請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8659完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 譚婉玉(Woan-Yuh Tarn) | |
| dc.contributor.author | Kuo-Ming Lee | en |
| dc.contributor.author | 李國銘 | zh_TW |
| dc.date.accessioned | 2021-05-20T19:59:26Z | - |
| dc.date.available | 2013-09-09 | |
| dc.date.available | 2021-05-20T19:59:26Z | - |
| dc.date.copyright | 2010-09-09 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-06-18 | |
| dc.identifier.citation | 1. Cramer, P., Armache, K.J., Baumli, S., Benkert, S., Brueckner, F., Buchen, C., Damsma, G.E., Dengl, S., Geiger, S.R., Jasiak, A.J. et al. (2008) Structure of eukaryotic RNA polymerases. Annu Rev Biophys, 37, 337-352.
2. Moore, M.J. and Proudfoot, N.J. (2009) Pre-mRNA processing reaches back to transcription and ahead to translation. Cell, 136, 688-700. 3. Kornblihtt, A.R., de la Mata, M., Fededa, J.P., Munoz, M.J. and Nogues, G. (2004) Multiple links between transcription and splicing. RNA, 10, 1489-1498. 4. Egloff, S. and Murphy, S. (2008) Cracking the RNA polymerase II CTD code. Trends Genet, 24, 280-288. 5. Buratowski, S. (2009) Progression through the RNA polymerase II CTD cycle. Mol Cell, 36, 541-546. 6. Hirose, Y. and Ohkuma, Y. (2007) Phosphorylation of the C-terminal domain of RNA polymerase II plays central roles in the integrated events of eucaryotic gene expression. J Biochem, 141, 601-608. 7. Shuman, S. (1995) Capping enzyme in eukaryotic mRNA synthesis. Prog Nucleic Acid Res Mol Biol, 50, 101-129. 8. Houseley, J. and Tollervey, D. (2009) The many pathways of RNA degradation. Cell, 136, 763-776. 9. Merz, C., Urlaub, H., Will, C.L. and Luhrmann, R. (2007) Protein composition of human mRNPs spliced in vitro and differential requirements for mRNP protein recruitment. RNA, 13, 116-128. 10. Bentley, D.L. (2005) Rules of engagement: co-transcriptional recruitment of pre-mRNA processing factors. Curr Opin Cell Biol, 17, 251-256. 11. Schroeder, S.C., Schwer, B., Shuman, S. and Bentley, D. (2000) Dynamic association of capping enzymes with transcribing RNA polymerase II. Genes Dev, 14, 2435-2440. 12. Ho, C.K. and Shuman, S. (1999) Distinct roles for CTD Ser-2 and Ser-5 phosphorylation in the recruitment and allosteric activation of mammalian mRNA capping enzyme. Mol Cell, 3, 405-411. 13. Proudfoot, N.J., Furger, A. and Dye, M.J. (2002) Integrating mRNA processing with transcription. Cell, 108, 501-512. 14. Hirose, Y. and Manley, J.L. (1998) RNA polymerase II is an essential mRNA polyadenylation factor. Nature, 395, 93-96. 15. Dantonel, J.C., Murthy, K.G., Manley, J.L. and Tora, L. (1997) Transcription factor TFIID recruits factor CPSF for formation of 3' end of mRNA. Nature, 389, 399-402. 16. Licatalosi, D.D., Geiger, G., Minet, M., Schroeder, S., Cilli, K., McNeil, J.B. and Bentley, D.L. (2002) Functional interaction of yeast pre-mRNA 3' end processing factors with RNA polymerase II. Mol Cell, 9, 1101-1111. 17. Kim, M., Krogan, N.J., Vasiljeva, L., Rando, O.J., Nedea, E., Greenblatt, J.F. and Buratowski, S. (2004) The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II. Nature, 432, 517-522. 18. Luo, W., Johnson, A.W. and Bentley, D.L. (2006) The role of Rat1 in coupling mRNA 3'-end processing to transcription termination: implications for a unified allosteric-torpedo model. Genes Dev, 20, 954-965. 19. Richard, P. and Manley, J.L. (2009) Transcription termination by nuclear RNA polymerases. Genes Dev, 23, 1247-1269. 20. Vasiljeva, L., Kim, M., Mutschler, H., Buratowski, S. and Meinhart, A. (2008) The Nrd1-Nab3-Sen1 termination complex interacts with the Ser5-phosphorylated RNA polymerase II C-terminal domain. Nat Struct Mol Biol, 15, 795-804. 