digestive and Liver Disease, 34(2), 116-121. Chittapalo, T., & Noomhorm, A. (2009). Ultrasonic assisted alkali extraction of protein from defatted rice bran and properties of the protein concentrates. International Journal of Food Science & Technology, 44(9), 1843-1849. Constantino, A. B. T., & Garcia‐Rojas, E. E. (2022). Proteins from pseudocereal seeds: solubility, extraction, and modifications of the physicochemical and techno‐functional properties. Journal of the Science of Food and Agriculture. Cui, L., Bandillo, N., Wang, Y., Ohm, J. B., Chen, B., & Rao, J. (2020). Functionality and structure of yellow pea protein isolate as affected by cultivars and extraction pH. Food Hydrocolloids, 108, 106008. Cummings, J., & Stephen, A. (2007). Carbohydrate terminology and classification. European Journal of Clinical Nutrition, 61(1), S5-S18. Cunningham, S. D., Cater, C. M., Mattil, K. F., & Vanderzant, C. (1975). Rupture and protein extraction of petroleum‐grown yeast. Journal of Food Science, 40(4), 732-735. Damodaran, S. (1996). Functional properties: In: Nakai S, Modler HW (Eds) Food Proteins: Properties and Characterization. In: Wiley-VCH, New York. Damodaran, S. (2005). Protein stabilization of emulsions and foams. Journal of Food Science, 70(3), R54-R66. Damodaran, S., Parkin, K. L., & Fennema, O. R. (2007). Fennema's Food Chemistry: CRC press. Dardevet, D. (2016). The molecular nutrition of amino acids and proteins: a volume in The Molecular Nutrition Series: Academic Press. Day, L. (2013). Proteins from land plants–potential resources for human nutrition and food security. Trends in Food Science & Technology, 32(1), 25-42. Deleu, L. J., Lambrecht, M. A., Van de Vondel, J., & Delcour, J. A. (2019). The impact of alkaline conditions on storage proteins of cereals and pseudo-cereals. Current Opinion in Food Science, 25, 98-103. Dunford, N. T. (2019). Chemistry of rice bran oil. In Rice Bran and Rice Bran Oil (pp. 1-18): Elsevier. Elleuch, M., Bedigian, D., Roiseux, O., Besbes, S., Blecker, C., & Attia, H. (2011). Dietary fibre and fibre-rich by-products of food processing: Characterisation, technological functionality and commercial applications: A review. Food Chemistry, 124(2), 411-421. Esmaeili, M., Rafe, A., Shahidi, S. A., & Ghorbani Hasan‐Saraei, A. (2016). Functional properties of rice bran protein isolate at different pH levels. Cereal Chemistry, 93(1), 58-63. Fabian, C., & Ju, Y.-H. (2011). A review on rice bran protein: its properties and extraction methods. Critical Reviews in Food Science and Nutrition, 51(9), 816-827. Faria, S. A. d. S. C., Bassinello, P. Z., & Penteado, M. d. V. C. (2012). Nutritional composition of rice bran submitted to different stabilization procedures. Brazilian Journal of Pharmaceutical Sciences, 48, 651-657. Farooq, Z., & Boye, J. (2011). Pulse Foods: Processing, Quality and Nutraceutical Applications. Elsevier. Foschia, M., Peressini, D., Sensidoni, A., & Brennan, C. S. (2013). The effects of dietary fibre addition on the quality of common cereal products. Journal of Cereal Science, 58(2), 216-227. Friedman, M. (1999). Chemistry, biochemistry, nutrition, and microbiology of lysinoalanine, lanthionine, and histidinoalanine in food and other proteins. Journal of Agricultural and Food Chemistry, 47(4), 1295-1319. Friedman, M. (2013). Rice brans, rice bran oils, and rice hulls: composition, food and industrial uses, and bioactivities in humans, animals, and cells. Journal of Agricultural and Food Chemistry, 61(45), 10626-10641. Gao, Y., Shang, C., Maroof, M. S., Biyashev, R., Grabau, E., Kwanyuen, P., & Buss, G. (2007). A modified colorimetric method for phytic acid analysis in soybean. Crop Science, 47(5), 1797-1803. Gibson, R. S., Perlas, L., & Hotz, C. (2006). Improving the bioavailability of nutrients in plant foods at the household level. Proceedings of the Nutrition Society, 65(2), 160-168. Gnanasambandam, R., & Heltiarachchy, N. (1995). Protein concentrates from unstabilized and stabilized rice bran: preparation and properties. Journal of Food Science, 60(5), 1066-1069. Gong, K. J., Shi, A. M., Liu, H. Z., Liu, L., Hu, H., Adhikari, B., & Wang, Q. (2016). Emulsifying properties and structure changes of spray and freeze-dried peanut protein isolate. Journal of Food Engineering, 170, 33-40. Gong, X., Sui, L., Morton, J., Brennan, M. A., & Brennan, C. S. (2021). Investigation of nutritional and functional effects of rice bran protein hydrolysates by using preferred reporting items for systematic reviews and meta-analysis (PRISMA) guidelines: A review. Trends in Food Science & Technology, 110, 798-811. Goodarzi, F., & Zendehboudi, S. (2019). A comprehensive review on emulsions and emulsion stability in chemical and energy industries. The Canadian Journal of Chemical Engineering, 97(1), 281-309. Gropper, S. S., & Smith, J. L. (2012). Advanced nutrition and human metabolism: Cengage Learning. Guan, J., Takai, R., Toraya, K., Ogawa, T., Muramoto, K., Mohri, S., & Cho, S. J. (2017). Effects of alkaline deamidation on the chemical properties of rice bran protein. Food Science and Technology Research, 23(5), 697-704. Gujral, H. S., & Rosell, C. M. (2004). Improvement of the breadmaking quality of rice flour by glucose oxidase. Food Research International, 37(1), 75-81. Gul, K., Yousuf, B., Singh, A., Singh, P., & Wani, A. A. (2015). Rice bran: nutritional values and its emerging potential for development of functional food—A review. Bioactive Carbohydrates and Dietary Fibre, 6(1), 24-30. Gupta, S., Chandi, G. K., & Sogi, D. S. (2008). Effect