Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86559
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor侯嘉洪(Chia-Hung Hou)
dc.contributor.authorShao-Wei Tsaien
dc.contributor.author蔡少瑋zh_TW
dc.date.accessioned2023-03-20T00:03:11Z-
dc.date.copyright2022-08-12
dc.date.issued2022
dc.date.submitted2022-08-12
dc.identifier.citationAbou-Elela, S.I., Golinielli, G., Abou-Taleb, E.M. & Hellal, M.S. Municipal wastewater treatment in horizontal and vertical flows constructed wetlands. Ecol Eng 61, 460-468 (2013). Ahmed, M.A. and Tewari, S. 2018. Capacitive deionization: Processes, materials and state of the technology. J Electroanal Chem 813, 178-192. Ammary, B.Y. and Radaideh, J.A. 2005. Simultaneous nitrification and denitrification in an oxidation ditch plant. Chem Biochem Eng Q 19(2), 207-212. Anderson, M.A., Cudero, A.L. and Palma, J. 2010. Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete? Electrochim Acta 55(12), 3845-3856. APHA, 2005. Standard Methods for the Examination of Water and Wastewater. 21st American Public Health Association, Washington, DC. Ascott, M.J., Gooddy, D.C., Wang, L., Stuart, M.E., Lewis, M.A., Ward, R.S. and Binley, A.M. 2017. Global patterns of nitrate storage in the vadose zone. Nat Commun 8. Batchelor, B. 1983. Simulation of Single-Sludge Nitrogen Removal. J Environ Eng-Asce 109(1), 1-16. Bayat, Z., Hassanshahian, M., Cappello, S. 2015. Immobilization of microbes for bioremediation of crude oil polluted environments: a mini review. Microbiol J 9:48–54. Besli, M. M., Kuppan, S., Bone, S. E., Sainio, S., Hellstrom, S., Christensen, J., & Metzger, M. 2021. Performance and lifetime of intercalative water deionization cells for mono-and divalent ion removal. Desalination 517, 115218. Bianchi, L., Kirwan, K., Alibardi, L., Pidou, M. and Coles, S.R. 2020. Recovery of ammonia from wastewater through chemical precipitation Investigating the kinetic mechanism and reactions pathway of struvite decomposition. J Therm Anal Calorim 142(3), 1303-1314. Biesheuvel, P.M., Activated Carbon is an Electron-conducting Amphoteric Ion Adsorbent, 2015. Arxiv, 1509.06354. Biesheuvel, P.M., Porada, S., Levi, M. and Bazant, M.Z. 2014. Attractive forces in microporous carbon electrodes for capacitive deionization. J Solid State Electr 18(5), 1365-1376. Biesheuvel, P.M. and van der Wal, A. 2010. Membrane capacitive deionization. J. Membr. Sci. 346(2), 256-262. Biesheuvel, P.M., Zhao, R., Porada, S. and van der Wal, A. 2011. Theory of membrane capacitive deionization including the effect of the electrode pore space. J. Colloid Interface Sci. 360(1), 239-248. Bilstad, T. 1995. Nitrogen separation from domestic wastewater by reverse osmosis, J. Membr. Sci. 102, 93-102. Bocarsly, A.B. and Sinha, S. 1982. Effects of Surface-Structure on Electrode Charge-Transfer Properties - Induction of Ion Selectivity at the Chemically Derivatized Interface. J Electroanal Chem 140(1), 167-172. Broseus, R., Cigana, J., Barbeau, B., Daines-Martinez, C. and Suty, H. 2009. Removal of total dissolved solids, nitrates and ammonium ions from drinking water using charge-barrier capacitive deionisation. Desalination 249(1), 217-223. Burgain, J., Gaiani, C., Linder, M. and Scher, J. 2011. Encapsulation of probiotic living cells: From laboratory scale to industrial applications. J Food Eng 104(4), 467-483. Cassidy, M.B., Lee, H. and Trevors, J.T. 1996. Environmental applications of immobilized microbial cells: A review. J Ind Microbiol 16(2), 79-101. Capodaglio, A.G. 2017. Integrated, Decentralized Wastewater Management for Resource Recovery in Rural and Peri-Urban Areas. Resources-Basel 6(2). Carrera, J., Vicent, T. and Lafuente, J. 2004. Effect of influent COD/N ratio on biological nitrogen removal (BNR) from high-strength ammonium industrial wastewater. Process Biochem 39(12), 2035-2041. Chao, Y.N., Ng, K.K., Wu, C.H., Hong, P.K.A. and Lin, C.F. 2014. Enhancing total nitrogen removal from wastewater of a science and industrial park using entrapped biomass. Environ Technol 35(11), 1401-1408. Chen, H.Y., Hong, P.K.A., Yang, P.Y., Ng, K.K., Yang, S.F., Lee, C.H. and Lin, C.F. 2015. A pilot study on suspended activated sludge process augmented with immobilized biomass for simultaneous nitrification and denitrification. J Water Reuse Desal 5(2), 157-165. Chen, F., Huang, Y.X., Guo, L., Ding, M. and Yang, H.Y. 2017. A dual-ion electrochemistry deionization system based on AgCl-Na0.44MnO2 electrodes. Nanoscale 9(28), 10101-10108. Chen, J., Huang, K.L., Liu, S.Q. and Hu, X. 2009. Electrochemical supercapacitor behavior of Ni3(Fe(CN)6)2(H2O) nanoparticles. J Power Sources 186(2), 565-569. Chen, Q. and Ni, J.R. 2012. Ammonium removal by Agrobacterium sp LAD9 capable of heterotrophic nitrification-aerobic denitrification. J Biosci Bioeng 113(5), 619-623. Chen, Y.W., Chen, J.F., Lin, C.H. and Hou, C.H. 2019. Integrating a supercapacitor with capacitive deionization for direct energy recovery from the desalination of brackish water. Appl Energ 