21. Gudipati, R.K., Villa, T., Boulay, J. and Libri, D. (2008) Phosphorylation of the RNA polymerase II C-terminal domain dictates transcription termination choice. Nat Struct Mol Biol, 15, 786-794. 22. Wahl, M.C., Will, C.L. and Luhrmann, R. (2009) The spliceosome: design principles of a dynamic RNP machine. Cell, 136, 701-718. 23. Misteli, T. and Spector, D.L. (1999) RNA polymerase II targets pre-mRNA splicing factors to transcription sites in vivo. Mol Cell, 3, 697-705. 24. McCracken, S., Fong, N., Yankulov, K., Ballantyne, S., Pan, G., Greenblatt, J., Patterson, S.D., Wickens, M. and Bentley, D.L. (1997) The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature, 385, 357-361. 25. Lin, K.T., Lu, R.M. and Tarn, W.Y. (2004) The WW domain-containing proteins interact with the early spliceosome and participate in pre-mRNA splicing in vivo. Mol Cell Biol, 24, 9176-9185. 26. Das, R., Yu, J., Zhang, Z., Gygi, M.P., Krainer, A.R., Gygi, S.P. and Reed, R. (2007) SR proteins function in coupling RNAP II transcription to pre-mRNA splicing. Mol Cell, 26, 867-881. 27. Reed, R. and Cheng, H. (2005) TREX, SR proteins and export of mRNA. Curr Opin Cell Biol, 17, 269-273. 28. Zhou, Z., Luo, M.J., Straesser, K., Katahira, J., Hurt, E. and Reed, R. (2000) The protein Aly links pre-messenger-RNA splicing to nuclear export in metazoans. Nature, 407, 401-405. 29. Strasser, K. and Hurt, E. (2000) Yra1p, a conserved nuclear RNA-binding protein, interacts directly with Mex67p and is required for mRNA export. EMBO J, 19, 410-420. 30. Hautbergue, G.M., Hung, M.L., Golovanov, A.P., Lian, L.Y. and Wilson, S.A. (2008) Mutually exclusive interactions drive handover of mRNA from export adaptors to TAP. Proc Natl Acad Sci U S A, 105, 5154-5159. 31. Shen, H. (2009) UAP56- a key player with surprisingly diverse roles in pre-mRNA splicing and nuclear export. BMB Rep, 42, 185-188. 32. Strasser, K. and Hurt, E. (2001) Splicing factor Sub2p is required for nuclear mRNA export through its interaction with Yra1p. Nature, 413, 648-652. 33. Luo, M.L., Zhou, Z., Magni, K., Christoforides, C., Rappsilber, J., Mann, M. and Reed, R. (2001) Pre-mRNA splicing and mRNA export linked by direct interactions between UAP56 and Aly. Nature, 413, 644-647. 34. Kopytova, D.V., Krasnov, A.N., Orlova, A.V., Gurskiy, D.Y., Nabirochkina, E.N., Georgieva, S.G. and Shidlovskii, Y.V. ENY2: couple, triple...more? Cell Cycle, 9, 479-481. 35. Jimeno, S. and Aguilera, A. The THO complex as a key mRNP biogenesis factor in development and cell differentiation. J Biol, 9, 6. 36. Strasser, K., Masuda, S., Mason, P., Pfannstiel, J., Oppizzi, M., Rodriguez-Navarro, S., Rondon, A.G., Aguilera, A., Struhl, K., Reed, R. et al. (2002) TREX is a conserved complex coupling transcription with messenger RNA export. Nature, 417, 304-308. 37. Masuda, S., Das, R., Cheng, H., Hurt, E., Dorman, N. and Reed, R. (2005) Recruitment of the human TREX complex to mRNA during splicing. Genes Dev, 19, 1512-1517. 38. Abruzzi, K.C., Lacadie, S. and Rosbash, M. (2004) Biochemical analysis of TREX complex recruitment to intronless and intron-containing yeast genes. EMBO J, 23, 2620-2631. 39. Cheng, H., Dufu, K., Lee, C.S., Hsu, J.L., Dias, A. and Reed, R. (2006) Human mRNA export machinery recruited to the 5' end of mRNA. Cell, 127, 1389-1400. 40. Stewart, M. (2007) Ratcheting mRNA out of the nucleus. Mol Cell, 25, 327-330. 41. Rodriguez-Navarro, S., Fischer, T., Luo, M.J., Antunez, O., Brettschneider, S., Lechner, J., Perez-Ortin, J.E., Reed, R. and Hurt, E. (2004) Sus1, a functional component of the SAGA histone acetylase complex and the nuclear pore-associated mRNA export machinery. Cell, 116, 75-86. 42. Kohler, A. and Hurt, E. (2007) Exporting RNA from the nucleus to the cytoplasm. Nat Rev Mol Cell Biol, 8, 761-773. 43. Kopytova, D.V., Orlova, A.V., Krasnov, A.N., Gurskiy, D.Y., Nikolenko, J.V., Nabirochkina, E.N., Shidlovskii, Y.V. and Georgieva, S.G. Multifunctional factor ENY2 is associated with the THO complex and promotes its recruitment onto nascent mRNA. Genes Dev, 24, 86-96. 44. Le Hir, H., Izaurralde, E., Maquat, L.E. and Moore, M.J. (2000) The spliceosome deposits multiple proteins 20-24 nucleotides upstream of mRNA exon-exon junctions. EMBO J, 19, 6860-6869. 45. Le Hir, H., Gatfield, D., Izaurralde, E. and Moore, M.J. (2001) The exon-exon junction complex provides a binding platform for factors involved in mRNA export and nonsense-mediated mRNA decay. EMBO J, 20, 4987-4997. 46. Le Hir, H. and Andersen, G.R. (2008) Structural insights into the exon junction complex. Curr Opin Struct Biol, 18, 112-119. 47. Isken, O. and Maquat, L.E. (2008) The multiple lives of NMD factors: balancing roles in gene and genome regulation. Nat Rev Genet, 9, 699-712. 48. Nicholson, P., Yepiskoposyan, H., Metze, S., Zamudio Orozco, R., Kleinschmidt, N. and Muhlemann, O. Nonsense-mediated mRNA decay in human cells: mechanistic insights, functions beyond quality control and the double-life of NMD factors. Cell Mol Life Sci, 67, 677-700. 49. Kashima, I., Yamashita, A., Izumi, N., Kataoka, N., Morishita, R., Hoshino, S., Ohno, M., Dreyfuss, G. and Ohno, S. (2006) Binding of a novel SMG-1-Upf1-eRF1-eRF3 complex (SURF) to the exon junction complex triggers Upf1 phosphorylation and nonsense-mediated mRNA decay. Genes Dev, 20, 355-367. 50. Isken, O., Kim, Y.K., Hosoda, N., Mayeur, G.L., Hershey, J.W. and Maquat, L.E. (2008) Upf1 phosphorylation triggers translational repression during nonsense-mediated mRNA decay. Cell, 133, 314-327. 51. Lejeune, F., Li, X. and Maquat, L.E. (2003) Nonsense-mediated mRNA decay in mammalian cells involves decapping, deadenylating, and exonucleolytic activities. Mol Cell, 12, 675-687. 52. Nott, A., Le Hir, H. and Moore, M.J. (2004) Splicing enhances translation in mammalian cells: an additional function of the exon junction complex. Genes Dev, 18, 210-222. 53. Wiegand, H.L., Lu, S. and Cullen, B.R. (2003) Exon junction complexes mediate the enhancing effect of splicing on mRNA expression. Proc Natl Acad Sci U S A, 100, 11327-11332. 54. Dann, S.G., Selvaraj, A. and Thomas, G. (2007) mTOR Complex1-S6K1 signaling: at the crossroads of obesity, diabetes and cancer. Trends Mol Med, 13, 252-259. 55. Ma, X.M., Yoon, S.O., Richardson, C.J., Julich, K. and Blenis, J. (2008) SKAR links pre-mRNA splicing to mTOR/S6K1-mediated enhanced translation efficiency of spliced mRNAs. Cell, 133, 303-313. 56. Custodio, N., Carvalho, C., Condado, I., Antoniou, M., Blencowe, B.J. and Carmo-Fonseca, M. (2004) In vivo recruitment of exon junction complex proteins to transcription sites in mammalian cell nuclei. RNA, 10, 622-633. 57. Longman, D., Johnstone, I.L. and Caceres, J.F. (2003) The Ref/Aly proteins are dispensable for mRNA export and development in Caenorhabditis elegans. RNA, 9, 881-891. 58. Tange, T.O., T., S., Jurica, M.S. and M.J., M. (2005) Biochemical analysis of the EJC reveals two new factors and a stable tetrameric protein core. RNA, 11, 1869-1883. 59. Iglesias, N. and Stutz, F. (2008) Regulation of mRNP dynamics along the export pathway. FEBS Lett, 582, 1987-1996. 60. Walsh, M.J., Hautbergue, G.M. and Wilson, S.A. Structure and function of mRNA export adaptors. Biochem Soc Trans, 38, 232-236. 61. Farny, N.G., Hurt, J.A. and Silver, P.A. (2008) Definition of global and transcript-specific mRNA export pathways in metazoans. Genes Dev, 22, 66-78. 62. Carmody, S.R. and Wente, S.R. (2009) mRNA nuclear export at a glance. J Cell Sci, 122, 1933-1937. 63. Lai, M.C., Lee, Y.H. and Tarn, W.Y. (2008) The DEAD-box RNA helicase DDX3 associates with export messenger ribonucleoproteins as well as tip-associated protein and participates in translational control. Mol Biol Cell, 19, 3847-3858. 64. Ito, M., Yuan, C.X., Malik, S., Gu, W., Fondell, J.D., Yamamura, S., Fu, Z.Y., Zhang, X., Qin, J. and Roeder, R.G. (1999) Identity between TRAP and SMCC complexes indicates novel pathways for the function of nuclear receptors and diverse mammalian activators. Mol Cell, 3, 361-370. 65. Bessonov, S., Anokhina, M., Will, C.L., Urlaub, H. and Luhrmann, R. (2008) Isolation of an active step I spliceosome and composition of its RNP core. Nature, 452, 846-850. 66. Auboeuf, D., Dowhan, D.H., Dutertre, M., Martin, N., Berget, S.M. and O'Malley, B.W. (2005) A subset of nuclear receptor coregulators act as coupling proteins during synthesis and maturation of RNA transcripts. Mol Cell Biol, 25, 5307-5316. 67. Hsu, I.W., Hsu, M., Li C, W., C.T., I., L.R. and Tarn, W.Y. (2005) Phosphorylation of Y14 modulates its interaction with proteins involved in mRNA metabolism and influences its methylation. J Biol Chem, 280, 34507-34512. 68. Lykke-Andersen, J., Shu, M.D. and Steitz, J.A. (2000) Human Upf proteins target an mRNA for nonsense-mediated decay when bound downstream of a termination codon. Cell, 103, 1121-1131. 69. Hirose, T., Shu, M.D. and Steitz, J.A. (2004) Splicing of U12-type introns deposits an exon junction complex competent to induce nonsense-mediated mRNA decay. Proc Natl Acad Sci U S A, 101, 17976-17981. 70. Tarn, W.Y. and Steitz, J.A. (1994) SR proteins can compensate for the loss of U1 snRNP functions in vitro. Genes Dev, 8, 2704-2717. 71. Das, R. and Reed, R. (1999) Resolution of the mammalian E complex and the ATP-dependent spliceosomal complexes on native agarose mini-gels. RNA, 5, 1504-1508. 72. Kasof, G.M., Goyal, L. and White, E. (1999) Btf, a novel death-promoting transcriptional repressor that interacts with Bcl-2-related proteins. Mol Cell Biol, 19, 4390-4404. 73. Macchi, P., Kroening, S., Palacios, I.M., Baldassa, S., Grunewald, B., Ambrosino, C., Goetze, B., Lupas, A., St Johnston, D. and Kiebler, M. (2003) Barentsz, a new component of the Staufen-containing ribonucleoprotein particles in mammalian cells, interacts with Staufen in an RNA-dependent manner. J Neurosci, 23, 5778-5788. 74. Molina, H., Horn, D.M., Tang, N., Mathivanan, S. and Pandey, A. (2007) Global proteomic profiling of phosphopeptides using electron transfer dissociation tandem mass spectrometry. Proc Natl Acad Sci U S A, 104, 2199-2204. 75. Matsuoka, S., Ballif, B.A., Smogorzewska, A., McDonald, E.R., 3rd, Hurov, K.E., Luo, J., Bakalarski, C.E., Zhao, Z., Solimini, N., Lerenthal, Y. et al. (2007) ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science, 316, 1160-1166. 76. Olsen, J.V., Blagoev, B., Gnad, F., Macek, B., Kumar, C., Mortensen, P. and Mann, M. (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell, 127, 635-648. 77. Beausoleil, S.A., Villen, J., Gerber, S.A., Rush, J. and Gygi, S.P. (2006) A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat Biotechnol, 24, 1285-1292. 78. Beausoleil, S.A., Jedrychowski, M., Schwartz, D., Elias, J.E., Villen, J., Li, J., Cohn, M.A., Cantley, L.C. and Gygi, S.P. (2004) Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci U S A, 101, 12130-12135. 79. Sutherland, H.G., Mumford, G.K., Newton, K., Ford, L.V., Farrall, R., Dellaire, G., Caceres, J.F. and Bickmore, W.A. (2001) Large-scale identification of mammalian proteins localized to nuclear sub-compartments. Hum Mol Genet, 10, 1995-2011. 80. Lamond, A.I. and Spector, D.L. (2003) Nuclear speckles: a model for nuclear organelles. Nat Rev Mol Cell Biol, 4, 605-612. 81. Lai, M.C., Lin, R.I. and Tarn, W.Y. (2003) Differential effects of hyperphosphorylation on splicing factor SRp55. Biochem J, 371, 937-945. 82. Lai, M.C. and Tarn, W.Y. (2004) Hypophosphorylated ASF/SF2 binds TAP and is present in messenger ribonucleoproteins. J Biol Chem, 279, 31745-31749. 83. Huang, Y., Yario, T.A. and Steitz, J.A. (2004) A molecular link between SR protein dephosphorylation and mRNA export. Proc Natl Acad Sci U S A, 101, 9666-9670. 84. Long, J.C. and Caceres, J.F. (2009) The SR protein family of splicing factors: master regulators of gene expression. Biochem J, 417, 15-27. 85. Stephens, C. and Harlow, E. (1987) Differential splicing yields novel adenovirus 5 E1A mRNAs that encode 30 kd and 35 kd proteins. EMBO J, 6, 2027-2035. 86. Lai, M.C., Kuo, H.W., Chang, W.C. and Tarn, W.Y. (2003) A novel splicing regulator shares a nuclear import pathway with SR proteins. EMBO J, 22, 1359-1369. 87. Wang, J. and Manley, J.L. (1995) Overexpression of the SR proteins ASF/SF2 and SC35 influences alternative splicing in vivo in diverse ways. RNA, 1, 335-346. 88. Das, R., Dufu, K., Romney, B., Feldt, M., Elenko, M. and Reed, R. (2006) Functional coupling of RNAP II transcription to spliceosome assembly. Genes Dev, 20, 1100-1109. 89. Keryer-Bibens, C., Barreau, C. and Osborne, H.B. (2008) Tethering of proteins to RNAs by bacteriophage proteins. Biol Cell, 100, 125-138. 90. Behm-Ansmant, I. and Izaurralde, E. (2006) Quality control of gene expression: a stepwise assembly pathway for the surveillance complex that triggers nonsense-mediated mRNA decay. Genes Dev, 20, 391-398. 91. Conrad, N.K., Mili, S., Marshall, E.L., Shu, M.D. and Steitz, J.A. (2006) Identification of a rapid mammalian deadenylation-dependent decay pathway and its inhibition by a viral RNA element. Mol Cell, 24, 943-953. 92. Zhang, Z. and Krainer, A.R. (2007) Splicing remodels messenger ribonucleoprotein architecture via eIF4A3-dependent and -independent recruitment of exon junction complex components. Proc Natl Acad Sci U S A, 104, 11574-11579. 93. Matsuda, D., Hosoda, N., Kim, Y.K. and Maquat, L.E. (2007) Failsafe nonsense-mediated mRNA decay does not detectably target eIF4E-bound mRNA. Nat Struct Mol Biol, 14, 974-979. 94. Gehring, N.H., Kunz, J.B., Neu-Yilik, G., Breit, S., Viegas, M.H., Hentze, M.W. and Kulozik, A.E. (2005) Exon-junction complex components specify distinct routes of nonsense-mediated mRNA decay with differential cofactor requirements. Mol Cell, 20, 65-75. 95. Kuai, L., Das, B. and Sherman, F. (2005) A nuclear degradation pathway controls the abundance of normal mRNAs in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A, 102, 13962-13967. 96. Saguez, C., Olesen, J.R. and Jensen, T.H. (2005) Formation of export-competent mRNP: escaping nuclear destruction. Curr Opin Cell Biol, 17, 287-293. 97. Hosoda, N., Kim, Y.K., Lejeune, F. and Maquat, L.E. (2005) CBP80 promotes interaction of Upf1 with Upf2 during nonsense-mediated mRNA decay in mammalian cells. Nat Struct Mol Biol, 12, 893-901. 98. Lykke-Andersen, J., Shu, M.D. and Steitz, J.A. (2001) Communication of the position of exon-exon junctions to the mRNA surveillance machinery by the protein RNPS1. Science, 293, 1836-1839. 99. Chang, Y.F., Imam, J.S. and Wilkinson, M.E. (2007) The nonsense-mediated decay RNA surveillance pathway. Annual Review of Biochemistry, 76, 51-74. 100. Dybkov, O., Will, C.L., Deckert, J., Behzadnia, N., Hartmuth, K. and Luhrmann, R. (2006) U2 snRNA-protein contacts in purified human 17S U2 snRNPs and in spliceosomal A and B complexes. Mol Cell Biol, 26, 2803-2816. 101. Kyburz, A., Friedlein, A., Langen, H. and Keller, W. (2006) Direct interactions between subunits of CPSF and the U2 snRNP contribute to the coupling of pre-mRNA 3' end processing and splicing. Mol Cell, 23, 195-205. 