of extraction temperature on functional properties of rice bran protein concentrates. International Journal of Food Engineering, 4(2). Hamada, J. (1997). Characterization of protein fractions of rice bran to devise effective methods of protein solubilization. Cereal Chemistry, 74(5), 662-668. Hamada, J. (2000). Characterization and functional properties of rice bran proteins modified by commercial exoproteases and endoproteases. Journal of Food Science, 65(2), 305-310. Hamada, J. S. (1999). Use of proteases to enhance solubilization of rice bran proteins 1. Journal of Food Biochemistry, 23(3), 307-321. Hamada, J. S. (2000). Ultrafiltration of partially hydrolyzed rice bran protein to recover value-added products. Journal of the American Oil Chemists' Society, 77(7), 779-784. Hamada, J. S., & Swanson, B. (1994). Deamidation of food proteins to improve functionality. Critical Reviews in Food Science & Nutrition, 34(3), 283-292. Han, S.-W., Chee, K.-M., & Cho, S.-J. (2015). Nutritional quality of rice bran protein in comparison to animal and vegetable protein. Food Chemistry, 172, 766-769. Han, Y. W. (1988). Removal of phytic acid from soybean and cottonseed meals. Journal of Agricultural and Food Chemistry, 36(6), 1181-1183. Harland, B. F., & Morris, E. R. (1995). Phytate: a good or a bad food component? Nutrition Research, 15(5), 733-754. Hayakawa, S., & Nakai, S. (1985). Relationships of hydrophobicity and net charge to the solubility of milk and soy proteins. Journal of Food Science, 50(2), 486-491. Hernandez, N., Rodriguez‐Alegria, M., Gonzalez, F., & Lopez‐Munguia, A. (2000). Enzymatic treatment of rice bran to improve processing. Journal of the American Oil Chemists' Society, 77(2), 177-180. Hettiarachchy, N. S., & Ziegler, G. R. (1994). Protein functionality in food systems: CRC press. Hourigan, J. A., & Chesterman, C. F. (1997). Application of carbohydrases in extracting protein from rice bran. Journal of the Science of Food and Agriculture, 74(2), 141-146. Hu, H., Wu, J., Li-Chan, E. C., Zhu, L., Zhang, F., Xu, X., & Pan, S. (2013). Effects of ultrasound on structural and physical properties of soy protein isolate (SPI) dispersions. Food hydrocolloids, 30(2), 647-655. Hu, W., Wells, J. H., Shin, T.-S., & Godber, J. S. (1996). Comparison of isopropanol and hexane for extraction of vitamin E and oryzanols from stabilized rice bran. Journal of the American oil chemists’ society, 73(12), 1653-1656. Hu, Z., Qiu, L., Sun, Y., Xiong, H., & Ogra, Y. (2019). Improvement of the solubility and emulsifying properties of rice bran protein by phosphorylation with sodium trimetaphosphate. Food Hydrocolloids, 96, 288-299. Huang, L., Ding, X., Li, Y., & Ma, H. (2019). The aggregation, structures and emulsifying properties of soybean protein isolate induced by ultrasound and acid. Food Chemistry, 279, 114-119. Hurrell. (2004). Phytic acid degradation as a means of improving iron absorption. International Journal for Vitamin and Nutrition Research, 74(6), 445-452. Iwasaki, T., Shibuya, N., Suzuki, T., & Chikubu, S. (1982). Gel filtration and electrophoresis of soluble rice proteins extracted from long, medium, and short grain varieties. Cereal Chemistry. Jariwalla, R. (2001). Rice-bran products: phytonutrients with potential applications in preventive and clinical medicine. Drugs Under Experimental and Clinical Research, 27(1), 17-26. Jarpa-Parra, M., Bamdad, F., Wang, Y., Tian, Z., Temelli, F., Han, J., & Chen, L. (2014). Optimization of lentil protein extraction and the influence of process pH on protein structure and functionality. LWT-Food Science and Technology, 57(2), 461-469. Jia, M., Chen, J., Liu, X., Xie, M., Nie, S., Chen, Y., & Yu, Q. (2019). Structural characteristics and functional properties of soluble dietary fiber from defatted rice bran obtained through trichoderma viride fermentation. Food Hydrocolloids, 94, 468-474. Jiamyangyuen, S., Srijesdaruk, V., & Harper, W. J. (2005). Extraction of rice bran protein concentrate and its application in bread. Extraction, 27(1), 56. Jiang, J., Chen, J., & Xiong, Y. L. (2009). Structural and emulsifying properties of soy protein isolate subjected to acid and alkaline pH-shifting processes. Journal of Agricultural and Food Chemistry, 57(16), 7576-7583. Jiang, J., Wang, Q., & Xiong, Y. L. (2018). A pH shift approach to the improvement of interfacial properties of plant seed proteins. Current Opinion in Food Science, 19, 50-56. Jiang, J., Xiong, Y. L., & Chen, J. (2010). PH shifting alters solubility characteristics and thermal stability of soy protein isolate and its globulin fractions in different pH, salt concentration, and temperature conditions. Journal of Agricultural and Food Chemistry, 58(13), 8035-8042. Jiang, S., Ding, J., Andrade, J., Rababah, T. M., Almajwal, A., Abulmeaty, M. M., & Feng, H. (2017). Modifying the physicochemical properties of pea protein by pH-shifting and ultrasound combined treatments. Ultrasonics Sonochemistry, 38, 835-842. Joiner, A. (2010). Colorimetric evaluation of tooth colour. In Colour Measurement (pp. 343-e1). Woodhead Publishing. Ju, Z., Hettiarachchy, N., & Rath, N. (2001). Extraction, denaturation and hydrophobic properties of rice flour proteins. Journal of Food Science, 66(2), 229-232. Juliano, B. O. (1985). Rice: Chemistry and Technology (Vol. 69): American Association of Cereal Chemists St Paul, MN. Kahlon, T. S. (2009). Rice bran: Production, Composition, Functionality and Food Applications, Physiological Benefits: CRC Press, Taylor & Francis Group: Boca Raton, FL, USA. Kalpanadevi, C., Muthukumar, S., Govindaraju, K., & Subramanian, R. (2021). Rice bran protein: an alternative plant-based protein to ameliorate protein malnourishment. Journal of Cereal Science, 97, 103154. Kari, Z. A., Kabir, M. A., Razab, M. K. A. A., Munir, M. B., Lim, P. T., & Wei, L. S. (2020). A replacement of plant protein sources as an alternative of fish meal ingredient for African catfish, Clarias gariepinus: A review. Journal of Tropical Resources and Sustainable Science (JTRSS), 8(1), 47-59. Kaufmann, J., & Schering, A. G. (2007). Analysis of variance ANOVA. Wiley Encyclopedia of Clinical Trials. Kennedy, J. F., & Cabral, J. (1993). Recovery Processes for Biological Materials. Retrieved from Wiley. Khalid, E., Babiker, E., & Tinay, A. E. (2003). Solubility and functional properties of sesame seed proteins as influenced by pH and/or salt concentration. Food Chemistry, 82(3), 361-366. Kim, H. Y., Ko, J., Kang, S., & Tenhunen, J. (2013). Impacts of climate change on paddy rice yield in a temperate climate. Global Change Biology, 19(2), 548-562. Kinsella, J., & Whitehead, D. (1988). Advances in Food Emulsions and Foams. In: Elsevier applied science publishers Ltd London, UK. Komatsu, S., & Hirano, H. (1992). Rice seed globulin: a protein similar to wheat seed glutenin. Phytochemistry, 31(10), 3455-3459. Krishnan, H. B., White, J. A., & Pueppke, S. G. (1992). Characterization and localization of rice (Oryza sativa L.) seed globulins. Plant Science, 81(1), 1-11. Kristo, E., & Corredig, M. (2014). Functional properties of food proteins. Applied Food Protein Chemistry, 47-73. Kumagai, T., Kawamura, H., Fuse, T., Watanabe, T., Saito, Y., Masumura, T., & Kadowaki, M. (2006). Production of rice protein by alkaline extraction improves its digestibility. Journal of Nutritional Science and Vitaminology, 52(6), 467-472. Kumari, N., Vinita, N. K., & Rani, P. (2018). Nutrient composition of full fat and defatted rice bran. Asian Journal of Dairy and Food Research, 37(1), 77-80. Lafiandra, D., Riccardi, G., & Shewry, P. R. (2014). Improving cereal grain carbohydrates for diet and health. Journal of Cereal Science, 59(3), 312-326. Lam, R. S., & Nickerson, M. T. (2013). Food proteins: a review on their emulsifying properties using a structure–function approach. Food Chemistry, 141(2), 975-984. Lamberts, L., De Bie, E., Vandeputte, G. E., Veraverbeke, W. S., Derycke, V., De Man, W., & Delcour, J. A. (2007). Effect of milling on colour and nutritional properties of rice. Food Chemistry, 100(4), 1496-1503. Lawal, O. S., Adebowale, K. O., & Adebowale, Y. A. (2007). Functional properties of native and chemically modified protein concentrates from bambarra groundnut. Food Research International, 40(8), 1003-1011. Leman, J., Kinsella, J., & Kilara, A. (1989). Surface activity, film formation, and emulsifying properties of milk proteins. Critical Reviews in Food Science & Nutrition, 28(2), 115-138. Lew, E., Houston, D., & Fellers, D. (1975). A note on protein concentrate from full-fat rice bran. Cereal Chemistry. Li, C.-Y., Park, D.-S., Won, S.-R., Hong, S.-K., Ham, J.-K., Choi, J.-K., & Rhee, H.-I. (2008). Food chemical properties of low-phytate rice cultivar, Sang-gol. Journal of Cereal Science, 47(2), 262-265. Li, D., Zhao, Y., Wang, X., Tang, H., Wu, N., Wu, F., & Elfalleh, W. (2020). Effects of (+)-catechin on a rice bran protein oil-in-water emulsion: Droplet size, zeta-potential, emulsifying properties, and rheological behavior. Food Hydrocolloids, 98, 105306. Li, F., Wu, X., & Wu, W. (2021). Effects of protein oxidation induced by rice bran rancidity on the structure and functionality of rice bran glutelin. LWT, 149, 111874. Li, H., Li, F., Wu, X., & Wu, W. (2021). Effect of rice bran rancidity on the emulsion stability of rice bran protein and structural characteristics of interface protein. Food Hydrocolloids, 121, 107006. Li, R., & Xiong, Y. L. (2021). Sensitivity of oat protein solubility to changing ionic strength and pH. Journal of Food Science, 86(1), 78-85. Li, Y., Zhang, Z., Ren, W., Wang, Y., Mintah, B. K., Dabbour, M., & Ma, H. (2021). Inhibition effect of ultrasound on the formation of lysinoalanine in rapeseed protein isolates during pH shift treatment. Journal of Agricultural and Food Chemistry, 69(30), 8536-8545. Liang, J., Han, B. Z., Nout, M. R., & Hamer, R. J. (2008). Effects of soaking, germination and fermentation on phytic acid, total and in vitro soluble zinc in brown rice. Food Chemistry, 110(4), 821-828. Lin, D., & Miao, S. (2021). Interactions, structures, and functional properties of plant protein–polymer complexes. Food Structure and Functionality, 201-217. Liu, K., Zheng, J., Wang, X., & Chen, F. (2019). Effects of household cooking processes on mineral, vitamin B, and phytic acid contents and mineral bioaccessibility in rice. Food Chemistry, 280, 59-64. Liu, Y., Zhang, H., Yi, C., Quan, K., & Lin, B. (2021). Chemical composition, structure, physicochemical and functional properties of rice bran dietary fiber modified by cellulase treatment. Food Chemistry, 342, 128352. Loewus, F. (2002). Biosynthesis of phytate in food grains and seeds. Food Phytates, 53-61. Londhe, S. V., Joshi, M. S., Bhosale, A. A., & Kale, S. B. (2011). Isolation of quality soy protein from soya flakes. International Journal of Research in Pharmaceutical and Biomedical Sciences, 2(3), 1175-1177. Loveday, S. M. (2020). Plant protein ingredients with food functionality potential. Nutrition Bulletin, 45(3), 321-327. Méx, B. S. Q. (2008). Emulsifying properties