252. Chen, Z.L., Zhang, H.T., Wu, C.X., Wang, Y.S. and Li, W. 2015. A study of electrosorption selectivity of anions by activated carbon electrodes in capacitive deionization. Desalination 369, 46-50. Chiu, Y.C. and Chung, M.S. 2003. Determination of optimal COD/nitrate ratio for biological denitrification. Int Biodeter Biodegr 51(1), 43-49. Cho, E.S., Zhu, J. and Yang, P.Y. 2007. Intermittently aerated EMMC-Blobarrel (entrapped mixed microbial cell with Bio-barrel) process for concurrent organic and nitrogen removal. J Environ Manage 84(3), 257-265. Cruz, H., Law, Y.Y., Gues, J.S., Rabaey, K., Batstone, D., Laycock, B., Verstraete, W. and Pikaar, I. 2019. Mainstream Ammonium Recovery to Advance Sustainable Urban Wastewater Management. Environ Sci Technol 53(19), 11066-11079. de-Bashan, L.E. and Bashan, Y. 2010. Immobilized microalgae for removing pollutants: Review of practical aspects. Bioresource Technol 101(6), 1611-1627. Dong, Y., Yuan, H., Zhang, R. and Zhu, N. 2019. Removal of Ammonia Nitrogen from Wastewater: A Review. T Asabe 62(6), 1767-1778. dosSantos, V.A.P.M., Marchal, L.M., Tramper, J. and Wijffels, R.H. 1996. Modeling and evaluation of an integrated nitrogen removal system with microorganisms co-immobilized in double-layer gel beads. Biotechnol Progr 12(2), 240-248. Dykstra, J.E., Dijkstra, J., van der Wal, A., Hamelers, H.V.M. and Porada, S. 2016. On-line method to study dynamics of ion adsorption from mixtures of salts in capacitive deionization. Desalination 390, 47-52. Erisman, J.W., Sutton, M.A., Galloway, J., Klimont, Z. and Winiwarter, W. 2008. How a century of ammonia synthesis changed the world. Nat Geosci 1(10), 636-639. Fuerhacker, M., Bauer, H., Ellinger, R., Sree, U., Schmid, H., Zibuschka, F. and Puxbaum, H. 2000. Approach for a novel control strategy for simultaneous nitrification/denitrification in activated sludge reactors. Water Res 34(9), 2499-2506. Gabelich, C.J., Tran, T.D. and Suffet, I.H. 2002. Electrosorption of inorganic salts from aqueous solution using carbon aerogels. Environ Sci Technol 36(13), 3010-3019. Gan, L., Wu, Y.F., Song, H.O., Zhang, S.P., Lu, C., Yang, S., Wang, Z., Jiang, B.C., Wang, C.M. and Li, A.M. 2019. Selective removal of nitrate ion using a novel activated carbon composite carbon electrode in capacitive deionization. Sep Purif Technol 212, 728-736. Gao, R., Bonin, L., Arroyo, J.M.C., Logan, B.E. and Rabaey, K. 2021. Separation and recovery of ammonium from industrial wastewater containing methanol using copper hexacyanoferrate (CuHCF) electrodes. Water Res 188. Gray, D. E., Ed. 1972. American Institute of Physics Handbook, McGrawHill, New York, 2–226. Hao, X.D., Doddema, H.J. and vanGroenestijn, J.W. 1997. Conditions and mechanisms affecting simultaneous nitrification and denitrification in a Pasveer oxidation ditch. Bioresource Technol 59(2-3), 207-215. Hasar, H., Kinaci, C., Unlu, A. and Ipek, U. 2002. Role of intermittent aeration in domestic wastewater treatment by submerged membrane activated sludge system. Desalination 142(3), 287-293. Hassanvand, A., Chen, G.Q., Webley, P.A. and Kentish, S.E. 2018. A comparison of multicomponent electrosorption in capacitive deionization and membrane capacitive deionization. Water Res 131, 100-109. Hassanvand, A., Chen, G.Q., Webley, P.A. and Kentish, S.E. 2017. Improvement of MCDI operation and design through experiment and modelling: Regeneration with brine and optimum residence time. Desalination 417, 36-51. Hatzell, M.C. and Hatzell, K.B. 2018. Blue Refrigeration: Capacitive Deionization for Brackish Water Treatment. J Electrochem Energy 15(1). Hiras, D.N., Manariotis, I.D. and Grigoropoulos, S.G. 2004. Organic and nitrogen removal in a two-stage rotating biological contactor treating municipal wastewater. Bioresource Technol 93(1), 91-98. He, D., Wong, C.E., Tang, W.W., Kovalsky, P. and Waite, T.D. 2016. Faradaic Reactions in Water Desalination by Batch-Mode Capacitive Deionization. Environ Sci Tech Let 3(5), 222-226. Hou, C.H. and Huang, C.Y. 2013. A comparative study of electrosorption selectivity of ions by activated carbon electrodes in capacitive deionization. Desalination 314, 124-129. Holman, J.B. and Wareham, D.G. 2005. COD, ammonia and dissolved oxygen time profiles in the simultaneous nitrification/denitrification process. Biochem Eng J 22(2), 125-133. Iannacone, F., Di Capua, F., Granata, F., Gargano, R., Pirozzi, F. and Esposito, G. 2019. Effect of carbon-to-nitrogen ratio on simultaneous nitrification denitrification and phosphorus removal in a microaerobic moving bed biofilm reactor. J Environ Manage 250. Jin, X., Huang, L., Yu, S., Ye, M., Yuan, J., Shen, J., Fang, K. and Weng, X. 2019. Selective electrochemical removal of cesium ion based on nickel hexacyanoferrate/reduced graphene oxide hybrids. Separation and Purification Technology 209, 65-72. Jung, Y.J., Baek, K.W., Oh, B.S. and Kang, J.W. 2010. An investigation of the formation of chlorate and perchlorate during electrolysis using Pt/Ti electrodes: The effects of pH and reactive oxygen species and the results of kinetic studies. Water Res 44(18), 5345-5355. Juntawang, C., Rongsayamanont, C. & Khan, E. 2017. Entrapped cells-based-anaerobic membrane bioreactor treating domestic wastewater: Performances, fouling, and bacterial community structure. Chemosphere 187, 147-155. Juntawang, C., Rongsayamanont, C. & Khan, E. 2019. Entrapped-cells-based anaerobic forward osmosis membrane bioreactor treating medium-strength domestic wastewater: Fouling characterization and performance evaluation. Chemosphere 225, 226-237. Kim, D.I., Dorji, P., Gwak, G., Phuntsho, S., Hong, S. and Shon, H. 2019. Reuse of municipal wastewater via membrane capacitive deionization using ion-selective polymer-coated carbon electrodes in pilot-scale. Chem Eng J 372, 241-250. Kim, D.I., Gonzales, R.R., Dorji, P., Gwak, G., Phuntsho, S., Hong, S. and Shon, H. 2020. Efficient recovery of nitrate from municipal wastewater via MCDI using anion-exchange polymer coated electrode embedded with nitrate selective resin. Desalination 484. Kim, T. and Yoon, J. 2015. CDI ragone plot as a functional tool to evaluate desalination performance in capacitive deionization. Rsc Adv 5(2), 1456-1461. Kim, T., Gorski, C.A. and Logan, B.E. 2017. Low Energy Desalination Using Battery Electrode Deionization. Environ Sci Tech Let 4(10), 444-449. Kim, T., Gorski, C.A. and Logan, B.E. 2018. Ammonium Removal from Domestic Wastewater Using Selective Battery Electrodes. Environ Sci Tech Let 5(9), 578-583. Kim, Y.J. and Choi, J.H. 2012. Selective removal of nitrate ion using a novel composite carbon electrode in capacitive deionization. Water Res 46(18), 6033-6039. Kim, Y.J., Kim, J.H. and Choi, J.H. 2013. Selective removal of nitrate ions by controlling the applied current in membrane capacitive deionization (MCDI). J Membrane Sci 429, 52-57. Koresh, J. and Soffer, A. 1977. Double-Layer Capacitance and Charging Rate of Ultramicroporous Carbon Electrodes. J Electrochem Soc 124(9), 1379-1385. Kokufuta, E., Yukishige, M. and Nakamura, I. 1987. Coimmobilization of Nitrosomonas-Europaea and Paracoccus-Denitrificans Cells Using Poly-Electrolyte Complex-Stabilized Calcium Alginate Gel. J Ferment Bioeng 65(6), 659-664. Krishnamoorthi, S., Banerjee, A., Roychoudhury, A. 2015. Immobilized enzyme technology: potentiality and prospects. J Enzymol Metabol 1:104. Kuo, C.H., Liu, Y.C., Chang, C.M.J., Chen, J.H., Chang, C. and Shieh, C.J. 2012. Optimum conditions for lipase immobilization on chitosan-coated Fe3O4 nanoparticles. Carbohyd Polym 87(4), 2538-2545. Lachapelle-T, X., Labrecque, M. & Comeau, Y. Treatment and valorization of a primary municipal wastewater by a short rotation willow coppice vegetation filter. Ecol Eng 130, 32-44 (2019). Lai, C.M., Guo, Y., Cai, Q. & Yang, P. 2020. Enhanced nitrogen removal by simultaneous nitrification-denitrification and further denitrification (SND-DN) in a moving bed and constructed wetland (MBCW) integrated bioreactor. Chemosphere 261. Lang, X.D., Li, Q.W., Xu, Y.C., Ji, M.M., Yan, G. and Guo, S.H. 2019. Aerobic denitrifiers with petroleum metabolizing ability isolated from caprolactam sewage treatment pool. Bioresource Technol 290. Lee, J., Park, S.M., Jeon, E.K. and Baek, K. 2017. Selective and irreversible adsorption mechanism of cesium on illite. Appl Geochem 85, 188-193. Lejarazu-Larranaga, A., Ortiz, J.M., Molina, S., Zhao, Y. and Garcia-Calvo, E. 2020. Nitrate-Selective Anion Exchange Membranes Prepared using Discarded Reverse Osmosis Membranes as Support. Membranes-Basel 10(12). Li, Y.Z., Zhang, C., Jiang, Y.P., Wang, T.J. and Wang, H.F. 2016. Effects of the hydration ratio on the electrosorption selectivity of ions during capacitive deionization. Desalination 399, 171-177. Lim, B.S., Choi, B.C., Yu, S.W. and Lee, C.G. 2007. Effects of operational parameters on aeration on/off time in an intermittent aeration membrane bioreactor. Desalination 202(1-3), 77-82. Liu, Y.H., Hsi, H.C., Li, K.C. and Hou, C.H. 2016. Electrodeposited Manganese Dioxide/Activated Carbon Composite As a High-Performance Electrode Material for Capacitive Deionization. Acs Sustain Chem Eng 4(9), 4762-4770. Lobo, V. M. M., and Quaresma, J. L. 1989. Handbook of Electrolyte Solutions, Physical Science Data Series 41, Elsevier, Amsterdam. Lukow, T. and Diekmann, H. 1997. Aerobic denitrification by a newly isolated heterotrophic bacterium strain TL1. Biotechnol Lett 19(11), 1157-1159. Maass, S., Finsterwalder, F., Frank, G., Hartmann, R. and Merten, C. 2008. Carbon support oxidation in PEM fuel cell cathodes. J Power Sources 176(2), 444-451. Marcus, Y. 1991. Thermodynamics of Solvation of Ions.5. Gibbs Free-Energy of Hydration at 298.15-K. J. Chem. Soc. Faraday Trans. 87(18), 2995-2999. Martens, D.A. 2005. DENITRIFICATION, Encyclopedia of Soils in the Environment (pp.378-382), Elsevier Academic Press, Amsterdam. Menoud, P., Wong, C.H., Robinson, H.A., Farquhar, A., Barford, J.P., Barton, G.W., 1999. Simultaneous nitrification and denitrification using siporaxTM packing. Wat. Sci. Technol. 40 (4-5), 153-160. Mohammadi, R., Tang, W. and Sillanpaa, M. 2021. A systematic review and statistical analysis of nutrient recovery from municipal wastewater by electrodialysis. Desalination 498. Mubita, T.M., Dykstra, J.E., Biesheuvel, P.M., van der Wal, A. and Porada, S. 2019. Selective adsorption of nitrate over chloride in microporous carbons. Water Research 164. Mubita, T.M., Porada, S., Biesheuvel, P.M., van der Wal, A., Dykstra, J.E. 2022, Strategies to increase ion selectivity in electrodialysis, Sep. Purif. Technol 292, 120944. Mubita, T., Porada, S., Aerts, P. and van der Wal, A. 2020. Heterogeneous anion exchange membranes with nitrate selectivity and low electrical resistance. J Membrane Sci 607. Ng, K.K., Lin, C.F., Panchangam, S.C., Hong, P.K.A. and Yang, P.Y. 2011. Reduced membrane fouling in a novel bio-entrapped membrane reactor for treatment of food and beverage processing wastewater. Water Res 45(14), 4269-4278. Nightingale, E.R. 1959. Phenomenological Theory of Ion Solvation - Effective Radii of Hydrated Ions. J Phys Chem-Us 63(9), 1381-1387. Omosebi, A., Gao, X., Holubowitch, N., Li, Z., Landon, J. and Liu, K.L. 2017. Anion Exchange Membrane Capacitive Deionization Cells. J Electrochem Soc 164(9), E242-E247. Ota, K., Amano, Y., Aikawa, M. and Machida, M. 2013. Removal of nitrate ions from water by activated carbons (ACs)-Influence of surface chemistry of ACs and coexisting chloride and sulfate ions. Appl Surf Sci 276, 838-842. Pan, C.L., Hu, B., Li, W., Sun, Y., Ye, H. and Zeng, X.X. 2009. Novel and efficient method for immobilization and stabilization of beta-D-galactosidase by covalent attachment onto magnetic Fe3O4-chitosan nanoparticles. J Mol Catal B-Enzym 61(3-4), 208-215. Paolella, A., Faure, C., Timoshevskii, V., Marras, S., Bertoni, G., Guerfi, A., Vijh, A., Armand, M. and Zaghib, K. 2017. A review on hexacyanoferrate-based materials for energy storage and smart windows: challenges and perspectives. Journal of Materials Chemistry A 5(36), 18919-18932. Pasta, M., Wessells, C.D., Cui, Y. and La Mantia, F. 2012. A Desalination Battery. Nano Lett 12(2), 839-843. Patel, S.K., Biesheuvel, P.M. and Elimelech, M. 2021. Energy Consumption of Brackish Water Desalination: Identifying the Sweet Spots for Electrodialysis and Reverse Osmosis. ACS ES&T Engineering 1(5), 851-864. Patureau, D., Zumstein, E., Delgenes, J.P. and Moletta, R. 2000. Aerobic denitrifiers isolated from diverse natural and managed ecosystems. Microb Ecol 39(2), 145-152. Peng, Y.Z. and Zhu, G.B. 2006. Biological nitrogen removal with nitrification and denitrification via nitrite pathway. Appl Microbiol Biot 73(1), 15-26. Porada, S., Shrivastava, A., Bukowska, P., Biesheuvel, P.M. and Smith, K.C. 2017. Nickel Hexacyanoferrate Electrodes for Continuous Cation Intercalation Desalination of Brackish Water. Electrochim Acta 255, 369-378. Porada, S., Zhang, L. and Dykstra, J.E. 2020. Energy consumption in membrane capacitive deionization and comparison with reverse osmosis. Desalination 488. Preisner, M., Neverova-Dziopak, E. and Kowalewski, Z. 2020. An Analytical Review of Different Approaches to Wastewater Discharge Standards with Particular Emphasis on Nutrients (vol 66, pg 694, 2020). Environ Manage 66(4), 732-732. Qiang, J.X., Zhou, Z., Wang, K.C., Qiu, Z., Zhi, H., Yuan, Y., Zhang, Y.B., Jiang, Y.X., Zhao, X.D., Wang, Z.W. and Wang, Q.Y. 2020. Coupling ammonia nitrogen adsorption and regeneration unit with a high-load anoxic/aerobic process to achieve rapid and efficient pollutants removal for wastewater treatment. Water Res 170. Qian, X., Yang, P.Y. and Maekawa, T. 2001. Evaluation of direct removal of nitrate with entrapped mixed microbial cell technology using ethanol as the carbon source. Water Environ Res 73(5), 584-589. Rahimi, Y., Torabian, A., Mehrdadi, N. and Shahmoradi, B. 2011. Simultaneous nitrification-denitrification and phosphorus removal in a fixed bed sequencing batch reactor (FBSBR). J Hazard Mater 185(2-3), 852-857. Rezvani, F., Sarrafzadeh, M.H., Ebrahimi, S. and Oh, H.M. 2019. Nitrate removal from drinking water with a focus on biological methods: a review. Environ Sci Pollut R 26(2), 1124-1141. Robinson, R.A., Stokes, R.H., 1970. Electrolyte Solutions, [electronic Resource] the Measurement and Interpretation of Conductance, Chemical Potential, and Diffusion in Solutions of Simple Electrolytes, 2d ed., rev. Butterworths [1965, reprinted 1970], London. Sanyal, O. Lee, I. 2014. Recent progress in the applications of layer-by-layer assembly to the preparation of nanostructured ion-rejecting water purification membranes. J Nanosci Nanotechnol. Mar;14(3), 2178-2189. Shammas, N.K. 1986. Interactions of Temperature, PH, and Biomass on the Nitrification Process. J Water Pollut Con F 58(1), 52-59. Shao, Y.X., Shi, Y.J., Mohammed, A. and Liu, Y. 2017. Wastewater ammonia removal using an integrated fixed-film activated sludge-sequencing batch biofilm