102. Kolev, N.G., Yario, T.A., Benson, E. and Steitz, J.A. (2008) Conserved motifs in both CPSF73 and CPSF100 are required to assemble the active endonuclease for histone mRNA 3'-end maturation. EMBO Rep, 9, 1013-1018. 103. Friend, K., Lovejoy, A.F. and Steitz, J.A. (2007) U2 snRNP binds intronless histone pre-mRNAs to facilitate U7-snRNP-dependent 3' end formation. Mol Cell, 28, 240-252. 104. Mandel, C.R., Kaneko, S., Zhang, H., Gebauer, D., Vethantham, V., Manley, J.L. and Tong, L. (2006) Polyadenylation factor CPSF-73 is the pre-mRNA 3'-end-processing endonuclease. Nature, 444, 953-956. 105. Bracken, C.P., Wall, S.J., Barre, B., Panov, K.I., Ajuh, P.M. and Perkins, N.D. (2008) Regulation of cyclin D1 RNA stability by SNIP1. Cancer Res, 68, 7621-7628. 106. Witzel, II, Koh, L.F. and Perkins, N.D. Regulation of cyclin D1 gene expression. Biochem Soc Trans, 38, 217-222. 107. Bond, C.S. and Fox, A.H. (2009) Paraspeckles: nuclear bodies built on long noncoding RNA. J Cell Biol, 186, 637-644. 108. Chen, H.H., Chang, J.G., Lu, R.M., Peng, T.Y. and Tarn, W.Y. (2008) The RNA binding protein hnRNP Q modulates the utilization of exon 7 in the survival motor neuron 2 (SMN2) gene. Mol Cell Biol, 28, 6929-6938. 109. Smith, M.J., Kulkarni, S. and Pawson, T. (2004) FF domains of CA150 bind transcription and splicing factors through multiple weak interactions. Mol Cell Biol, 24, 9274-9285. 110. Deckert, J., Hartmuth, K., Boehringer, D., Behzadnia, N., Will, C.L., Kastner, B., Stark, H., Urlaub, H. and Luhrmann, R. (2006) Protein composition and electron microscopy structure of affinity-purified human spliceosomal B complexes isolated under physiological conditions. Mol Cell Biol, 26, 5528-5543. 111. Natalizio, B.J. and Garcia-Blanco, M.A. (2005) In vitro coupled transcription splicing. Methods, 37, 314-322. 112. Li, J., Hawkins, I.C., Harvey, C.D., Jennings, J.L., Link, A.J. and Patton, J.G. (2003) Regulation of alternative splicing by SRrp86 and its interacting proteins. Mol Cell Biol, 23, 7437-7447. 113. Fukuhara, N., Ebert, J., Unterholzner, L., Lindner, D., Izaurralde, E. and Conti, E. (2005) SMG7 is a 14-3-3-like adaptor in the nonsense-mediated mRNA decay pathway. Mol Cell, 17, 537-547. 114. Unterholzner, L. and Izaurralde, E. (2004) SMG7 acts as a molecular link between mRNA surveillance and mRNA decay. Mol Cell, 16, 587-596. 115. Lykke-Andersen, S., Brodersen, D.E. and Jensen, T.H. (2009) Origins and activities of the eukaryotic exosome. J Cell Sci, 122, 1487-1494. 116. Houseley, J., LaCava, J. and Tollervey, D. (2006) RNA-quality control by the exosome. Nat Rev Mol Cell Biol, 7, 529-539. 117. Li, W.M., Barnes, T. and Lee, C.H. Endoribonucleases--enzymes gaining spotlight in mRNA metabolism. FEBS J, 277, 627-641. 118. Zekri, L., Chebli, K., Tourriere, H., Nielsen, F.C., Hansen, T.V., Rami, A. and Tazi, J. (2005) Control of fetal growth and neonatal survival by the RasGAP-associated endoribonuclease G3BP. Mol Cell Biol, 25, 8703-8716. 119. Tourriere, H., Chebli, K., Zekri, L., Courselaud, B., Blanchard, J.M., Bertrand, E. and Tazi, J. (2003) The RasGAP-associated endoribonuclease G3BP assembles stress granules. J Cell Biol, 160, 823-831. 120. Tourriere, H., Gallouzi, I.E., Chebli, K., Capony, J.P., Mouaikel, J., van der Geer, P. and Tazi, J. (2001) RasGAP-associated endoribonuclease G3Bp: selective RNA degradation and phosphorylation-dependent localization. Mol Cell Biol, 21, 7747-7760. 121. Sato, H., Hosoda, N. and Maquat, L.E. (2008) Efficiency of the pioneer round of translation affects the cellular site of nonsense-mediated mRNA decay. Mol Cell, 29, 255-262. 122. Rougemaille, M., Dieppois, G., Kisseleva-Romanova, E., Gudipati, R.K., Lemoine, S., Blugeon, C., Boulay, J., Jensen, T.H., Stutz, F., Devaux, F. et al. (2008) THO/Sub2p functions to coordinate 3'-end processing with gene-nuclear pore association. Cell, 135, 308-321. 123. Rougemaille, M., Gudipati, R.K., Olesen, J.R., Thomsen, R., Seraphin, B., Libri, D. and Jensen, T.H. (2007) Dissecting mechanisms of nuclear mRNA surveillance in THO/sub2 complex mutants. EMBO J, 26, 2317-2326. 124. Johnson, S.A., Cubberley, G. and Bentley, D.L. (2009) Cotranscriptional recruitment of the mRNA export factor Yra1 by direct interaction with the 3' end processing factor Pcf11. Mol Cell, 33, 215-226. 125. Qu, X., Lykke-Andersen, S., Nasser, T., Saguez, C., Bertrand, E., Jensen, T.H. and Moore, C. (2009) Assembly of an export-competent mRNP is needed for efficient release of the 3'-end processing complex after polyadenylation. Mol Cell Biol, 29, 5327-5338. 126. Skruzny, M., Schneider, C., Racz, A., Weng, J., Tollervey, D. and Hurt, E. (2009) An endoribonuclease functionally linked to perinuclear mRNP quality control associates with the nuclear pore complexes. PLoS Biol, 7, e8. 127. Doma, M.K. and Parker, R. (2007) RNA quality control in eukaryotes. Cell, 131, 660-668. 128. Seila, A.C., Calabrese, J.M., Levine, S.S., Yeo, G.W., Rahl, P.B., Flynn, R.A., Young, R.A. and Sharp, P.A. (2008) Divergent transcription from active promoters. Science, 322, 1849-1851. 129. Preker, P., Nielsen, J., Kammler, S., Lykke-Andersen, S., Christensen, M.S., Mapendano, C.K., Schierup, M.H. and Jensen, T.H. (2008) RNA exosome depletion reveals transcription upstream of active human promoters. Science, 322, 1851-1854. 130. He, Y., Vogelstein, B., Velculescu, V.E., Papadopoulos, N. and Kinzler, K.W. (2008) The antisense transcriptomes of human cells. Science, 322, 1855-1857. 131. Core, L.J., Waterfall, J.J. and Lis, J.T. (2008) Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science, 322, 1845-1848. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8659 | - |
| dc.description.abstract | TRAP150起初被發現為轉錄活化複合體TRAP150/Mediator的一個次單位。此外,TRAP150亦被發現為剪接體的其中一員,說明其可能在訊息核醣核酸剪接中扮演特定的角色。我們最近的報導指出,TRAP150可與其他剪接分子共定位於細胞核內的核斑點中。TRAP150不僅是活體內訊息核醣核酸剪接過程所必須,而其大量表現時,更可大幅活化此剪接過程。我們發現訊息核醣核酸剪接完成之後,TRAP150仍與剪接產物結合,我們亦發現TRAP150可直接與數個exon jounction complex的組成蛋白及運送訊息核醣核酸出核的受器TAP進行結合。此觀察指出TRAP150可能具有調控訊息核醣核酸剪接後事件的功能。當TRAP150被束縛在先驅訊息核醣核酸上時,TRAP150可促進剪接完成的訊息核醣核酸的降解。然而,與典型的無意義媒介訊息核醣核酸降解機制不同之處為,TRAP150調控的訊息核醣核酸降解不依賴轉譯,且發生在細胞核中。儘管TRAP150可藉由不同的獨立區塊活化訊息核醣核酸的剪接以及訊息核醣核酸的降解,我們並不清楚此二功能確切的運作機制。最近,透過尋找TRAP150結合蛋白,我們發現數個腺苷酸化相關蛋白質與其結合。因此,TRAP150可能會協調細胞核內核醣核酸處理過程的不同步驟,並且使異常加工的核醣核酸降解。 | zh_TW |
| dc.description.abstract | TRAP150 was initially identified as a subunit of the transcription coactivator TRAP/Mediator complex. In addition, TRAP150 has also been detected as a component of the spliceosome, suggesting its role in pre-mRNA splicing. We recently reported that TRAP150 colocalizes with splicing factors in nuclear speckles. TRAP150 is not only required for pre-mRNA splicing in vivo, but also substantially activates splicing when overexpressed. We found that TRAP150 remains bound to the spliced mRNA after splicing and accordingly interacts directly with several components of the exon junction complex and the mRNA export receptor TAP. This observation suggests that TRAP150 has a post-splicing function. When tethered to a precursor mRNA, TRAP150 could induce degradation of the spliced mRNA. However, in contrast to the canonical nonsense-mediated decay, TRAP150-mediated mRNA decay is translation independent and occurs in the nucleus. TRAP150 activates pre-mRNA splicing and mRNA degradation via distinct domains, but how it exactly acts in these two events is not yet clear. We recently screened for TRAP150-interacting proteins and found that TRAP150 also associated with polyadenylation factors. Therefore, TRAP150 may function in coordinating different steps of nuclear mRNA processing and perhaps target aberrantly processed mRNAs for degradation. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T19:59:26Z (GMT). No. of bitstreams: 1 ntu-99-D94448004-1.pdf: 9097697 bytes, checksum: 117c3b8587b99340cd74d02a07288253 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
中文摘要 ii Abstract iii 1. Introduction 1 1.1. Pol II CTD in transcription-coupled processes 1 1.2. Coupling TREX complex in mRNP synthesis 5 1.3. Versatile EJC in mRNP metabolism 7 1.4. Unusual but critical TAP for the export of mRNAs 9 2. Materials and 13 2.1. Plasmids 13 2.2. Antibody preparation 14 2.3. Cell culture and transfection 14 2.4. Indirect immunofluorescence and heterokaryon assay 15 2.5. In vivo splicing and RT-PCR 15 2.6. In vitro splicing/tethering assay and immunoprecipitation of the spliceosome 17 2.7. Immunoprecipitation 18 2.8. NMD assays and northern blotting 19 3. Results 22 3.1. Verification of TAP-TRAP150 interaction 22 3.1.1. TRAP150 is a TAP-interacting phosphorylated protein 22 3.1.2 TRAP150 is a nuclear-restricted protein with speckle localization 23 3.2. Characterization of TRAP150’s function in splicing 24 3.2.1. TRAP150 activates splicing in vivo 24 3.2.2. TRAP150 is required for splicing in vivo 25 3.2.3. TRAP150 could not regulate alternative splicing 26 3.3. In vitro analysis of the properties of TRAP150 in splicing regulation 27 3.3.1. TRAP150 is not required for in vitro splicing 27 3.3.2. TRAP150 joins the spliceosome at the earlier stage and associates with spliced RNA 28 3.3.3. TRAP150 associates with components of EJC 29 3.4. Investigation of RNA decay mediated by TRAP150 30 3.4.1. TRAP150 induces mRNA decay in tethering NMD assay 30 3.4.2. C-terminal conserved region of TRAP150 is required for mRNA degradation 32 3.4.3. TRAP150-mediated degradation occurs in a translation-independent manner 32 3.4.4. TRAP150 is not required for NMD and induces mRNA degradation in the nucleus 33 3.4.5. Neither 5’-to-3’ nor 3’-to-5’ exonucleolytic attack involves in TRAP150-mediated decay 34 3.4.6. The mRNA decay regulated by TRAP150 might be distinct from DRN 36 3.4.7. TRAP150-mediated degradation is not coupled to splicing 37 3.5. Identification of TRAP150 associated protein 38 3.5.1. TRAP150 interacts with several groups of mRNA processing factors 38 3.5.2. TRAP150 associates with CPSF73 40 3.6. Global analysis of gene-expression profiles under knockdown of TRAP150 40 3.6.1. TRAP150 affects the mRNA level of several mRNA processing factors 41 3.6.2. TRAP150 associates with the mRNPs of each candidate gene 42 3.6.3. An inverse relationship stands for the expression of TRAP150 and BCLAF1 43 4. Discussion 44 4.1. Role of TRAP150 in pre-mRNA splicing 44 4.2. Role of TRAP150 in mRNA decay 47 4.3. Roles of TRAP150 in other mRNA processing steps 49 Reference 53 Figures 64 Table 83 Supplemental Figures 88 Appendix 91 | |
| dc.language.iso | en | |
| dc.title | TRAP150在細胞核核醣核酸處理過程的功能探討 | zh_TW |
| dc.title | Characterization of the roles of TRAP150 in nuclear mRNA processing | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 李芳仁(Fang-Jen S. Lee),鄭淑珍(Soo-Chen Cheng),林淑端(Sue Lin-Chao),王桂馨(Guey-Shin Wang) | |
| dc.subject.keyword | 先驅訊息核醣核酸剪接,訊息核醣核酸降解,剪接體,exon-junction complex,訊息核醣核酸處理, | zh_TW |
| dc.subject.keyword | pre-mRNA splicing,mRNA decay,spliceosome,exon-junction complex,nuclear mRNA processing, | en |
| dc.relation.page | 102 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2010-06-18 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
| 顯示於系所單位: | 分子醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf | 8.88 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