of proteins. Boletín de la Sociedad, 2(2), 80. Madhavi Sastry, G., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221-234. Malekian, F. (2000). Lipase and lipoxygenase activity, functionality, and nutrient losses in rice bran during storage. Mandial, D., Khullar, P., Mahal, A., Kumar, H., Singh, N., Ahluwalia, G. K., & Bakshi, M. S. (2018). Applications of rice protein in nanomaterials synthesis, nanocolloids of rice protein, and bioapplicability. International Journal of Biological Macromolecules, 120, 394-404. Mariotti, F. (2019). Animal and plant protein sources and cardiometabolic health. Advances in Nutrition, 10 (Supplement_4), S351-S366. Matsudomi, N., Sasaki, T., Kato, A., & Kobayashi, K. (1985). Conformational changes and functional properties of acid-modified soy protein. Agricultural and Biological Chemistry, 49(5), 1251-1256. Mawal, Y. R., Mawal, M. R., & Ranjekar, P. (1987). Biochemical and immunological characterization of rice albumin. Bioscience Reports, 7(1), 1-9. de Mesa-Stonestreet, N. J., Alavi, S., & Gwirtz, J. (2012). Extrusion-enzyme liquefaction as a method for producing sorghum protein concentrates. Journal of Food Engineering, 108(2), 365-375. Mohammadi, F., Marti, A., Nayebzadeh, K., Hosseini, S. M., Tajdar-Oranj, B., & Jazaeri, S. (2021). Effect of washing, soaking and pH in combination with ultrasound on enzymatic rancidity, phytic acid, heavy metals and coliforms of rice bran. Food Chemistry, 334, 127583. Moongngarm, A., Daomukda, N., & Khumpika, S. (2012). Chemical compositions, phytochemicals, and antioxidant capacity of rice bran, rice bran layer, and rice germ. Apcbee Procedia, 2, 73-79. Muthayya, S., Sugimoto, J. D., Montgomery, S., & Maberly, G. F. (2014). An overview of global rice production, supply, trade, and consumption. Annals of the New York Academy of Sciences, 1324(1), 7-14. Nagendra Prasad, M., Sanjay, K., Shravya Khatokar, M., Vismaya, M., & Nanjunda Swamy, S. (2011). Health benefits of rice bran-a review. Journal of Social Sciences, 1(3), 1-7. Nasrabadi, M. N., Doost, A. S., & Mezzenga, R. (2021). Modification approaches of plant-based proteins to improve their techno-functionality and use in food products. Food Hydrocolloids, 118, 106789. Ngouémazong, E. D., Christiaens, S., Shpigelman, A., Van Loey, A., & Hendrickx, M. (2015). The emulsifying and emulsion‐stabilizing properties of pectin: A review. Comprehensive Reviews in Food Science and Food Safety, 14(6), 705-718. Norazalina, S., Norhaizan, M., Hairuszah, I., & Norashareena, M. (2010). Anticarcinogenic efficacy of phytic acid extracted from rice bran on azoxymethane-induced colon carcinogenesis in rats. Experimental and Toxicologic Pathology, 62(3), 259-268. Norhaizan, M., Ng, S., Norashareena, M., & Abdah, M. (2011). Antioxidant and cytotoxicity effect of rice bran phytic acid as an anticancer agent on ovarian, breast and liver cancer cell lines. Malaysian Journal of Nutrition, 17(3). Orthoefer, F. T., & Eastman, J. (2005). Rice bran oil. Bailey's Industrial Oil and Fat Products, 2, 465-489. Osborne, T. B. (1924). The Vegetable Proteins: Longmans, Green and Company. Özkaya, B., Baumgartner, B., & Özkaya, H. (2018). Effects of concentrated and dephytinized wheat bran and rice bran addition on bread properties. Journal of Texture Studies, 49(1), 84-93. Pan, S., & Reeck, G. (1988). Isolation and characterization of rice a-globulin. Cereal Chemistry, 65(4), 316-319. Paraman, I., Hettiarachchy, N. S., Schaefer, C., & Beck, M. I. (2007). Hydrophobicity, solubility, and emulsifying properties of enzyme‐modified rice endosperm protein. Cereal Chemistry, 84(4), 343-349. Paraman, I., Hettiarachchy, N., & Schaefer, C. (2008). Preparation of rice endosperm protein isolate by alkali extraction. Cereal Chemistry, 85(1), 76-81. Parrado, J., Miramontes, E., Jover, M., Gutierrez, J. F., de Teran, L. C., & Bautista, J. (2006). Preparation of a rice bran enzymatic extract with potential use as functional food. Food Chemistry, 98(4), 742-748. Parsons, C., Hashimoto, K., Wedekind, K., & Baker, D. (1991). Soybean protein solubility in potassium hydroxide: an in vitro test of in vivo protein quality. Journal of Animal Sscience, 69(7), 2918-2924. Pearce, K. N., & Kinsella, J. E. (1978). Emulsifying properties of proteins: evaluation of a turbidimetric technique. Journal of Agricultural and Food Chemistry, 26(3), 716-723. Phongthai, S., Homthawornchoo, W., & Rawdkuen, S. (2017). Preparation, properties and application of rice bran protein: A review. International Food Research Journal, 24(1), 25. Phongthai, S., Lim, S.-T., & Rawdkuen, S. (2016). Optimization of microwave-assisted extraction of rice bran protein and its hydrolysates properties. Journal of Cereal Science, 70, 146-154. Prakash, J., & Ramaswamy, H. (1996). Rice bran proteins: properties and food uses. Critical Reviews in Food Science & Nutrition, 36(6), 537-552. Radhika, V., & Rao, V. (2015). Computational approaches for the classification of seed storage proteins. Journal of Food Science and Technology, 52(7), 4246-4255. Rashid, S. A., Othman, R. N. I. R., & Hussein, M. Z. (2018). Synthesis, Technology and Applications of Carbon Nanomaterials: Elsevier. Revilla, E., Santa-María, C., Miramontes, E., Candiracci, M., Rodríguez-Morgado, B., Carballo, M., & Parrado, J. (2013). Antiproliferative and immunoactivatory ability of an enzymatic extract from rice bran. Food Chemistry, 136(2), 526-531. Richter, C. K., Skulas-Ray, A. C., Champagne, C. M., & Kris-Etherton, P. M. (2015). Plant protein and animal proteins: do they differentially affect cardiovascular disease risk? Advances in Nutrition, 6(6), 712-728. Rohrer, C., & Siebenmorgen, T. (2004). Nutraceutical concentrations within the bran of various rice kernel thickness fractions. Biosystems Engineering, 88(4), 453-460. Rosell, C. M., Marco, C., García‐Alvárez, J., & Salazar, J. (2011). Rheological properties of rice–soybean protein composite flours assessed by mixolab and ultrasound. Journal of Food Process Engineering, 34(6), 1838-1859. Norazalina, S., Norhaizan, M. E., Hairuszah, I., & Nurul, H. S. (2011). Optimization of optimum condition for phytic acid extraction from rice bran. African Journal of Plant Science, 5(3), 168-175. Saikia, D., & Deka, S. (2011). Cereals: from staple food to nutraceuticals. International Food Research Journal, 18(1). Saqib, A. A. N., & Whitney, P. J. (2011). Differential behaviour of the dinitrosalicylic acid (DNS) reagent towards mono-and di-saccharide sugars. Biomass and bioenergy, 35(11), 4748-4750. Saunders, R. (1985). Rice bran: Composition and potential food uses. Food Reviews International, 1(3), 465-495. Saunders, R. (1990). The properties of rice bran as a foodstuff. Cereal Foods World, 35(7), 632-636. Schaafsma, G. (2012). Advantages and limitations of the protein digestibility-corrected amino acid score (PDCAAS) as a method for evaluating protein quality in human diets. British Journal of Nutrition, 108(S2), S333-S336. Schlemmer, U., Frølich, W., Prieto, R. M., & Grases, F. (2009). Phytate in foods and significance for humans: food sources, intake, processing, bioavailability, protective role and analysis. Molecular Nutrition & Food Research, 53(S2), S330-S375. Schramm, R., Abadie, A., Hua, N., Xu, Z., & Lima, M. (2007). Fractionation of the rice bran layer and quantification of vitamin E, oryzanol, protein, and rice bran saccharide. Journal of Biological Engineering, 1(1), 1-9. Schutyser, M., & Van der Goot, A. (2011). The potential of dry fractionation processes for sustainable plant protein production. Trends in Food Science & Technology, 22(4), 154-164. Sciarini, L. S., Ribotta, P. D., León, A. E., & Pérez, G. T. (2010). Influence of gluten-free flours and their mixtures on batter properties and bread quality. Food and Bioprocess Technology, 3(4), 577-585. Shahali, Y., & Dadar, M. (2018). Plant food allergy: influence of chemicals on plant allergens. Food and Chemical Toxicology, 115, 365-374. Shamsuddin, A. M. (2002). Anti‐cancer function of phytic acid. International Journal of Food Science & Technology, 37(7), 769-782. Sharif, M. K., Butt, M. S., Anjum, F. M., & Khan, S. H. (2014). Rice bran: a novel functional ingredient. Critical Reviews in Food Science and Nutrition, 54(6), 807-816. Sharma, G. S., Bhattacharya, R., & Singh, L. R. (2019). Protein covalent modification by homocysteine: Consequences and clinical implications. In Protein Modificomics (pp. 281-311). Academic Press. Shen, L., Wang, X., Wang, Z., Wu, Y., & Chen, J. (2008). Studies on tea protein extraction using alkaline and enzyme methods. Food Chemistry, 107(2), 929-938. Shewry, P., & Miflin, B. (1985). Seed storage proteins of economically important cereals. Advances in Cereal Science and Technology (USA). Shewry, P. R., & Casey, R. (1999). Seed proteins. In Seed proteins (pp. 1-10): Springer. Shih, F., Champagne, E., Daigle, K., & Zarins, Z. (1999). Use of enzymes in the processing of protein products from rice bran and rice flour. Food/Nahrung, 43(1), 14-18. Shih, F. F. (2003). An update on the processing of high‐protein rice products. Food/Nahrung, 47(6), 420-424. Shih, F. F., & Daigle, K. W. (2000). Preparation and characterization of rice protein isolates. Journal of the American Oil Chemists' Society, 77(8), 885-889. Singh, T. P., Siddiqi, R. A., & Sogi, D. S. (2021). Enzymatic modification of rice bran protein: Impact on structural, antioxidant and functional properties. LWT, 138, 110648. Smith, R. D., & Walker, J. C. (1996). Plant protein phosphatases. Annual Review of Plant Biology, 47(1), 101-125. Sohail, M., Rakha, A., Butt, M. S., Iqbal, M. J., & Rashid, S. (2017). Rice bran nutraceutics: A comprehensive review. Critical Reviews in Food Science and Nutrition, 57(17), 3771-3780. Spencer, D. (1984). The physiological role of storage proteins in seeds. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 304(1120), 275-285. Strong, G. C. C. (2019). Grain: World Markets and Trade. In: Washington: USDA. Sugimoto, T., Tanaka, K., & Kasai, Z. (1986). Improved extraction of rice prolamin. Agricultural and Biological Chemistry, 50(9), 2409-2411. Sun, Q., & Xiong, C. S. L. (2014). Functional and pasting properties of pea starch and peanut protein isolate blends. Carbohydrate Polymers, 101, 1134-1139. Tang, C.-H. (2017). Emulsifying properties of soy proteins: A critical review with emphasis on the role of conformational flexibility. Critical Reviews in Food Science and Nutrition, 57(12), 2636-2679. Tang, S., Hettiarachchy, N., Eswaranandam, S., & Crandall, P. (2003). Protein extraction from heat‐stabilized defatted rice bran: II. The role of amylase, celluclast, and viscozyme. Journal of Food Science, 68(2), 471-475. Tang, S., Hettiarachchy, N., Horax, R., & Eswaranandam, S. (2003). Physicochemical properties and functionality of rice bran protein hydrolyzate prepared from heat‐stabilized defatted rice bran with the aid of enzymes. Journal of Food Science, 68(1), 152-157. Tang, S., Hettiarachchy, N. S., & Shellhammer, T. H. (2002). Protein extraction from heat-stabilized defatted rice bran. 1. Physical processing and enzyme treatments. Journal of Agricultural and Food Chemistry, 50(25), 7444-7448. Theerakulkait, C., Chaiseri, S., & Mongkolkanchanasiri, S. (2006). Extraction and some functional properties of protein extract from rice bran. Agriculture and Natural Resources, 40(5), 209-214. Tran, K. N., Witt, T., Gidley, M. J., & Fitzgerald, M. (2018). Accounting for the effect of degree of milling on rice protein extraction in an industrial setting. Food Chemistry, 253, 221-226. Vaintraub, I. A., & Lapteva, N. A. (1988). Colorimetric determination of phytate in unpurified extracts of seeds and the products of their processing. Analytical Biochemistry, 175(1), 227-230. Viswanath, K. K., Varakumar, P., Pamuru, R. R., Basha, S. J., Mehta, S., & Rao, A. D. (2020). Plant lipoxygenases and their role in plant physiology. Journal of Plant Biology, 63(2), 83-95. Waglay, A., Karboune, S., & Alli, I. (2014). Potato protein isolates: Recovery and characterization of their properties. Food Chemistry, 142, 373-382. Wagner, J. R., & AÑON, M. C. (1990). Influence of denaturation, hydrophobicity and sulfhydryl content on solubility and water absorbing capacity of soy protein isolates. Journal of Food Science, 55(3), 765-770. Wang, C., Xu, F., Li, D., & Zhang, M. (2016). Physico-chemical and structural properties of four rice bran protein fractions based on the multiple solvent extraction method. Czech Journal of Food Sciences, 33(3), 283-291. Wang, M., Hettiarachchy, N., Qi, M., Burks, W., & Siebenmorgen, T. (1999). Preparation and functional properties of rice bran protein isolate. Journal of Agricultural and Food Chemistry, 47(2), 411-416. Wang, N., Cui, X., Duan, Y., Yang, S., Wang, P., Saleh, A. S., & Xiao, Z. (2021). Potential health benefits and food applications of rice bran protein: research advances and challenges. Food Reviews International, 1-24. Wang, N., Maximiuk, L., Fenn, D., Nickerson, M. T., & Hou, A. (2020). Development of a method for determining oil absorption capacity in pulse flours and protein materials. Cereal Chemistry, 97(6), 1111-1117. Wang, W., Nema, S., & Teagarden, D. (2010). Protein aggregation—pathways and influencing factors. International Journal of Pharmaceutics, 390(2), 89-99. Wang, X., Chen, H., Fu, X., Li, S., & Wei, J. (2017). A novel antioxidant and ACE inhibitory peptide from rice bran protein: Biochemical characterization and molecular docking study. LWT, 75, 93-99. Wang, Y., Yang, F., Wu, M., Li, J., Bai, Y., Xu, W., & Qiu, S. (2020). Synergistic effect of pH shifting and mild heating in improving heat induced gel properties of peanut protein isolate. LWT, 131, 109812. Watanabe, M., Maeda, I., Koyama, M., Nakamura, K., & Sasano, K. (2015). Simultaneous recovery and purification of rice protein and phosphorus compounds from full-fat and defatted rice bran with organic solvent-free process. Journal of Bioscience and Bioengineering, 119(2), 206-211. Wattanasiritham, L., Theerakulkait, C., Wickramasekara, S., Maier, C. S., & Stevens, J. F. (2016). Isolation and identification of antioxidant peptides from enzymatically hydrolyzed rice bran protein. Food Chemistry, 192, 156-162. Wei, C., Nguyen, S. D., Kim, M. R., & Sok, D.-E. (2007). Rice albumin N-terminal (Asp-His-His-Gln) prevents against copper ion-catalyzed oxidations. Journal of Agricultural and Food Chemistry, 55(6), 2149-2154. Wen, T.-N., & Luthe, D. S. (1985). Biochemical characterization of rice glutelin. Plant Physiology, 78(1), 172-177. Wen, Y., Niu, M., Zhang, B., Zhao, S., & Xiong, S. (2017). Structural characteristics and functional properties of rice bran dietary fiber modified by enzymatic and enzyme-micronization treatments. LWT, 75, 344-351. Wilding, P., Lillford, P. J., & Regenstein, J. M. (1984). Functional properties of proteins in foods. Journal of Chemical Technology and Biotechnology. Biotechnology, 34(3), 182-189. Williams, C. L. (1995). Importance of dietary fiber in childhood. Journal of the American Dietetic Association, 95(10), 1140-1149. Wouters, A. G., Rombouts, I., Fierens, E., Brijs, K., & Delcour, J. A. (2016). Relevance of the functional properties of enzymatic plant protein hydrolysates in food systems. Comprehensive Reviews in Food Science and Food Safety, 15(4), 786-800. Yada, R. Y. (2017). Proteins in food processing: Woodhead Publishing. Yadav, R. B., Yadav, B. S., & Chaudhary, D. (2011). Extraction, characterization and utilization of rice bran protein concentrate for biscuit making. British Food Journal, 113(9), 1173-1182. Yang, X., Li, Y., Li, S., Oladejo, A. O., Wang, Y., Huang, S., Duan, Y. (2018). Effects of ultrasound-assisted α-amylase degradation treatment with multiple modes on the extraction of rice protein. Ultrasonics Sonochemistry, 40, 890-899. Yanjun, S., Jianhang, C., Shuwen, Z., Hongjuan, L., Jing, L., Lu, L., & Jiaping, L. (2014). Effect of power ultrasound pre-treatment on the physical and functional properties of reconstituted milk protein concentrate. Journal of Food Engineering, 124, 11-18. Yasumatsu, K., Sawada, K., Moritaka, S., Misaki, M., Toda, J., Wada, T., & Ishii, K. (1972). Whipping and emulsifying properties of soybean products. Agricultural and Biological Chemistry, 36(5), 719-727. Young, V. R., & Pellett, P. L. (1994). Plant proteins in relation to human protein and amino acid nutrition. The American Journal of Clinical Nutrition, 59(5), 1203S-1212S. Zaky, A. A., Abd El-Aty, A., Ma, A., & Jia, Y. (2022). An overview on antioxidant peptides from rice bran proteins: extraction, identification, and applications. Critical Reviews in Food Science and Nutrition, 62(5), 1350-1362. Zayas, J. F. (1997). Water holding capacity of proteins. In Functionality of Proteins in Food (pp. 76-133). Springer, Berlin, Heidelberg. Zhang, C., Sanders, J. P., & Bruins, M. E. (2014). Critical parameters in cost-effective alkaline extraction for high protein yield from leaves. Biomass and Bioenergy, 67, 466-472. Zhang, H.-J., Zhang, H., Wang, L., & Guo, X.-N. (2012). Preparation and functional properties of rice bran proteins from heat-stabilized defatted rice bran. Food Research International, 47(2), 359-363. Zhang, X., Wang, L., Chen, Z., Li, Y., Luo, X., & Li, Y. (2019). Effect of electron beam irradiation on the structural characteristics and functional properties of rice proteins. Rsc Advances, 9(24), 13550-13560. Zhang, Y., Wang, B., Zhang, W., Xu, W., & Hu, Z. (2019). Effects and mechanism of dilute acid soaking with ultrasound pretreatment on rice bran protein extraction. Journal of Cereal Science, 87, 318-324. Zhang, Z., Wang, Y., Li, Y., Dai, C., Ding, Q., Hong, C., Ma, H. (2019). Effect of alkali concentration on digestibility and absorption characteristics of rice residue protein isolates and lysinoalanine. Food Chemistry, 289, 609-615. Zheng, Y., Gao, N., Wu, J., & Yin, B. (2019). Rice bran protein: Extraction, nutraceutical properties, and potential applications. In Rice Bran and Rice Bran Oil (pp. 271-293): Elsevier. Zhi, Z., Yan, L., Li, H., Dewettinck, K., Van der Meeren, P., Liu, R., & Van Bockstaele, F. (2022). A combined approach for modifying pea protein isolate to greatly improve its solubility and emulsifying stability. Food Chemistry, 380, 131832. Zhao, M., Xiong, W., Chen, B., Zhu, J., & Wang, L. (2020). Enhancing the solubility and foam ability of rice glutelin by heat treatment at pH12: Insight into protein structure. Food Hydrocolloids, 103, 105626. Zhou, J. R., & Erdman Jr, J. W. (1995). Phytic acid in health and disease. Critical Reviews in Food Science & Nutrition, 35(6), 495-508. Zhu, J., Hong, D. D., & Wakisaka, M. (2019). Phytic acid extracted from rice bran as a growth promoter for Euglena gracilis. Open Chemistry, 17(1), 57-63. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86602 | - |
| dc.description.abstract | 食品中的蛋白質決定其質地與結構,而蛋白質在食品系統中的水溶性與加工功能性高度相關。碾米過程生產之副產物米糠,為常用萃取植物性蛋白質之原料,其產量豐富且成本低廉,所萃取出之蛋白質營養價值與生物利用性高,然而其中高含量之脂肪與植酸,易對米糠蛋白之萃取與應用造成限制。米糠蛋白一般以鹼萃取之方式製備,於中性環境水溶性約為 20%。故本研究將優化米糠蛋白萃取流程,以期能提升蛋白質水溶性與功能性。首先調整蛋白質鹼萃取溫度並去除中性環境不溶物質,製備高溫鹼萃取米糠蛋白 (high temperature alkaline extracted protein, HTE)、室溫鹼萃取米糠蛋白 (room temperature alkaline extracted protein, RTE)、高溫鹼萃取水溶性米糠蛋白 (high temperature alkaline extracted soluble protein, HTES) 與室溫鹼萃取水溶性米糠蛋白 (room temperature alkaline extracted soluble protein, RTES),並評估不同製程所得蛋白質之水溶性。RTES 在 pH 7 時,水溶性為 49.11%,是四者中最高,顯示進行室溫鹼萃取並去除中性條件不溶物質,可提高米糠蛋白之水溶性。接著為優化米糠蛋白製程,以前述結果為基礎,在鹼萃取前先去除米糠中部分磷化合物,製備去磷高溫鹼萃取米糠蛋白 (phosphorus removed high temperature alkaline extracted protein, PRHT)、去磷室溫鹼萃取米糠蛋白 (phosphorus removed room temperature alkaline extracted protein, PRRT)、去磷高溫水溶性米糠蛋白 (phosphorus removed high temperature alkaline extracted soluble protein, PRHTS) 與去磷室溫水溶性米糠蛋白 (phosphorus removed room temperature alkaline extracted soluble protein, PRRTS)。PRRTS 於 pH 7 之水溶性高達 60.81%,表示米糠先經過去磷處理,並於室溫鹼萃取再去除中性條件不溶物質,可得到水溶性最佳之米糠蛋白。而後評估八種米糠蛋白之萃取成效,PRRTS 蛋白質含量與回收率較低,分別為 57.59% 與 34.37%,若以提高米糠蛋白之含量與回收率為目標,蛋白質含量為 66.66% 且回收率為 39.33% 之 RTES 為最佳。雙硫鍵數量與表面疏水性測定結果以 PRRTS 最高,故推測其水溶性之提高與蛋白質組成最為相關,並未受蛋白質結構與表面特性影響。最後,分析不同萃取方法之米糠蛋白組成、理化性與功能性,PRRTS 含植酸 10.88 mg/g,為八種處理中最低,其蛋白質乳化性與乳化穩定性、起泡性與起泡穩定性及保油力皆最高;RTES 之植酸含量為 12.22 mg/g,整體功能性僅次於 PRRTS。此二種製程可生產高水溶性與功能性之米糠蛋白,未來可以本研究成果為基礎,進行米糠蛋白應用於食品系統之研究,以提升米糠之經濟價值與產業效益。 | zh_TW |
| dc.description.abstract | In food systems, proteins perform different roles by adding certain functional qualities to them, and also provide food with structure and texture. The solubility of food proteins is essential to food industry applications. Rice bran, with abundant production and low cost, is a by-product that derives from rice milling, and rice bran protein has high nutritional value and bioavailability. However, the high content of lipid and phytic acid in rice bran limits its extraction and application. Rice bran protein is generally prepared by alkaline extraction, and its water solubility is about 20% in neutrality condition. In this study, we modified rice bran protein extraction procedure in order to improve its water solubility and functionality. First, we adjusted the alkaline extraction temperature and removed insoluble components under neutral condition. High temperature alkaline extracted protein (HTE), room temperature alkaline extracted protein (RTE), high temperature alkaline extracted soluble protein (HTES) and room temperature alkaline extracted soluble protein (RTES) were prepared, and their water solubility were evaluated. RTES showed the highest water solubility under pH 7, which was 49.11% and it indicated that extracting by alkaline in room temperature with insoluble components under pH 7 removed could enhance the water solubility of rice bran protein. Based on the results of the first section, we further optimized the rice bran protein extracting process. Before alkaline extraction, we partially removed the phosphorus in rice bran, and prepared phosphorus removed high temperature alkaline extracted protein (PRHT), phosphorus removed room temperature alkaline extracted protein (PRRT), phosphorus removed high temperature alkaline extracted soluble protein (PRHTS) and phosphorus removed room temperature alkaline extracted soluble protein (PRRTS). The water solubility of PRRTS reached 60.81% under pH 7, which revealed that the rice bran protein with highest water solubility could obtained by removing phosphorous in rice bran before room temperature alkaline extraction, and then remove insoluble components in neutral condition. Next, the protein extraction efficiency of all eight kinds of rice bran protein was determined. The protein content and protein recovery of PRRTS were lower than RTES, which were 57.59% and 34.37%, and that of RTES were 66.66% and 39.33%, respectively. On the other hand, the disulfide bond contents and the surface hydrophobicity of PRRTS were the highest, thus we speculated that the improvement of rice bran protein water solubility was mainly attributed to the composition and properties of its proteins, which was less relevant to protein structure and surface characteristics. Furthermore, the protein composition, physical and functional properties of the rice bran protein were analyzed. The content of phytic acid in PRRTS was the lowest among rice bran protein extracted by different procedures, which was 10.88 mg/g, and PRRTS also performed better emulsifying properties, foaming properties, and oil holding capacity. The phytic acid content of RTES was 12.22 mg/g, and its functionalities was second to PRRTS. From these two extraction processes, rice bran protein with improved water solubility and functionality could be obtained. Further researches about the application of rice bran protein in food systems could be conducted base on the results of this study, which would have the potential to enhance the economic value of rice bran and improve its industrial competitiveness. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-20T00:05:48Z (GMT). No. of bitstreams: 1 U0001-0608202222362100.pdf: 2724429 bytes, checksum: 5d7b5694a26538826d993bd8d9fe9697 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 致謝 I 摘要 III Abstract V 目錄 VII 表目錄 XI 圖目錄 XII 附表目錄 XIII 縮寫表 XIV 第一章 文獻探討 1 第一節 研究背景 1 第二節 碾米加工及米糠結構組成 3 第三節 米糠之成分組成與蛋白分布 3 3.1 碳水化合物 3 3.2 油脂 4 3.3 蛋白質 4 3.4 膳食纖維 6 3.5 維生素與生物活性物質 7 3.6 植酸 7 第四節 米糠及其蛋白應用潛力與價值 7 4.1 原料產量高 7 4.2 成本低廉 8 4.3 致敏性低 8 4.4 營養價值高 8 4.5 生物利用性高 9 第五節 米糠蛋白之製備 10 5.1 鹼萃取法 10 5.2 酵素萃取法 11 5.3 物理性萃取法 11 第六節 米糠蛋白之加工功能性 12 6.1 水溶性質 13 6.2 乳化性質 13 6.3 起泡性質 14 6.4 保水力與保油力 15 第七節 米糠應用限制與現況 15 第二章 研究動機與目的 18 第三章 材料與方法 20 第一節 米糠與米糠蛋白之基本成分分析 23 1.1 水分含量測定 23 1.2 粗蛋白質含量測定 23 1.3 灰分含量測定 23 1.4 粗脂肪含量測定 23 1.5 總碳水化合物含量測定 24 1.6 總膳食纖維含量測定 24 1.7 還原醣含量測定 26 1.8 植酸含量測定 26 第二節 米糠蛋白之製備 27 2.1 以己烷去除米糠油脂 27 2.2 鹼萃取米糠蛋白 27 2.3 去磷鹼萃取米糠蛋白 27 2.4 米糠蛋白回收率 28 第三節 米糠蛋白之組成成分分析 28 3.1 SDS-PAGE 28 第四節 米糠蛋白之理化特性分析 30 4.1 硫氫基及雙硫鍵數量分析 30 4.2 表面疏水性測定 31 第五節 米糠蛋白品質分析 32 5.1 顏色測定 32 第六節 米糠蛋白加工功能性分析 32 6.1 水溶性測定 32 6.2 乳化性測定 33 6.3 起泡性測定 34 6.4 保水力測定 35 6.5 保油力測定 35 第七節 統計分析 36 第四章 研究結果 37 第一節 米糠之基本組成 37 1.1 全脂米糠之油脂萃取率測定 37 1.2 全脂米糠與脫脂米糠之基本成分測定 37 1.3 全脂米糠與脫脂米糠植酸含量測定 37 第二節 建立米糠蛋白萃取方法 38 2.1 調整萃取溫度與溶液酸鹼值以提升米糠蛋白水溶性 38 2.2 去磷處理及調整萃取溫度與溶液酸鹼值以提升米糠蛋白水溶性 39 第三節 米糠蛋白含量與回收率 39 3.1 調整萃取溫度與溶液酸鹼值所得之米糠蛋白含量與回收率 40 3.2 去磷處理及調整溶液酸鹼值所得之米糠蛋白含量與回收率 40 第四節 米糠蛋白之分子量分布 41 第五節 米糠蛋白基本成分分析 42 第六節 米糠蛋白植酸含量分析 43 6.1 調整萃取溫度與溶液酸鹼值之米糠蛋白植酸含量 43 6.2 去磷處理及調整萃取溫度與溶液酸鹼值之米糠蛋白之植酸含量 43 第七節 米糠蛋白理化特性分析 44 7.1 不同萃取方法所得之米糠蛋白的硫氫基與雙硫鍵數量測定 44 7.2 不同萃取方法所得之米糠蛋白的表面疏水性分析 46 第八節 米糠蛋白之品質與功能特性分析 47 8.1 不同萃取方法所得米糠蛋白之顏色 47 8.2 不同萃取方法所得之米糠蛋白之乳化性與乳化穩定性 48 8.3 不同萃取方法所得之米糠蛋白起泡性與起泡穩定性 49 8.4 不同萃取方法所得米糠蛋白之保水能力與保油能力 50 第五章 討論 52 第一節 不同萃取條件所得米糠蛋白之差異 52 1.1 不同萃取溫度所得米糠蛋白之含量與回收率 52 1.2 調整溶液酸鹼值所得米糠蛋白之含量與回收率 53 1.3 去磷處理所得之米糠蛋白含量與回收率 53 第二節 去磷製程之探討 54 第三節 米糠蛋白水溶性之差異 55 第四節 米糠蛋白之理化特性 56 4.1 米糠蛋白之硫氫基與雙硫鍵 56 4.2 米糠蛋白之表面疏水性 57 第五節 米糠蛋白之功能性 58 5.1 米糠蛋白乳化性與乳化穩定性之差異 58 5.2 米糠蛋白起泡性與起泡穩定性之差異 58 5.3 米糠蛋白保水能力與保油能力之差異 59 5.4 雙硫鍵與表面疏水性及米糠蛋白功能性之關係 60 5.5 米糠蛋白於食品系統之應用性 61 第六節 以變異數分析米糠蛋白之組成成分與理化性及功能性 61 6.1 不同變量對米糠蛋白組成成分之影響 62 6.2 不同變量對米糠蛋白理化性之影響 62 6.3 不同變量對米糠蛋白功能性之影響 62 第六章 結論 64 參考文獻 65 TABLES 85 FIGURES 102 附錄 108 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 鹼萃取 | zh_TW |
| dc.subject | 蛋白質功能性 | zh_TW |
| dc.subject | 去磷處理 | zh_TW |
| dc.subject | 植酸 | zh_TW |
| dc.subject | 鹼萃取 | zh_TW |
| dc.subject | 植物性蛋白 | zh_TW |
| dc.subject | 蛋白質功能性 | zh_TW |
| dc.subject | 去磷處理 | zh_TW |
| dc.subject | 植酸 | zh_TW |
| dc.subject | 植物性蛋白 | zh_TW |
| dc.subject | phosphorous removal | en |
| dc.subject | plant protein | en |
| dc.subject | alkaline extraction | en |
| dc.subject | phytic acid | en |
| dc.subject | protein functionality | en |
| dc.subject | alkaline extraction | en |
| dc.subject | plant protein | en |
| dc.subject | protein functionality | en |
| dc.subject | phosphorous removal | en |
| dc.subject | phytic acid | en |
| dc.title | 優化米糠蛋白鹼萃取製程以提升其功能性 | zh_TW |
| dc.title | Optimization of the Alkaline Extraction Procedure for Rice Bran Protein Preparation to Enhance Functionality | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 110-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蘇南維;周志輝 | zh_TW |
| dc.contributor.oralexamcommittee | Nan-Wei Su;Chi-Fai Chau | en |
| dc.subject.keyword | 植物性蛋白,鹼萃取,植酸,去磷處理,蛋白質功能性, | zh_TW |
| dc.subject.keyword | plant protein,alkaline extraction,phytic acid,phosphorous removal,protein functionality, | en |
| dc.relation.page | 110 | - |
| dc.identifier.doi | 10.6342/NTU202202117 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2022-08-09 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 園藝暨景觀學系 | - |
| dc.date.embargo-lift | 2027-08-06 | - |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-110-2.pdf 此日期後於網路公開 2027-08-06 | 2.66 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