reactor (IFAS-SBR): Comparison of suspended flocs and attached biofilm. Int Biodeter Biodegr 116, 38-47. Shi, L., Newcomer, E., Son, M., Pothanamkandathil, V., Gorski, C.A., Galal, A. and Logan, B.E. 2021. Metal-Ion Depletion Impacts the Stability and Performance of Battery Electrode Deionization over Multiple Cycles. Environ Sci Technol 55(8), 5412-5421. Shrivastava, A., Liu, S.Z. and Smith, K.C. 2019. Linking capacity loss and retention of nickel hexacyanoferrate to a two-site intercalation mechanism for aqueous Mg2+ and Ca2+ ions. Phys Chem Chem Phys 21(36), 20177-20188. Siddiqi, M.Z., Thao, N.T.P., Choi, G., Kim, D.C., Lee, Y.W., Kim, S.Y., Wee, J.H. and Im, W.T. 2019. Mesorhizobium denitrificans sp. nov., a novel denitrifying bacterium isolated from sludge. J Microbiol 57(4), 238-242. Singh, K., Qian, Z.X., Biesheuvel, P.M., Zuilhof, H., Porada, S. and de Smet, L.C.P.M. 2020. Nickel hexacyanoferrate electrodes for high mono/divalent ion-selectivity in capacitive deionization. Desalination 481. Srimuk, P., Su, X., Yoon, J., Aurbach, D. and Presser, V. 2020. Charge-transfer materials for electrochemical water desalination, ion separation and the recovery of elements. Nat Rev Mater 5(7), 517-538. Stevens, C.J. 2019. ENVIRONMENT Nitrogen in the environment. Science 363(6427), 578-580. Sun, S.P., Nacher, C.P.I., Merkey, B., Zhou, Q., Xia, S.Q., Yang, D.H., Sun, J.H. and Smets, B.F. 2010. Effective Biological Nitrogen Removal Treatment Processes for Domestic Wastewaters with Low C/N Ratios: A Review. Environ Eng Sci 27(2), 111-126. Suss, M.E., Porada, S., Sun, X., Biesheuvel, P.M., Yoon, J. and Presser, V. 2015. Water desalination via capacitive deionization: what is it and what can we expect from it? Energ Environ Sci 8(8), 2296-2319. Svobodova, L., Havlicek, K., Nechanicka, M., Spanek, R., Sirkova, B.K., Lenfeldova, I., Louda, O., Mouckova, E. and Lederer, T. 2021. Microfiber structure for enhanced immobilization of nitrifying bacteria in a post-nitrification reactor. Environ Technol Inno 21. Taiwan EPA. 2018. Water Pollution Control Act. Tang, W.W., He, D., Zhang, C.Y., Kovalsky, P. and Waite, T.D. 2017a. Comparison of Faradaic reactions in capacitive deionization (CDI) and membrane capacitive deionization (MCDI) water treatment processes. Water Res 120, 229-237. Tang, W.W., He, D., Zhang, C.Y. and Waite, T.D. 2017b. Optimization of sulfate removal from brackish water by membrane capacitive deionization (MCDI). Water Res 121, 302-310. Tang, W.W., Kovalsky, P., Cao, B.C. and Waite, T.D. 2016. Investigation of fluoride removal from low-salinity groundwater by single-pass constant-voltage capacitive deionization. Water Res 99, 112-121. Tang, W.W., Kovalsky, P., He, D. and Waite, T.D. 2015. Fluoride and nitrate removal from brackish groundwaters by batch-mode capacitive deionization. Water Res 84, 342-349. Tansel, B. 2012. Significance of thermodynamic and physical characteristics on permeation of ions during membrane separation: Hydrated radius, hydration free energy and viscous effects. Separation and Purification Technology 86, 119-126. Torkamanzadeh, M., Wang, L., Zhang, Y., Budak, O., Srimuk, P. and Presser, V. 2020. MXene/Activated-Carbon Hybrid Capacitive Deionization for Permselective Ion Removal at Low and High Salinity. Acs Appl Mater Inter 12(23), 26013-26025. Turk, O. and Mavinic, D.S. 1987. Benefits of Using Selective-Inhibition to Remove Nitrogen from Highly Nitrogenous Wastes. Environ Technol Lett 8(9), 419-426. Uemoto, H. and Saiki, H. 1996. Nitrogen removal by tubular gel containing Nitrosomonas europaea and Paracoccus denitrificans. Appl Environ Microb 62(11), 4224-4228. United Nations. 2018. World Urbanization Prospects: The 2018 Revision. Uzun, H.I. and Debik, E. 2019. Economical approach to nitrate removal via membrane capacitive deionization. Sep Purif Technol 209, 776-781. Van Damme, M., Clarisse, L., Whitburn, S., Hadji-Lazaro, J., Hurtmans, D., Clerbaux, C. and Coheur, P.F. 2018. Industrial and agricultural ammonia point sources exposed. Nature 564(7734), 99-+. Van Ginkel, C.G., Tramper, J., Luyben, K.C.A.M. and Klapwijk, A. 1983. Characterization of Nitrosomonas-Europaea Immobilized in Calcium Alginate. Enzyme Microb Tech 5(4), 297-303. Wang, L. and Lin, S.H. 2019. Mechanism of Selective Ion Removal in Membrane Capacitive Deionization for Water Softening. Environ Sci Technol 53(10), 5797-5804. Wang, W.L., Gang, Y., Hu, Z., Yan, Z.C., Li, W.J., Li, Y.C., Gu, Q.F., Wang, Z.X., Chou, S.L., Liu, H.K. and Dou, S.X. 2020. Reversible structural evolution of sodium-rich rhombohedral Prussian blue for sodium-ion batteries. Nat Commun 11(1). Wang, Z.D., Liu, Y., Wu, Z.J., Guan, G.Q., Zhang, D., Zheng, H.Y., Xu, S.D., Liu, S.B. and Hao, X.G. 2017. A string of nickel hexacyanoferrate nanocubes coaxially grown on a CNT@bipolar conducting polymer as a high-performance cathode material for sodium-ion batteries. Nanoscale 9(2), 823-831. Wessells, C.D., Peddada, S.V., Huggins, R.A. and Cui, Y. 2011. Nickel Hexacyanoferrate Nanoparticle Electrodes For Aqueous Sodium and Potassium Ion Batteries. Nano Lett 11(12), 5421-5425. Wilczak, A., Jacangelo, J.G., Marcinko, J.P., Odell, L.H., Kirmeyer, G.J. and Wolfe, R.L. 1996. Occurrence of nitrification in chloraminated distribution systems. J Am Water Works Ass 88(7), 74-85. Yang, P.Y., Cai, T. and Wang, M.L. 1988. Immobilized Mixed Microbial-Cells for Waste-Water Treatment. Biol Waste 23(4), 295-312. Yang, P.Y., Cao, K. and Kim, S.J. 2002. Entrapped mixed microbial cell process for combined secondary and tertiary wastewater treatment. Water Environ Res 74(3), 226-234. Yang, P.Y., Ma, T. and Chen, H.J. 1997a. The PEMMC process for land-limited small wastewater-treatment plants. Bioresource Technol 60(1), 35-42. Yang, P.Y., Zhang, Z.Q. and Jeong, B.G. 1997b. Simultaneous removal of carbon and nitrogen using an entrapped-mixed-microbial-cell process. Water Res 31(10), 2617-2625. Yang, X.E., Wu, X., Hao, H.L. and He, Z.L. 2008. Mechanisms and assessment of water eutrophication. J Zhejiang Univ-Sc B 9(3), 197-209. Yan, L.L., Liu, S., Liu, Q.P., Zhang, M.Y., Liu, Y., Wen, Y., Chen, Z.L., Zhang, Y. and Yang, Q.Q. 2019. Improved performance of simultaneous nitrification and denitrification via nitrite in an oxygen-limited SBR by alternating the DO. Bioresource Technol 275, 153-162. Zhang, C.Y., He, D., Ma, J.X., Tang, W.W. and Waite, T.D. 2018. Faradaic reactions in capacitive deionization (CDI) - problems and possibilities: A review. Water Res 128, 314-330. Zhang, L.S., Wu, W.Z. and Wang, J.L. 2007. Immobilization of activated sludge using improved polyvinyl alcohol (PVA) gel. J Environ Sci 19(11), 1293-1297. Zhang, W., Zhou, Z., An, Y., Du, S.L., Ruan, D.N., Zhao, C.Y., Ren, N. and Tian, X.C. 2017. Optimization for zeolite regeneration and nitrogen removal performance of a hypochlorite-chloride regenerant. Chemosphere 178, 565-572. Zhang, X.D., Zuo, K.C., Zhang, X.R., Zhang, C.Y. and Liang, P. 2020. Selective ion separation by capacitive deionization (CDI) based technologies: a state-of-the-art review. Environ Sci-Wat Res 6(2), 243-257. Zhao, H.W., Mavinic, D.S., Oldham, W.K. and Koch, F.A. 1999. Controlling factors for simultaneous nitrification and denitrification in a two-stage intermittent aeration process treating domestic sewage. Water Res 33(4), 961-970. Zhao, R., van Soestbergen, M., Rijnaarts, H.H.M., van der Wal, A., Bazant, M.Z. and Biesheuvel, P.M. 2012. Time-dependent ion selectivity in capacitive charging of porous electrodes. J Colloid Interf Sci 384, 38-44. Zhao, S., Guo, Z., Yan, K., Guo, X., Wan, S., He, F., Sun, B. and Wang, G. 2021. The Rise of Prussian Blue Analogs: Challenges and Opportunities for High‐Performance Cathode Materials in Potassium‐Ion Batteries. Small Structures 2(1), 2000054. Zhou, D.D., Dong, S.S., Gao, L.L., Liu, M.Y. & Niu, S. 2013. Distribution characteristics of extracellular polymeric substances and cells of aerobic granules cultivated in a continuous-flow airlift reactor. J Chem Technol Biot 88(5), 942-947. Zhou, Z., Wang, K.C., Qiang, J.X., Pang, H.J., Yuan, Y., An, Y., Zhou, C.T., Ye, J.F. and Wu, Z.C. 2021. Mainstream nitrogen separation and side-stream removal to reduce discharge and footprint of wastewater treatment plants. Water Res 188. Zhu, J., Lin, C.F., Kao, J.C.M. and Yang, P.Y. 2011. Evaluation of potential integration of entrapped mixed microbial cell and membrane bioreactor processes for biological wastewater treatment/reuse. Clean Technol Envir 13(1), 153-160. Zornitta, R.L., Srimuk, P., Lee, J., Kruner, B., Aslan, M., Ruotolo, L.A.M. and Presser, V. 2018. Charge and Potential Balancing for Optimized Capacitive Deionization Using Lignin-Derived, Low-Cost Activated Carbon Electrodes. Chemsuschem 11(13), 2101-2113. Zuo, K.C., Kim, J., Jain, A., Wang, T.X., Verduzco, R., Long, M.C. and Li, Q.L. 2018. Novel Composite Electrodes for Selective Removal of Sulfate by the Capacitive Deionization Process. Environ Sci Technol 52(16), 9486-9494.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86559-
dc.description.abstract隨著人口增加以及產業活動蓬勃發展,過多的氮營養鹽排放到自然水體將造成水質優養化,並可能進一步造成水質惡化與生態危害。而隨著各國對於污水廠含氮物質放流水的排放標準逐漸加嚴,現有污水廠之生物處理技術則需要大幅地增加在曝氣的電力供應與額外添加額外碳源等操作成本,以達到含氮物質的排放標準。因此如何提升現有污水處理廠對於含氮汙染物質的去除效能,成為現今重要的議題。本研究提出以固定生物膜技術以及電化學離子分離技術來提升對於含氮物質的去除與分離效率。 本研究以固定生物膜技術做為同步硝化脫硝(Simultaneous nitrification and denitrification, SND)之除氮程序,此程序有助於減少傳統生物除氮程序所需要的反應體積,並能減少外加碳源的使用需求。本研究以三醋酸纖維將污水廠之活性污泥進行包埋,建立固定生物板反應器,並透過連續曝氣與間歇曝氣(一小時曝氣/一小時不曝氣)兩種操作模式,探討溶氧傳輸對於同步硝化脫硝效率之影響。由實驗結果顯示兩種曝氣模式具備相似的銨氮去除率約為76%,而間歇曝氣的SND效率約71%,與連續曝氣模式相比,能增加固定生物反應槽18%的SND效率。而分析反應槽內部的反應,可以觀察到在接近反應槽進流端主要以有機物的降解反應為主,而接近出流端則是以硝化反應與脫硝反應為主。透過16S rDNA做微生物定序,可以觀察到硝化菌與脫硝菌共同存在於固定生物板的證據,而各固定生物板上的微生物菌種會隨著反應槽內部的溶氧、有機物、含氮物質等受質濃度的變化而改變。 另一方面,本研究以薄膜電容去離子(Membrane capacitive deionization, MCDI)與電池去離子(Battery deionization, BDI)技術發展出分別對於硝酸鹽氮與銨氮具備離子選擇性的電化學離子分離技術。針對硝酸鹽氮的選擇性去除,本研究首先比較以電容去離子系統(CDI系統,一對多孔碳電極)與MCDI系統(一對披覆商用均相離子交換膜之多孔碳電極)對於硝酸鹽離子與氯離子的電吸附表現,以探討離子交換膜在離子電吸附過程中對離子選擇性所造成的影響。在1.2 V的操作電壓下,可以觀察到在硝酸根離子與氯離子的競爭電吸附過程主要可以分為充電初期(動態)與充電後期(接近平衡)兩階段。在充電初期,水合半徑越小的氯離子會越快吸附於孔洞材料上,在充電後期,具備較小水合比且與氮電極有較高作用力的硝酸根離子則逐漸競爭氯離子的吸附位點。當以商用均相膜披覆於碳電極時,透過減少同離子效應(Co-ion effect)可以大幅增加電極去離子容量,然而離子在薄膜的移動速度則主導電吸附選擇性,具備相同價數與擴散速率的硝酸鹽離子與氯離子於MCDI系統中表現相似的電吸附選擇性。為了提升MCDI的電吸附選擇性,本研究利用硝酸根離子具備較低水合能(Hydration energy)的特性,透過增加陰離子交換膜胺基疏水性的方式,增加硝酸根離子在薄膜中的傳輸速率,有效地將MCDI系統之電吸附選擇性係數提升至2,而電極的硝酸鹽去離子容量為0.22 mmol/g,為CDI系統硝酸鹽去離子容量的1.8倍。 針對銨氮的選擇性去除,本研究以陽離子嵌合型電池材料-鐵氰化鎳(Nickel hexacyanoferrate, NiHCF)作為銨離子之選擇性電極材料,並建立NiHCF//活性碳之非對稱式BDI系統。本研究首先以循環伏安法分析NiHCF電極對於不同陽離子的氧化還原特性,實驗結果顯示,NiHCF對於各陽離子的反應活性大小順序為:銨離子>鈉離子>鈣離子。而利用銨離子與鈉或鈣離子之混合溶液在0.8 V的操作電壓進行離子嵌合實驗,可以觀察到銨離子隨著充電時間增加,逐漸將嵌入在NiHCF晶格中的鈉離子或鈣離子取代掉,銨離子相對於鈉離子與鈣離子之嵌合選擇性分別為4.9和9.5,NiHCF對於銨離子的去離子容量為1.9–2 mmol/g。利用電池去離子系統將生活污水廠銨氮超標之放流水進行處理,結果顯示鐵氰化鎳電極對於陽離子之選擇性為:銨離子>鉀離子>鈉離子>鈣離子>鎂離子。 本研究成功地驗證固定生物膜與電化學選擇性離子分離技術的學理機制以及技術可行性,未來待技術成熟時,則有望將上述技術結合於現有污水處理系統以符合更嚴苛的含氮物質排放標準,同時降低污水處理流程之操作成本。而透過電化學選擇性濃縮分離之氮營養鹽則能進一步循環再利用,以促進達成污水資源化之永續發展目標。zh_TW
dc.description.abstractWith the increase in population and the rapid development of industrial activities, the discharge of excessive nitrogen nutrients into natural water bodies could lead to eutrophication and may further cause water quality deterioration and ecological impacts. As the discharge standards for nitrogen from wastewater treatment plants (WWTPs) become gradually stringent, developing more efficient nitrogen removal and separation technologies has become a critical issue. This study proposes to use immobilized biomass technology and electrochemical ion separation technology to improve nitrogen removal and separation efficiency. In this study, immobilized biomass technology was used to achieve simultaneous nitrification and denitrification (SND). In this study, waste sludge from municipal wastewater treatment plants was immobilized by cellulose triacetate as bioplates, and an immobilized bioplate reactor (IBPR) was successfully established for nitrogen removal tests. The SND efficiency of the IBPR was increased 18% under the intermittent aeration (IA) mode compared with that under the continuous aeration (CA) mode. During IA operation, the IBPR achieved 96% COD removal and 76% NH4+-N removal, with 71% SND. The results of microbial community analysis by high-throughput sequencing showed that nitrogen-related functional bacteria were more abundant in the bioplates than in the attached biofilms. The colocalization of nitrifiers and denitrifiers in the bioplates was first uncovered, and the microbial community of nitrogen-related functional bacteria clearly shifted with the substrate concentration gradients. On the other hand, electrochemical ion separation technology including membrane capacitive deionization (MCDI) and battery deionization (BDI) technologies were utilized to selectively separate NO3− and NH4+, respectively. To investigate the role of anion exchange membranes (AEMs) in selective NO3− electrosorption in MCDI, this study first compared the competitive electrosorption behaviors of NO3− and Cl− in a capacitive deionization system (CDI system, a pair of porous carbon electrodes) and in an MCDI system (a pair of porous carbon electrodes coated with a commercial homogeneous ion exchange membrane). Our results indicated that the electrosorption selectivity for NO3− ions in CDI was determined by the contributions of ion-carbon affinity and electrical force during the charging period. In comparison, the NO3− selectivity was found to be significantly decreased in MCDI with the commercial AEM due to the presence of an ion-exchange membrane that controlled ion kinetics. To improve the electrosorption selectivity of MCDI, this study fabricated heterogeneous AEMs (hAEMs) with different hydrophobicities on the amine groups. The results showed that hAEM with more hydrophobic amine functional groups exhibited higher NO3− selectivity. The NO3− selectivity of MCDI with selective hAEM was increased to 2, and the deionization capacity of NO3− was 0.22 mmol/g. To achieve selective NH4+ separation from wastewater, this study utilized a hexacyanoferrate (NiHCF) electrode as a selective NH4+ electrode. To assess the competitive intercalation between NH4+ and other common cations (Na+, Ca2+), a NiHCF//activated carbon (AC) hybrid BDI cell was established to treat mixed-salt solutions. The results of cyclic voltammetry (CV) analysis showed a higher current response of the NiHCF electrode toward NH4+ ions than toward Na+ and Ca2+ ions. In a single-salt solution with NH4+, the optimized operating voltage of the hybrid BDI cell was 0.8 V, with a higher salt adsorption capacity (51.2 mg/g) than those obtained at other voltages (0.1, 0.4, 1.2 V). In a multisalt solution containing NH4+, Na+, and Ca2+ ions, the selectivity coefficients of NH4+/Ca2+ and NH4+/Na+ were 9.5 and 4.9, respectively. The feasibility of selective NH4+ capture using the NiHCF electrode in a hybrid BDI cell was demonstrated by treating the effluent from a municipal wastewater treatment plant (WWTP). The intercalation preference of the NiHCF electrode with the WWTP effluent was NH4+>K+>Na+>Ca2+>Mg2+, and NH4+ showed the highest salt adsorption capacity among the cations during consecutive cycles. These resulted showed that NiHCF electrode has higher intercalation selectivity towards cations with smaller size and lower (de)hydration energy. The results of this thesis successfully verified the mechanism and technical feasibility of immobilized biomass and electrochemical selective ion separation technologies. It is expected that these technologies can be combined with the existing wastewater treatment system to meet more stringent nitrogen discharge standards, reducing the operating costs of nitrogen removal and recovery. The concentrated nitrogen nutrients separated by electrochemical processes can be further recycled and reused for sustainable development.en
dc.description.provenanceMade available in DSpace on 2023-03-20T00:03:11Z (GMT). No. of bitstreams: 1
U0001-1208202202552400.pdf: 13464238 bytes, checksum: 837216c782dd56e660f5c8fc6c945439 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontentsACKNOWLEDGMENT I 中文摘要 III ABSTRACT VI CONTENTS IX LIST OF TABLES XI LIST OF FIGURES XII LIST OF SYMBOLS AND ABBREVIATIONS XVII CHAPTER 1: INTRODUCTION 1 1.1 Background/Problem statement 1 1.2 Hypothesis 4 1.3 Research objectives 4 1.4 Organization of thesis 6 CHAPTER 2: LITERATURE REVIEW 10 2.1 Challenges of efficient nitrogen removal and selective nitrogen removal 10 2.2 Immobilized biomass process for nitrogen removal 15 2.2.1 Fundamentals of biological nitrogen removal 15 2.2.2 Simultaneous nitrification-denitrification 17 2.2.3 Immobilized biomass technology 19 2.3 Electrochemical separation process for nitrogen recovery 23 2.3.1 Capacitive deionization process 23 2.3.2 Membrane capacitive deionization 25 2.3.3 Battery deionization 27 CHAPTER 3: MATERIALS AND METHODS 31 3.1 Chemicals 31 3.2 Nitrogen removal experiments using an immobilized biomass reactor 32 3.2.1 Biomass immobilization preparation 32 3.2.2 Reactor setup and operational conditions 32 3.2.3 Performance indicators of the immobilized biomass reactor 35 3.2.4 Microbial community and functional gene analysis 36 3.3 Experiments of electrochemical separation 37 3.3.1 AC electrode preparation 37 3.3.2 Heterogeneous ion exchange membrane preparation 37 3.3.3 Battery electrode preparation 39 3.3.4 Characterization of electrode materials 40 3.3.5 Characterization of the ion exchange membrane 41 3.3.6 Electrochemical separation setup 44 3.3.7 Performance indicators of the electrochemical separation process 46 3.4 Analytical methods for liquid samples 48 CHAPTER 4: SMULTANEOUS NITRIFICATION-DENITRIFICATION VIA IMMOBILIZED BIOMASS 49 4.1 Nitrogen removal performance of the IBPR 49 4.2 Effect of intermittent aeration on nitrogen removal 52 4.3 Microbial community structure in the IBPR 59 4.4 Composition and distribution of nitrogen utilizers in the IBPR 61 4.5 Summary 66 CHAPTER 5: NITRATE SELECTIVE MEMBRANE FOR SELECTIVE NITRATE SEPARATION 67 5.1 Electrochemical characteristics of the AC electrode 67 5.2 Characteristics of the heterogeneous AEM 68 5.3 Deionization performances of CDI and MCDI in a single-solute solution 72 5.4 Competitive electrosorption of NO3−/Cl− in CDI vs MCDI 74 5.5 Enhancing NO3− selectivity of MCDI by increasing hydrophobicity of hAEM 78 5.6 Summary 82 CHAPTER 6: SELECTIVE AMMONIUM SEPARATION VIA ION INTERCALATION 84 6.1 Characteristics of the NiHCF electrode 84 6.2 Optimized voltage for NH4+ intercalation with single-salt solutions 89 6.3 Intercalation selectivity of NH4+ with mixed-salt solutions 92 6.4 Selective capture of NH4+ from real wastewater 100 6.5 Summary 105 CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS 106 7.1 Conclusions 106 7.2 Recommendations 108 REFERENCES 110 LIST OF PUBLICATIONS 125
dc.language.isoen
dc.title固定生物膜脫硝反應與電化學離子選擇性分離於提升含氮廢水處理效能之研析zh_TW
dc.titleImmobilized microbial denitrification and selective electrochemical separation towards efficient nitrogen removal and recovery in wastewater treatmenten
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree博士
dc.contributor.author-orcid0000-0003-2905-5059
dc.contributor.advisor-orcid侯嘉洪(0000-0001-5149-4096)
dc.contributor.oralexamcommittee李公哲(Kung-Cheh Li),林正芳(Cheng-Fang Lin),莊順興(Shun-Hsing Chuang),陳孝行(Shiao-Shing Chen),曾惠馨(Hui-Hsin Tseng)
dc.contributor.oralexamcommittee-orcid,曾惠馨(0000-0003-0622-8252)
dc.subject.keyword營養鹽,固定生物膜技術,同步硝化脫硝,電化學離子分離技術,薄膜電容去離子,電池去離子,zh_TW
dc.subject.keywordNutrient,Immobilized biomass,Simultaneous nitrification/denitrification,Electrochemical ion separation,Membrane capacitive deionization,Battery deionization,en
dc.relation.page126
dc.identifier.doi10.6342/NTU202202323
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-08-12
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
dc.date.embargo-lift2027-09-01-
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-1208202202552400.pdf
  此日期後於網路公開 2027-09-01
13.15 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved