Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86586
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王兆麟(Jaw-Lin Wang)
dc.contributor.authorShao-Shiang Huangen
dc.contributor.author黃少湘zh_TW
dc.date.accessioned2023-03-20T00:04:48Z-
dc.date.copyright2022-08-18
dc.date.issued2022
dc.date.submitted2022-08-09
dc.identifier.citation參考文獻Uncategorized References 1. Deyo, R.A., et al., Cost, controversy, crisis: low back pain and the health of the public. Annu Rev Public Health, 1991. 12: p. 141-56. 2. Vergroesen, P.P.A., et al., Mechanics and biology in intervertebral disc degeneration: a vicious circle. Osteoarthritis and Cartilage, 2015. 23(7): p. 1057-1070. 3. Foster, N.E., et al., Prevention and treatment of low back pain: evidence, challenges, and promising directions. The Lancet, 2018. 391(10137): p. 2368-2383. 4. Allegri, M., et al., Mechanisms of low back pain: a guide for diagnosis and therapy. F1000Research, 2016. 5: p. F1000 Faculty Rev-1530. 5. Urban, J.P.G. and S. Roberts, Degeneration of the intervertebral disc. Arthritis research & therapy, 2003. 5(3): p. 120-130. 6. Trout, J.J., J.A. Buckwalter, and K.C. Moore, Ultrastructure of the human intervertebral disc: II. Cells of the nucleus pulposus. Anat Rec, 1982. 204(4): p. 307-14. 7. Yuan, W., et al., Establishment of intervertebral disc degeneration model induced by ischemic sub-endplate in rat tail. Spine J, 2015. 15(5): p. 1050-9. 8. Kos, N., L. Gradisnik, and T. Velnar, A Brief Review of the Degenerative Intervertebral Disc Disease. Medical archives (Sarajevo, Bosnia and Herzegovina), 2019. 73(6): p. 421-424. 9. Chen, S., et al., Meniscus, articular cartilage and nucleus pulposus: a comparative review of cartilage-like tissues in anatomy, development and function. Cell and Tissue Research, 2017. 370(1): p. 53-70. 10. Pattappa, G., et al., Diversity of intervertebral disc cells: phenotype and function. Journal of Anatomy, 2012. 221(6): p. 480-496. 11. Iatridis, J.C., et al., Effects of mechanical loading on intervertebral disc metabolism in vivo. The Journal of bone and joint surgery. American volume, 2006. 88 Suppl 2(0 2): p. 41-46. 12. Kane, D., et al., A brief history of musculoskeletal ultrasound: ‘From bats and ships to babies and hips’. Rheumatology, 2004. 43(7): p. 931-933. 13. Miller, D.L., et al., Overview of Therapeutic Ultrasound Applications and Safety Considerations. Journal of Ultrasound in Medicine, 2012. 31(4): p. 623-634. 14. Wang, S., et al., Ultrasonic Neuromodulation and Sonogenetics: A New Era for Neural Modulation. Frontiers in Physiology, 2020. 11. 15. Nelson, T.R., et al., Ultrasound Biosafety Considerations for the Practicing Sonographer and Sonologist. Journal of Ultrasound in Medicine, 2009. 28(2): p. 139-150. 16. Ravi, M., et al., 3D Cell Culture Systems: Advantages and Applications. Journal of Cellular Physiology, 2015. 230(1): p. 16-26. 17. Smith, B.H., et al., Three-Dimensional Culture of Mouse Renal Carcinoma Cells in Agarose Macrobeads Selects for a Subpopulation of Cells with Cancer Stem Cell or Cancer Progenitor Properties. Cancer Research, 2011. 71(3): p. 716-724. 18. Szot, C.S., et al., 3D in vitro bioengineered tumors based on collagen I hydrogels. Biomaterials, 2011. 32(31): p. 7905-7912. 19. Hong, Y., aPKC: the Kinase that Phosphorylates Cell Polarity. F1000Research, 2018. 7: p. F1000 Faculty Rev-903. 20. Whyte, J., et al., PKCζ regulates cell polarisation and proliferation restriction during mammary acinus formation. Journal of Cell Science, 2010. 123(19): p. 3316-3328. 21. Magiera, M.M. and C. Janke, Post-translational modifications of tubulin. Current Biology, 2014. 24(9): p. R351-R354. 22. Venkatesh, D., Primary cilia. Journal of oral and maxillofacial pathology : JOMFP, 2017. 21(1): p. 8-10. 23. Abou Alaiwi, W.A., S.T. Lo, and S.M. Nauli, Primary cilia: highly sophisticated biological sensors. Sensors (Basel, Switzerland), 2009. 9(9): p. 7003-7020. 24. Praetorius, H.A. and K.R. Spring, Bending the MDCK Cell Primary Cilium Increases Intracellular Calcium. The Journal of Membrane Biology, 2001. 184(1): p. 71-79. 25. Sherwood, T.W., E.N. Frey, and C.C. Askwith, Structure and activity of the acid-sensing ion channels. American journal of physiology. Cell physiology, 2012. 303(7): p. C699-C710. 26. Kweon, H.-J. and B.-C. Suh, Acid-sensing ion channels (ASICs): therapeutic targets for neurological diseases and their regulation. BMB reports, 2013. 46(6): p. 295-304. 27. Wemmie, J.A., M.P. Price, and M.J. Welsh, Acid-sensing ion channels: advances, questions and therapeutic opportunities. Trends in Neurosciences, 2006. 29(10): p. 578-586. 28. Samanta, A., T.E.T. Hughes, and V.Y. Moiseenkova-Bell, Transient Receptor Potential (TRP) Channels. Sub-cellular biochemistry, 2018. 87: p. 141-165. 29. Lim, J., et al., ASIC1a is required for neuronal activation via low-intensity ultrasound stimulation in mouse brain. eLife, 2021. 10: p. e61660. 30. Ibsen, S., et al., Sonogenetics is a non-invasive approach to activating neurons in Caenorhabditis elegans. Nat Commun, 2015. 6: p. 8264. 31. Tseng, M.C., et al., Dynamic Pressure Stimulation Upregulates Collagen II and Aggrecan in Nucleus Pulposus Cells Through Calcium Signaling. Spine (Phila Pa 1976), 2021. 32. Clapham, D.E., L.W. Runnels, and C. Strübing, The TRP ion channel family. Nat Rev Neurosci, 2001. 2(6): p. 387-96. 33. Shi, K., et al., Research progress of hydrogel used for regeneration of nucleus pulposus in intervertebral disc degeneration. Zhongguo xiu fu chong jian wai ke za zhi = Zhongguo xiufu chongjian waike zazhi = Chinese journal of reparative and reconstructive surgery, 2020. 34(3): p. 275-284. 34. Wang, D., et al., Effects of hypoxia and ASIC3 on nucleus pulposus cells: From cell behavior to molecular mechanism. Biomedicine & Pharmacotherapy, 2019. 117: p. 109061. 35. Ding, J., et al., ASIC1 and ASIC3 mediate cellular senescence of human nucleus pulposus mesenchymal stem cells during intervertebral disc degeneration. Aging (Albany NY), 2021. 13(7): p. 10703-10723. 36. Bao, M., J. Xie, and W.T.S. Huck, Recent Advances in Engineering the Stem Cell Microniche in 3D. Advanced Science, 2018. 5(8): p. 1800448. 37. Jin, L., G. Balian, and X.J. Li, Animal models for disc degeneration-an update. Histology and histopathology, 2018. 33(6): p. 543-554. 38. Sobajima, S., et al., Feasibility of a stem cell therapy for intervertebral disc degeneration. Spine J, 2008. 8(6): p. 888-96. 39. Guerrero, J., et al., The effects of 3D culture on the expansion and maintenance of nucleus pulposus progenitor cell multipotency. JOR SPINE, 2021. 4(1): p. e1131. 40. Schubert, A.-K., et al., Standardisation of basal medium for reproducible culture of human annulus fibrosus and nucleus pulposus cells. Journal of Orthopaedic Surgery and Research, 2018. 13(1): p. 209. 41. Farrugia, A.J., et al., CDC42EP5/BORG3 modulates SEPT9 to promote actomyosin function, migration, and invasion. J Cell Biol, 2020. 219(9). 42. Yuan, M., K.W. Leong, and B.P. Chan, Three-dimensional culture of rabbit nucleus pulposus cells in collagen microspheres. The Spine Journal, 2011. 11(10): p. 947-960. 43. Häckel, S., et al., Fibrin-Hyaluronic Acid Hydrogel (RegenoGel) with Fibroblast Growth Factor-18 for In Vitro 3D Culture of Human and Bovine Nucleus Pulposus Cells. Int J Mol Sci, 2019. 20(20). 44. Francisco, A.T., et al., Photocrosslinkable laminin-functionalized polyethylene glycol hydrogel for intervertebral disc regeneration. Acta Biomater, 2014. 10(3): p. 1102-11. 45. McCarthy, C. and G. Camci-Unal, Low Intensity Pulsed Ultrasound for Bone Tissue Engineering. Micromachines (Basel), 2021. 12(12). 46. Gantenbein-Ritter, B. and S.C. Chan, The evolutionary importance of cell ratio between notochordal and nucleus pulposus cells: an experimental 3-D co-culture study. Eur Spine J, 2012. 21 Suppl 6(Suppl 6): p. S819-25. 47. Qazi, T.H., et al., Programming hydrogels to probe spatiotemporal cell biology. Cell Stem Cell, 2022. 29(5): p. 678-691.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86586-
dc.description.abstract椎間盤退化目前臨床上並沒有有效的治療方法。椎間盤退化主要的原因之一是髓核細胞老化後的增殖緩慢。為了瞭解髓核細胞老化與再生,髓核細胞的體外培養與研究有其必要性。傳統2D培養中髓核細胞會因為離開其原生環境而導致細胞型態產生變化。我們為了能了解椎間盤退化機制,與髓核細胞在其中所扮演的角色,我們分別使用了Type I collagen以及Hydrogel來建立3D細胞培養系統,為髓核細胞的生長提供一個更接近真實環境的研究平台。我們將髓核細胞培養於3D環境當中,並觀察其形態上的變化,之後進行超音波刺激,確認細胞是否會發生平面培養中無法觀察到的現象,同時我們對3D細胞模型進行破壞,來模擬真實椎間盤的損傷模型,並進行細胞內信號傳導抑制實驗來確認刺激反應路徑。  我們成功的將髓核細胞種植到3D細胞模型當中,發現在3D環境時,細胞會呈現圓球狀而非平面培養的扁平狀,在活體上,髓核細胞同樣也是圓球狀的,因此我們認為髓核細胞以3D的模式培養能夠保持其原有的細胞結構。我們在此模型中觀察到髓核細胞的p-PKCz會進入到初級纖毛當中,而這個現象可以透過超音波刺激來提升,但需一定的反應時間。在破壞實驗當中,我們觀察到髓核細胞在缺口的周圍會產生拉長的現象,且此反應可能是經由ASIC3通道來進行調控。另外同樣在破壞實驗當中,我們發現如果給予超音波刺激時,缺口週遭的細胞排列會有所改變,並且是透過TRP通道進行調控。這些實驗結果證明髓核細胞體外3D與損傷模型的有效性,可作為將來的髓核細胞再生研究之用。zh_TW
dc.description.abstractDegeneration of intervertebral disc (IVD) and especially that of nucleus pulposus (NP) has been incurable at present. NP cell proliferates slowly and can not regenerate after being damaged. To better understand potential mechanisms of the degeneration, particularly the NP cell's role, we used TYPE II collagen and Hydrogel, respectively, to build up 3D cell cultures that provide a more in vivo-like platform for disc cells to grow on. In this study, the NP cells were cultured in 3D cell culture. We expected to observe phenotypic changes in NP cells . Subsequently, we used the customized chamber to ultrasonically stimulate the NP cell 3D cell cultures, hoping to confirm whether the cells in the 3D culture have special response to ultrasound is not found in the past 2D culture. Lastly, we simulated real disc damage models by creating damages in the 3D cultures. We successfully planted the NP cell into a 3D cell model. At the same time, we also found that the NP cell is spherical in the 3D structure, rather than flat in the 2D structure. In histology, the shape of NP cell is also spherical, so we believe that when NP cell grows in a 3D structure, it can maintain its original cellularity. After immunofluorescence , We found that p-PKC  will enter cilia(k40), and the percentage will increase under ultrasound stimulation, but it will not be significantly different until 24hr after stimulation. In damage experiments, we have observed that NP cells will undergo morphological changes, which is regulated by the ASIC3 channel. In addition, we also found that ultrasound can disarrange cell orientations around the damage through TRP channel. These experimental results indicate that we have developed an in vitro injury model for further study.en
dc.description.provenanceMade available in DSpace on 2023-03-20T00:04:48Z (GMT). No. of bitstreams: 1
U0001-2207202210414200.pdf: 3892176 bytes, checksum: 262ed85964bba92c7cb3eaf70a9e51b4 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents目錄 致謝 II 摘要 III Abstract IV 發表著作及學術研討會 V 目錄 VI 圖目錄 IX 第一章、 緒論 1 1.1 下背痛(Low Back Pain, LBP) 1 1.2 椎間盤(Intervertebral discs, IVD) 2 1.3 椎間盤退化(Degenerative Disc Disease, DDD) 3 1.4 髓核細胞(Nucleus Pulposus Cells, NP cells) 4 1.5 超音波 5 1.5.1 超音波簡介 5 1.5.2 醫用超音波 5 1.5.3 超音波參數 6 1.6 3D細胞模型 8 1.7 蛋白激酶(Protein kinase C, PKC) 9 1.8 微管蛋白(tubulin)以及初級纖毛(Primary cilia) 10 1.9 酸敏感通道蛋白(Acid-sensing ion channels, ASIC) 11 1.10 瞬時受體電位通道(Transient receptor potential channel,TRP) 12 1.11 研究目的及重要性 14 第二章、 材料與方法 15 2.1 髓核細胞培養 15 2.1.1 細胞來源 15 2.1.2 細胞培養與繼代 16 2.2 3D細胞模型培養 17 2.2.1 Collagen膠原蛋白凝膠介紹 17 2.2.2 Collagen膠原蛋白凝膠種植流程 17 2.2.3 Hydrogel水凝膠介紹 18 2.2.4 Hydrogel水凝膠種植流程 18 2.3 超音波刺激系統 19 2.3.1 實驗整體架構 19 2.3.2 訊號產生器 19 2.3.3 功率放大器 20 2.3.4 水缸及探頭 20 2.3.5 參數及能量量測 21 2.4 破壞模型 23 2.5 螢光染色 25 2.6 顯微攝影及模型重組 26 2.6.1 共軛焦攝影 26 2.6.2 模型重組 26 2.7 實驗流程 27 2.7.1 Collagen反應時間實驗 27 2.7.2 Hydrogel破壞實驗 28 2.7.3 Hydrogel破壞下藥抑制實驗 28 2.7.4 Hydrogel超音波下藥抑制實驗 29 2.8 實驗分析方法 30 2.8.1 p-PKCz與cilia重疊 30 2.8.2 細胞法/切線軸比例 30 2.8.3 細胞出現拉長之比例 31 2.8.4 細胞長軸角度分析 32 2.9 壓縮實驗器材及方法 32 第三章、 結果 34 3.1 Collagen 3D模型建構結果 34 3.2 Hydrogel 3D模型建構結果 36 3.3 Hydrogel 壓縮測試 38 3.4 反應時間實驗 39 3.3.1 前導實驗(一) 39 3.3.2 前導實驗(二) 40 3.3.3 正式實驗 40 3.5 破壞實驗 41 3.4.1 前導實驗(一) 41 3.4.2 正式實驗 43 3.6 Hydrogel破壞下藥抑制實驗 45 3.7 Hydrogel超音波下藥抑制實驗 48 第四章、 討論 51 第五章、 結論 53 第六章、 未來展望 54 參考文獻Uncategorized References 55 其他參考資料 59
dc.language.isozh-TW
dc.subject髓核細胞zh_TW
dc.subject下背痛zh_TW
dc.subject椎間盤退化zh_TW
dc.subject超音波zh_TW
dc.subject3D細胞模型zh_TW
dc.subject下背痛zh_TW
dc.subject椎間盤退化zh_TW
dc.subject髓核細胞zh_TW
dc.subject超音波zh_TW
dc.subject3D細胞模型zh_TW
dc.subjectLow back painen
dc.subjectLow back painen
dc.subjectintervertebral discen
dc.subjectnucleus pulposusen
dc.subjectultrasounden
dc.subject3D cell cultureen
dc.subjectintervertebral discen
dc.subjectnucleus pulposusen
dc.subjectultrasounden
dc.subject3D cell cultureen
dc.title三維培養之髓核細胞退化模型探討zh_TW
dc.titleDegeneration models of 3D NP cell cultureen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊曙華(Shu-Hua Yang),趙本秀(Pen-Hsiu Chao),王琪芸(Chi-Yun Wang)
dc.subject.keyword下背痛,椎間盤退化,髓核細胞,超音波,3D細胞模型,zh_TW
dc.subject.keywordLow back pain,intervertebral disc,nucleus pulposus,ultrasound,3D cell culture,en
dc.relation.page59
dc.identifier.doi10.6342/NTU202201626
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-08-11
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
dc.date.embargo-lift2022-08-18-
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-2207202210414200.pdf3.8 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved