Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86558
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曾惠斌(Hui-Ping Tserng)
dc.contributor.authorWei-Cheng Chenen
dc.contributor.author陳維政zh_TW
dc.date.accessioned2023-03-20T00:03:07Z-
dc.date.copyright2022-08-19
dc.date.issued2022
dc.date.submitted2022-08-10
dc.identifier.citation中華民國勞動部(2019),統計年報 2014,https://www.mol.gov.tw/。 中華民國勞動部統計報告(2020年)。國際勞動統計職業災害(表9-4職業災害死亡千人率)。 https://www.mol.gov.tw/1607/2458/2464/2470/statisticalReportList 行政院勞工委員會(2012年12月)。潛盾隧道工程施工安全管理手冊(營造工程施工安全教材系列叢書)。 吳慶輝(2005)。下水道潛盾施工遭遇礫石層案例探討與防災對策研究。碩士論文, 國立交通大學。http://140.113.39.130/cdrfb3/record/nctu/#GT009270513. 林壯宇(2006)。國內局限空間職災特性研究。碩士論文,國立聯合大學環境與安全衛生工程學系。 林楨中、鄭慶武(2018年)。營造業高處作業勞工主要不安全行為樣態及認知調查,勞動部勞動及職業安全衛生研究所。 陳美蓮、黃如瑋、陳秋蓉、鄭淑芳、毛義方(1996.6)。高溫作業作息時間與工作負荷量對心率之影響研究,勞工安全衛生研究季刊。第六卷第二期, 頁115-129。 陳文誌、蔡登傳、游萬來譯(2005)。人因概論,六合出版社。表7-4 (引自Astrand & Rodahl, 1977)。 梁文杰、阮約翰、林明漢、孫德銓(2006年)。模擬靜態駕駛環境下探討駕駛者駕駛任務前後生理指標之變化。2006年工程科技與中西醫學應用研討會。論文集 頁223-228,台中,台灣。 曾國剛、譚旦旭、黃文增(2009年)。疲勞度之即時偵測與分析,臺北科技大學電機工程系研究所。 Abdelhamid, Tariq S. & Everett, John G. (2002). Physiological demands during construction work. Journal of Construction Engineering and Management, ASCE, 128 (October), pp.427- 437. https://doi.org/10.1061/(ASCE)0733-9364(2002)128:5(427). Ahamed, SK. Tanvir & Islam, Mohammad Tariqul (2016). An efficient method for heart rate monitoring using wrist-type photoplethysmographic signals during intensive physical exercise. 2016 5th International Conference on Informatics, Electronics and Vision (ICIEV), p.863. Alvanchi, Amin; Lee, SangHyun & AbouRizk, Simaan (2012). Dynamics of working hours in construction. Journal of Construction Engineering and Management, January 2012. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000384. American Heart Association (2020). https://www.heart.org/en/health-topics/high-blood-pressure/the-facts-about-high-blood-pressure/all-about-heart-rate-pulse, Accessed date: 7 August 2021. Anwer, S., Li, H., Antwi-Afari, M. F., Umer, W., & Wong, A.Y. L. (2021), Evaluation of physiological metrics as real-time measurement of physical fatigue in construction workers: state-of-the-art review, Journal of Construction Engineering and Management, 147(5): 03121001-19. DOI: 10.1061/(ASCE)CO.1943-7862.0002038. Anwer, S.; Li, H.; Antwi-Afari, M.F.; Umer, W. & Wong, A.Y.L. (2020). Cardiorespiratory and thermoregulatory parameters are good surrogates for measuring physical fatigue during a simulated construction task. International Journal of Environment Research and Public Health, 17 (2020), pp.5418. https://doi.org/10.3390/ijerph17155418. Aryal, Ashrant; Ghahramani, Ali & Becerik-Gerber, Burcin (2017). Monitoring fatigue in construction workers using physiological measurements. Automation in Construction, 82 (2017), pp.154-165. https://doi.org/10.1080/00140130500274168. Cao, Li; Davis, Gerard A.; Gallagher, Sean; Jr, Mark C. Schall & Sesek, Richard F. (2018). Characterizing posture and associated physiological demand during evacuation. Safety Science, 104, pp.1-9. https://doi.org/10.1016/j.ssci.2017.12.032. Chan, Albert P. C.; Yi, Wen; Chan, Daniel W. M. & Wong, Del P. (2013). Using the thermal work limit as an environmental determinant of heat stress for construction workers. Journal of Management in Engineering, ASCE, 29(4), pp.414-423. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000162. Chen, Wei-Cheng & Huang, Jia-Sheu (2019). A novel solution of continuous monitoring tunnel worker’s physical and psychological status using wearable PPG heart-rate detection wristband and BLE IoT System. 19th International Conference on Construction Applications of Virtual Reality, 13-15 November 2019, Bangkok, Thailand. http://www.convr2019.com/. Chen, Wei-Cheng & Tserng, H. Ping (2022). Real-time individual workload management at tunnel worksite using wearable heart rate measurement devices. Automation in Construction, 134(2022) 104051, https://doi.org/10.1016/j.autcon.2021.104051. Choudhry, R. M. & Fang, D. (2008). Why operatives engage in unsafe work behavior: Investigating factors on construction sites. Safety Science, 46(4), pp.566–584. https://doi.org/10.1016/j.ssci.2007.06.027 Colzato, Lorenza S.; Jongkees, Bryant J.; De Wit, Matthijs; Van der Molen, Melle J. W. & Steenbergen, Laura (2018). Variable heart rate and a flexible mind: higher resting-state heart rate variability predicts better task-switching. Cognitive, Affective, & Behavioral Neuroscience, 18(2018), pp.730-738. https://doi.org/10.3758/s13415-018-0600-x. Coolbaugh, Crystal L.; Jr, Stephen C. Raymond & Hawkins, David A. (2015). Feasibility of a dynamic web guidance approach for personalized physical activity prescription based on daily information from wearable technology. JMIR Res. Protoc., 2015 Apr-Jun, 4(2), pp.e67. https://doi.org/10.2196/resprot.3966:10.2196/resprot.3966. Custodis, Florian; Roggenbuck, Ulla; Lehmann, Nils; Moebus, Susanne; Laufs, Ulrich; Mahabadi, Amir-Abbas; Heusch, Gerd; Mann, Klaus; Jo¨ckel, Karl-Heinz; Erbel,Raimund; Bo¨hm; Michael & Mo¨hlenkamp, Stefan (2016). Resting heart rate is an independent predictor of all-cause mortality in the middle aged general population. Clin. Res. Cardiol., 105, pp.601-612. https://doi.org/10.1007/s00392-015-0956-7. Daniels, Jack (2013). Daniels' Running Formula, third ed. 48. United States of America: Human Kinetics. 2013. ISBN-13:‎ 978-1450431835. DiDomenico, Angela & Nussbaum, Maury A. (2011). Effects of different physical workload parameters on mental workload and performance. International Journal of Industrial Ergonomics, 41(3), pp.255-260. https://doi.org/10.1016/j.ergon.2011.01.008. Dontje, Manon L.; de Groot, Martijn; Lengton, Remko R.; Van der Schans, Cees P. & Krijnen, Wim P. (2015). Measuring steps with the Fitbit activity tracker: an inter-device reliability study. Journal of Medical Engineering & Technology, 39(5), pp.286-290. https://doi.org/10.3109/03091902.2015.1050125. Erikssen, Jan & Rodahi, Kaare (1979). Resting heart rate in apparently healthy middle-aged men. European Journal of Applied Physiology, 42, pp.61-69. Eriksson, Peter; Schiöler, Linus; Söderberg, Mia; Rosengren, Annika & Torén, Kjell (2016). Job strain and resting heart rate: a cross sectional study in a swedish random working sample. BMC Public Health, 16, pp.228. https://doi.org/10.1186/s12889-016-2900-9. Evans, James F. (1972). Resting heart rate and the effects of an incentive, Psychonomic Science, 26 (2), pp.99-100. https://doi.org/10.3758/BF03335446. Farah, Breno Quintella; Christofaro, Diego Giulliano Destro; Balagopal, P. Babu; Cavalcante, Bruno Remigio; de Barros, Mauro Virgílio Gomes & Ritti-Dias, Raphael Mendes (2015). Association between resting heart rate and cardiovascular risk factors in adolescents. Eur J Pediatr, 174, pp.1621-1628. https://doi.org/10.1007/s00431-015-2580-y. Gao, Xing; Zhou, Yong; Guo, Yu‑Chen; Chen, Quan; Lei, Xing‑Yun & Hu, Hong‑Pu (2018). Association between elevated resting heart rate and metabolic syndrome in a community‑based population, Chinese Medical Journal, April 20, 131 (8). https://doi.org/10.4103/0366-6999.229885. Garet, M.; Boudet, G.; Montaurier,C.; Vermorel, M.; Coudert, J. & Chamoux, A. (2005). Estimating relative physical workload using heart rate monitoring: a validation by whole-body indirect calorimetry. Eur. J. Appl. Physiol., 94 (1-2), pp.46-53. http://dx.doi.org/10.1007/s00421-004-1228-9. Garzon, Mauricio (2017). Immersible ergocycle prescription as a function of relative exercise intensity. Journal of Sport and Health Science, 6 (2017), pp. 219–224. https://doi.org/10.1016/j.jshs.2015.12.004. Garzon, Mauricio; Gayda, Mathieu; Nigam, Anil; Comtois, Alain-Steve & Juneau, Martin (2017). Journal of Sport Health Science, 6(2), pp.219-224. https://doi.org/10.1016/j.jshs.2015.12.004. Gatti, Umberto C.; Migliaccio, Giovanni C.; Bogus, Susan M. & Schneider, Suzanne (2014). An exploratory study of the relationship between construction workforce physical strain and task level productivity. Construction Management and Economics, Vol.32, No. 6, pp.548–564. http://dx.doi.org/10.1080/01446193.2013.831463 Gatti, Umberto; Migliaccio, Giovanni; Bogus, Susan M.; Priyadarshini, Shalini & Scharrer, Amelia (2013), Using workforce’s physiological strain monitoring to enhance social sustainability of construction. Journal of Architectural Engineering, 19(3): pp.179-185. Gellish, R.L.; Goslin, B.R.; Olson, R.E.; Mcdonald, A.; Russi, G.D. & Moudgil, V.K. (2007). Longitudinal modeling of the relationship between age and maximal heart rate. Medicine & Science in Sports & Exercise, 39 (5), pp.822-829. https://doi.org/10.1097/mss.0b013e31803349c6. Hallman, David M.; Holtermann, Andreas & Van der Beek, Allard J. (2018). Shift work is associated with reduced heart rate variability among men but not women. International Journal of Cardiology, 258 (2018), pp.109-114. Hashiguchi, Nobuki; Kodama, Kota; Lim, Yeongjoo; Che, Chang; Kuroishi, Shinichi; Miyazaki, Yasuhiro; Kobayashi, Taizo; Kitahara, Shigeo & Tateyama, Kazuyoshi (2020). Practical judgment of workload based on physical activity, work conditions, and worker’s age in construction site. Sensors, 20, 3786, https://doi.org/10.3390/s20133786. Health and Safety Executive, HSE, UK (2006). RR446, The development of a fatigue / risk index for shiftworkers (2006). Health and Safety Executive, HSE (2022). Human factors: Fatigue, https://www.hse.gov.uk/humanfactors/topics/fatigue.htm. Accessed date: 13 July 20221. Hsu, D.J.; Sun, Y.M.; Chuang, K.H.; Juang, Y.J. & Chang, F.L. (2008). Effect of elevation change on work fatigue and physiological symptoms for high-rise building construction workers. Safety Science, 46, pp.833-843. https://doi.org/10.1016/j.ssci.2007.01.011. Hwang, Sungjoo & Lee, SangHyun (2017). Wristband-type wearable health devices to measure construction workers' physical demands. Automation in Construction, 83 (2017), pp.330-340. https://doi.org/10.1016/j.autcon.2017.06.003. Hwang, Sungjoo; Seo, JoonOh; Jebelli, Houtan & Lee, SangHyun (2016). Feasibility analysis of heart rate monitoring of construction workers using a photoplethysmography (PPG) sensor embedded in a wristband-type activity tracker. Automation in Construction, 71(2), pp.372-381. https://doi.org/10.1016/j.autcon.2016.08.029. International Labour Organization [ILO] (2016), Psychosocial risks, stress and violence in the world of work. International Journal of Labour Research 2016, 8(1-2), pp.14-17. Jackson, A. (2007). Estimating maximum heart rate from age: Is it a linear relationship? Medicine & Science in Sports & Exercise, 39(5), pp.821. https://doi.org/10.1249/mss.0b013e318054d3ca. Jensen, Magnus T.; Marott, Jacob L. & Jensen, Gorm B. (2011). Elevated resting heart rate is associated with greater risk of cardiovascular and all-cause mortality in current and former smokers. International Journal of Cardiology,151 (2011), pp.148–154. Jeyhani, Vala; Mahdiani, Shadi; Peltokangas, Mikko & Vehkaoja, Antti (2015). Comparison of HRV parameters derived from photoplethysmography and electrocardiography signals. 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). https://doi.org/10.1109/EMBC.2015.7319747. Ju, Hyeonwoo; Kim, Hwan-Cheol; Jang, Sung Wook; Won,Youna; Park,Shin-Goo & Leem, Jong-Han (2021). Relationship between fatigue severity scale and occupational injury in Korean workers, Ann Occup Environ Med. 2021; 33: e15. doi: 10.35371/aoem.2021.33.e15. Karvonen, J. & Vuorimaa, T. (1988). Heart rate and exercise intensity during sports activities. Sports Medicine. 5 (1988) 303–312, https://doi.org/10.2165/00007256-198805050-00002. Kim, Jung Hoon Byung; Jo, Wan; Jo, Jun Ho & Kim, Do Keun (2020). Development of an IoT-based construction worker physiological data monitoring platform at high temperatures. Sensors, 20 (2020), pp.5682. https://doi.org/10.3390/s20195682. Kobalava, Zhanna; Khomitskaya, Yunona; Kiyakbaev, Gayrat & On behalf of ATHENA trial investigators (2014). Achievement of target resting heart rate on beta-blockers in patients with stable angina and hypertension (ATHENA) in Routine Clinical Practice in Russia. Current Medical Research and Opinion, 30(5), pp.805–811. https://doi.org/10.1185/03007995.2013.874993 Koskela, Jenni K.; Tahvanainen, Anna; Haring,Antti; Tikkakoski, Antti J.; Ilveskoski, Erkki; Viitala, Jani; Leskinen, Miia H.; Lehtimäki, Terho; Kähönen, Mika AP; Kööbi, Tiit; Niemelä, Onni; Mustonen, Jukka T. & Pörsti, Ilkka H (2013). Association of resting heart rate with cardiovascular function: a cross-sectional study in 522 Finnish subjects. BMC Cardiovascular Disorders, 13, pp.102, http://www.biomedcentral.com/1471-2261/13/102. Kumar, S. (2001). Theories of musculoskeletal injury causation. Ergonomics, 44(1) pp.17-47. https://doi.org/10.1080/00140130120716. Lamberts, Robert P.; Rietjens, Gerard J.; Tijdink, Hendrik H.; Noakes, Timothy D.; Lambert, Michael I. (2010). Measuring submaximal performance parameters to monitor fatigue and predict cycling performance: a case study of a world-class cyclo-cross cyclist. Eur J Appl Physiol, 108:183–190. DOI 10.1007/s00421-009-1291-3. Lee, Wonil & Migliaccio, Giovanni C. (2014). Field use of physiological status monitoring (PSM) to identify construction workers’ physiologically acceptable bounds and heart rate zones. Computing in Civil and Building Engineering, ASCE, pp.1037-1044. https://ascelibrary.org/doi/abs/10.1061/9780784413616.129. Lee, Wonil & Migliaccio, Giovanni C. (2016). Physiological cost of concrete construction activities. Constr. Innov, 16 (3), pp.281-306. http://doi.org/10.1108/CI-10-2015-0051. Lee, Wonil; Lin, Ken-Yu; Seto, Edmund & Migliaccio, Giovanni C. (2017). Wearable sensors for monitoring on-duty and off-duty worker physiological status and activities in construction. Automation in Construction, 83(2017), pp.341-353. https://doi.org/10.1016/j.autcon.2017.06.012. Lee, Wonil; Seto, Edmund, Lin, Ken-Yu & Migliaccio, Giovanni C. (2017). An evaluation of wearable sensors and their placements for analyzing construction worker's trunk posture in laboratory conditions. Applied Ergonomics, 65 (2017), pp.424-436. http://dx.doi.org/10.1016/j.apergo.2017.03.016. Li, Yu-qian; Sun, Chang-qing; Li, Lin-lin; Wang, Ling; Guo, Yi-rui; You, Ai-guo; Xi, Yuan-lin & Wang, Chong-jian (2014). Resting Heart rate as a marker for identifying the risk of undiagnosed type 2 diabetes mellitus: a cross-sectional survey. BMC Public Health, 14, pp.1052. Lin, Lawrence I-Kuei (2000). Total deviation index for measuring individual agreement with applications in laboratory performance and bioequivalence. Statistics in Medicine Statist. Med., 19, pp.255-270. Long, Tengfei; Wang, Jing; Han, Xu; Wang, Fei; Hu, Hua; Yu, Caizheng; Yuan, Jing; Yao, Ping; Wei, Sheng; Wang, Youjie; Liang, Yuan; Miao, Xiaoping; Zhang, Xiaomin; Guo, Huan; Zheng, Dan; Tang, Yuhan; Yang, Handong; Huang, Suli & He, Meian (2019). Association between resting heart rate and incident diabetes risk: a Mendelian randomization study. Acta Diabetologica, April 2019. https://doi.org/10.1007/s00592-019-01344-3. Lounana, J. F.; Noakes, Campion, T.D. & Medelli, J. (2007). Relationship between %HRmax, %HR reserve, %VO2max, and %VO2 reserve in elite cyclists, Medicine & Science in Sports & Exercise. 39 (2), pp.350–357, http://dx.doi.org/10.1249/01.mss.0000246996.63976.5f. Lunde, Lars-Kristian; Koch, Markus, Veiersted, Kaj Bo; Moen, Gunn-Helen; Wærsted, Morten & Knardahl, Stein (2016). Heavy physical work: cardiovascular load in male construction workers. International Journal of Environment Research and Public Health, 13(2016), pp.356. Maiti, Rina (2008). Workload assessment in building construction related activities in India. Applied Ergonomics, 39 (2008), pp.754–765. https://doi.org/10.1016/j.apergo.2007.11.010. Maman, Zahra Sedighi; Yazdi, Mohammad Ali Alamdar; Cavuoto, Lora A. & Megahed, Fadel M. (2017). A data-driven approach to modeling physical fatigue in the workplace using wearable sensors. Applied Ergonomics, 65, pp.515-529. https://doi.org/10.1016/j.apergo.2017.02.001. Manganaro, Gabriele & Robertson, Dave (2015).光學心率量測技術的五大挑戰,EDN Taiwan電子技術設計。https://archive.edntaiwan.com/www.edntaiwan.com/ART_8800525360_3000006_TA_bd310d46.HTM. Accessed date: 7 Dec. 2021. Melanson, E.L. & Freedson, P.S. (2001). The effect of endurance training on resting heart variability in sedentary adult males, European Journal of Applied Physiology, 85, pp.442-449. https://doi.org/10.1007/s004210100479. Mohan, P Madhan; Nagarajan, V & Das, Sounak Ranjan (2016). Stress measurement from wearable photoplethysmographic sensor using heart rate variability data. International Conference on Communication and Signal Processing, April 6-8, 2016, India. Mohan, P Madhan; Nagarajan, V; Das, Sounak Ranjan & Rajesh, M (2015). Heart rate measurement from wearable photoplethysmographic sensor using spot and tracking methods. 2015 International Conference on Communications and Signal Processing (ICCSP), 2015, pp.1276-1280. https://doi.org/10.1109/ICCSP.2015.7322714. Molina, G. E.; Fontana, K.E.; Porto, L.G.G. & Jr, L.F.J. (2016). Post-exercise heart-rate recovery correlates to resting heart-rate variability in healthy men. Clinical Autonomic Research, 26 (2016), pp.415–421. https://doi.org/10.1007/s10286-016-0378-2. Molina, Guilherme Eckhardt; Fontana, Keila Elizabeth; Porto; Luiz Guilherme Grossi & Junqueira, Luiz Fernando (2016). Post-Exercise Heart-Rate Recovery Correlates to Resting Heart-Rate Variability in Healthy Men. Clin Auton Res, 26, pp.415-421. https://doi.org/10.1007/s10286-016-0378-2. Muller, E. A. (1953). The physiological basis of rest pauses in heavy work ,the Max-Planck Institut fur Arbeitsphysiologie, Dortmund, based on a lecture given at the Institute of physiology, University of Glasgow, 9th April 1953.VOL. XXXVIII, NO. 4.-1953. P.205. Nunan, D.; Donovan, G.; Jakovljevic, D.G.; Hodges, L.D.; Sandercock, G.R. & Brodie, D.A. (2009). Validity and reliability of short-term heart-rate variability from the Polar S810. Medicine & Science in Sports & Exercise, January 2009, 41(1), pp.243-250. https://doi.org/10.1249/MSS.0b013e318184a4b1. Occupational Safety and Health Administration [OSHA], U.S. (2020). 29 CFR 1910.146, Permit Required Confined Spaces; Governor’s Executive Order 2000-92. https://www.osha.gov/laws-regs/regulations/standardnumber/1910/1910.146 Opdahl, A.; Ambale, Venkatesh B.; Fernandes, V.R. (2014). Resting heart rate as predictor for left ventricular dysfunction and heart failure: MESA (multi-ethnic study of Atherosclerosis). J Am Coll. Cardiol. , 63, pp.1182–9. Panton,L.B.; Graves, J.E.; Pollock, M.L.; Garzarella, L.; Carroll, J.F.; Leggett, S.H.; Guillen, G.J. (1996). Relative heart rate, heart rate reserve, and VO2 during submaximal exercise in the elderly. J. Gerontol. Ser. A Biol. Med. Sci. 51 (4) (1996). https://doi.org/10.1093/gerona/51a.4.m165. Pierpont, Gordon L. & Voth, Eric J. (2004). Assessing Autonomic Function by Analysis of Heart Rate Recovery from Exercise in Healthy Subjects. The American Journal of Cardiology Vol. 94 July, pp.64-68. Poewell, Ronold & Copping, Alex (2010). Sleep deprivation and its consequences in construction workers. Journal of Construction Engineering and Management. https://doi.org/10.1097/mss.0b013e31803349c6. Pradhan, Nikhilesh; Rajan, Sreeraman; Adler, Andy & Redpath, Calum (2017). Classification of the quality of wristband-based photoplethysmography signals. 2017 IEEE International Symposium on Medical Measurements and Applications (MeMeA), 2017, pp.269-274, https://doi.org/10.1109/MeMeA.2017.7985887. Price, Kym; Bird, Stephen R.; Lythgo, Noel; Raj, Isaac S.; Wong, Jason Y. L. & Lynch, Chris (2016). Validation of the Fitbit One, Garmin Vivofit and Jawbone UP activity tracker in estimation of energy expenditure during treadmill walking and running. Journal of Medical Engineering & Technology, 41(3), pp.208-215. https://doi.org/10.1080/03091902.2016.1253795. Quer, Giorgio; Gouda, Pishoy; Galarnyk, Michael; Topol, Eric J. & Steinhubl, Steven R. (2020). Inter- and intraindividual variability in daily resting heart rate and its associations with age, sex, sleep, BMI, and time of year: retrospective, longitudinal cohort study of 92,457 adults. PloS one, 15 (2), pp.e0227709. https://doi.org/10.1371/journal.pone.0227709. Ricci, J. A.; Chee, E.; Lorandeau, A. L. & Berger, J. (2007). Fatigue in the U.S. workforce: prevalence and implications for lost productive work time. Journal of Occupational and Environmental Medicine, 49 (1), pp.1-10. Rodrigues, F.; Coutinho, A. & Cardoso, C. (2015). Correlation of causal factors that influence construction safety performance: A model. Work (Reading, Mass.), 51(4), pp.721–730. https://doi.org/10.3233/WOR-152030 Rohmert, W.; Laurig, W.; Philipp, U. & Luczak, H. (2007). Heart rate variability and work-load measurement. Ergonomics, Vol.16, No.1, pp.33-44. https://doi.org/10.1080/00140137308924480. Rowlinson, Steve & Jia, Yunyan Andrea (2014). Application of the Predicted Heat Strain Model in Development of Localized, Threshold-based Heat Stress Management Guidelines for the Construction Industry. Ann. Occup. Hyg., 58(3), pp.326-339. Ruidavets, Jean-Bernard; Cassadou, Sylvie; Cournot, Maxime; Bataille, Vincent; Meybeck, Mariam & Ferrières, Jean (2005). Increased resting heart rate with pollutants in a population based study. Journal of Epidemiology and Community Health. 59(8), pp.685-693. https://www.jstor.org/stable/25570809. Runkle, Jennifer D.; Cui, Can; Fuhrmann, Chris; Stevens, Scott; Pinal, Jeff Del & Sugg, Margaret M. (2019). Evaluation of wearable sensors for physiologic monitoring of individually experienced temperatures in outdoor workers in southeastern U.S. Environment International, 129, pp.229–238. https://doi.org/10.1016/j.envint.2019.05.026. Russell, Allison; Heneghan, Conor & Venkatraman, Subbu (2019). Investigation of an estimate of daily resting heart rate using a consumer wearable device. medRxiv preprint posted Oct., 18, 2019. https://doi.org/10.1101/19008771. Shetler, Katerina; Marcus, Rachel; Froelicher, Victor F.; Vora, Shefali; Kalisetti, Damayanthi; Prakash, Manish; Do, Dat & Myers, Jonathan (2001). Heart Rate Recovery: Validation and Methodologic Issues. Journal of the American College of Cardiology, Vol. 38, No. 7, pp. 1980-7. Solheim, Tanner J.; Keller, Brad G. & Fountaine, Charles J. (2014). VO2 Reserve vs. Heart rate reserve during moderate intensity treadmill exercise. International Journal of Exercise Science, 7(4), pp.311-317. Swaen, G M H; Amelsvoort, L G P M van; Bültmann, U.; Kant, I J. (2003). Fatigue as a risk factor for being injured in an occupational accident: results from the Maastricht Cohort Study, Occup Environ Med 2003; 60(Suppl I):i88–i92. Swain, David & Leutholtz, Brian. (1997). Heart rate reserve is equivalent to%VO2Reserve, not to%VO2max. Medicine & Science in Sports & Exercise, 29(3), pp.410-414. Takacs, Judit; Pollock, Courtney L.; Guenther, Jerrad R.; Bahar, Mohammadreza; Napier, Christopher & Hunt, Michael A. (2014). Validation of the fitbit one activity monitor device during treadmill walking. Journal of Science and Medicine in Sport, 17 (2014), pp.496–500. Tanaka, Hirofumi; Monahan, Kevin D. & Seals, Douglas R. (2001). Age-predicted maximal heart rate revisited. Journal of the American College of Cardiology, 37(1), pp.153-156. https://doi.org/10.1016/S0735-1097(00)01054-8. Thomson, Rebecca L.; Bellenger, Clint R.; Howe, Peter R.C.; Karavirta, Laura & Buckley, Jonathan D. (2016). Improved heart rate recovery despite reduced exercise performance following heavy training: A within-subject analysis. Journal of Science and Medicine in Sport, 19 (2016), pp.255–259. Togo, Fumiharu & Takahashi, Masaya (2009). Heart rate variability in occupational health - a systematic review. Industrial Health, 47, pp.589–602. Uusitalo, Arja; Mets, Terhi; Martinmäki, Kaisu; Mauno, Saija; Kinnunen, Ulla & Rusko, Heikki (2011). Heart rate variability related to effort at work. Applied Ergonomics, 42 (2011), pp.830-838. Warnier, Miriam J.; Rutten, Frans H.; De Boe, Anthonius; Hoes, Arno W. & De Bruin, Marie L. (2014). Resting heart rate is a risk factor for mortality in chronic obstructive pulmonary disease, but not for exacerbations or pneumonia. PloS one, 9(8), e105152. Whyte, G.P.; George, K.; Shave, R.; Middleton, N. & Nevill, A.M. (2008). Training induced changes in maximum heart rate. Int. J. Sports Med., 29(2), pp.129-133. https://doi.org/10.1055/s-2007-965783. Wu, H.C. & Wang, J. M. J. J. (2002). Relationship between maximum acceptable work time and physical workload. Ergonomics, 45 (4), pp.280-289. http://dx.doi.org/10.1080/00140130210123499. Wu, Hsin-Chieh; Hsu, Wen-Hsin & Chen, Toly (2005). Complete recovery time after exhaustion in high intensity work. Ergonomics, 48:6, pp.668-679. https://doi.org/10.1080/00140130500070871. Yan, Yali; Zhang, Ye; Yang, Qian; Dong, Kaiyan; Duan, Fujiao; Liang, Shuying; Ma, Nan; Nie, Wei; Song, Chunhua & Wang, Kaijuan (2018). Association between resting heart rate and hypertension in Chinese with different waist-to-height ratio: a population-based cross-sectional study. Journal of the American Society of Hypertension, 12(12), pp.e93–e101. https://doi.org/10.1016/j.jash.2018.08.005. Yao, Runming; Lia, Yongqiang; Dua; Chenqiu & Li, Baizhan (2018). A heart rate-based model (PHSHR) for predicting personal heat stress in dynamic working environments. Building and Environment, 135(2018), pp.318-329. https://doi.org/10.1016/j.buildenv.2018.03.014. Yi, Wen & Chan, Albert P.C. (2013). Optimizing work-rest schedule for construction rebar workers in hot and humid environment. Building and Environment, 61 (2013), pp.104-113. http://dx.doi.org/10.1016/j.buildenv.2012.12.012. Yi, Wen; Chan, Albert P.C.; Wang, Xiangyu & Wang, Jun (2016). Development of an early-warning system for site work in hot and humid environments: A case study. Automation in Construction, 62(2016), pp.101-113. https://doi.org/10.1016/j.autcon.2015.11.003. Yılmaz, Fatih & Çelebi, Uğur Buğra (2015). The importance of safety in construction sector: costs of occupational accidents in construction sites. Business and Economics Research Journal, 6(2), pp. 25-37. Zhang, Zhilin; Pi, Zhouyue & Liu, Benyuan (2015). A general framework for heart rate monitoring using wrist-type photoplethysmographic signals during intensive physical exercise. IEEE Transactions on Biomedical Engineering, 62(2), February 2015. TROIKA. Zhu, Shilin; Tan, Ke; Zhang, Xinyu; Liu, Zhiqiang & Liu, Bin (2015). MICROST: A mixed approach for heart rate monitoring during intensive physical exercise using wrist-type PPG signals. IEEE Engineering in Medicine and Biology Society. Annual International Conference, 2015, pp.2347–2350. https://doi.org/10.1109/EMBC.2015.7318864.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86558-
dc.description.abstract營建業職災率偏高,職災事件常造成嚴重工期延宕及賠償成本,許多研究指出過度疲勞為勞工發生意外的原因之一,但目前營建業安全管理尚缺乏導入即時工作負荷生理感測系統技術。本研究以光體積變化掃描圖技術(photoplethysmography, PPG)穿戴式心率感測手環,發展即時生理感測物聯網系統,以遠距即時蒐集勞工心率,目的為建立勞工場域休息心率(field resting heart rate, FRHR)個人基準心率值,並建立儲備心理百分比(the percentage of heart rate reserve, %HRR)工作負荷指標之安全管理區間。生理感測系統數據信度與效度驗證部分,在實驗室由5位受測者在設定運動模式下比對PPG與ECG感測心率,所選用PPG心率手環與獲美國FDA認證之胸貼式心電圖(electrocardiogram, ECG)心率感測驗證結果,平均絕對誤差百分比(mean absolute error percentages, MAPE)低於5%,相關係數r介於0.8128~0.9947,具有高度相關性,故本研究PPG心率手環具相當可靠度及準確度。在潛盾隧道工地場域,驗證數據覆蓋率(sensing data coverage rate) 81.35%,採取複合策略包括PPG手環心率訊號10次/秒以上之高頻率數據傳輸頻率、工區適當的BLE-Ethernet接收傳感器配置及5分鐘時間窗數據處理模式等,可建立生理感測系統效度。 因應工區場域實際施工作業之狀況,本研究提出適用於個人化FRHR之演算模式,經成對t 檢驗(paired t-test)及成對變數差異分析(paired variable difference analysis),結果以分鐘計量平均值取值之最低單一值(WHRmin1)萃取模式,可獲得具穩定趨勢與時效優勢之休息心率,避免突發極值干擾;再者,藉歷史累積感測心率數據庫,至少5工作日逐步優化,可得個人FRHR之收斂值( < 3 bpm),整體結果顯示FRHR演算模式可應用於儲備心率百分比工作負荷指標。由PPG心率感測系統產出潛盾隧道施工人員之個人工作負荷%HRR,勞工體能負荷程度%HRR與累積工時百分比關係呈現S曲線關係,其分布位置及反曲點具有工作負荷安全管理上意義。以感測系統歷史數據,累積多條正常工作負荷情況下S型曲線,所形成閉合之區間帶,可建立每一位勞工個人對該作業任務之體能負荷合理安全區間及邊界。此外,系統即時產出數據,可延伸應用計算每日勞工個人化之%HRR負荷之偏態、峰度係數及50%累計工時所對應之%HRR值(%HRR50),用以顯示勞工個人在該工作日一半的施工活動時間所必須付出的體能負荷水準,評量工時調度及工作效率。 即時心率感測系統所建立之%HRR體力工作負荷指標,以個人化之相對性體能基準,利用大數據優化設定工作負荷分級判斷準則,減少監測系統過度工作負荷假訊號,有助於個人工作體能負荷監測精準管理。本研究所發展之PPG即時心率感測系統發展方式、個人場域休息心率基準FRHR演算模式,及%HRR相關指標,可供未來其他營建工程應用,增進營建業勞工安全管理輔助,促進勞工身心健康及安全管理,減少職災意外發生。zh_TW
dc.description.abstractThe occupational accident rate is relatively high in the construction industry. Major accidents seriously postponed construction periods and cost the compensation of victims and projects. Previous studies pointed excessive fatigue of workers is one of the reasons for the occupational accident occurring. However, the safety management in the construction industry still lacks to introduce the technologies for real-time physiological sensing workload systems currently. This present study adopted the wearable PPG-based heart rate sensing wristbands and developed a real-time physiological sensing IoT system for monitoring and collecting workers' heart rates consecutively. This study aimed to establish the personnel's physical baselines of field resting heart rate (FRHR) and apply it to the safety zone of workload with the percentage of heart rate reserve (%HRR), a relative physiological indicator for the workload. First, the PPG-based heart rate sensing devices and the physiological sensing system verified the reliability and validity of their data accuracy and collection coverage rate. The sensing heart rate of selected PPG wristbands was compared with the chest-worn electrocardiogram (ECG) certified by US FDA from 5 subjects in the set exercise mode in the laboratory. The verification results showed that the PPG heart rate wristbands used in this study were reliable and accurate with a high correlation with ECG, mean absolute error percentages (MAPE) < 5%, and the correlation coefficient r between 0.8128 ~ 0.9947. The physiological sensing system adopted multiple strategies to establish a sensing data coverage rate of 81.35%, including the high-frequency signals transmission of more than ten times per second, the appropriate layout of BLE-Ethernet Sensor-Hubs in the sensing zones, and data processing mode of a 5-minute time window in the experimental field of the shield tunnel worksites. For the characteristics of practical construction management on site, this study proposed the personalized FRHR algorithm model for HRR calculation. The results of paired t-test and paired variable difference analysis indicated that the data extraction mode of the lowest single value (WHRmin1) with the average minute measurement could acquire the resting heart rate. It came to the advantages of stable numerical value and time-effectiveness, which could avoid the interference of outliers. Additionally, optimizing the personal FRHR gradually for at least five working days from the historical database of sensing data could achieve their convergences of less than three bpm. The FRHR algorithm model was facilitated to individual workload indicator of %HRR rather than a single measurement value to determine the fitness baselines. The relationship between the %HRR levels of workers and the percentage of cumulative working hours has been plotted in an S-curve based on individual heart rate data from the PPG heart rate sensing system. The curve locations and their inflection points had significance in workload safety management. Multiple S-shaped curves formed a reasonable workload safety zone from historical %HRR data under normal workload conditions. It provided the boundary of safety management for alerting overloaded or abnormal physical demands of individual workers' physical workload for tasks. Additionally, the %HRR50 corresponding to 50% of the accumulated working hours indicated the physical demand level of tasks that individual workers need to pay for half of the working day, which could be a task assign management indicator based on physical fitness level for working hours scheduling and efficiency. This research developed a real-time heart rate sensing system. It established a %HRR physical workload index based on the personalized relative physical baselines, which could reduce false signals of the excessive workload of the monitoring system for precise management of individual workload. The installation criteria of the PPG real-time heart rate sensing system, the personnel FRHR baselines algorithm, and the % HRR-related indicators can be applied for other construction projects in the future. Improving safety management assistance at construction worksites and promoting workers' physical and mental health to reduce occupational accidents will be beneficial.en
dc.description.provenanceMade available in DSpace on 2023-03-20T00:03:07Z (GMT). No. of bitstreams: 1
U0001-0808202221470100.pdf: 6317108 bytes, checksum: 9eaa28419b8a83a63cfe4007303eca1a (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents目 錄 口試委員會審定書 i 誌 謝 iv 中文摘要 v 英文摘要 vii 第 一 章 緒言 1 1.1背景 1 1.2 研究動機 3 1.3 研究目的 4 1.4 研究範圍 4 1.5 重要名詞解釋 4 第 二 章 文獻回顧 8 2.1營建業特殊危害作業環境 8 2.2營建業工作負荷生理指標 12 2.3生理感測穿戴裝置發展 21 2.4無線感測網路(WSN)連續監測 23 第 三 章 研究方法及生理感測系統設計 28 3.1研究方法 28 3.2無線生理感測系統設計 32 3.3無線生理感測系統驗證 43 3.4本章小結 59 第 四 章 場域休息心率基準建立 60 4.1 場域休息心率概念及演算流程 60 4.2 場域休息心率萃取與優化 66 4.3 萃取與優化方式探討 70 4.4 工作負荷心率感測數據處理特色 73 4.5 本章小結 74 第 五 章 工作負荷安全管理輔助 75 5.1營建工作負荷生理訊號最適時間窗 75 5.2 心率參數適用性 79 5.3工作負荷安全管理區間 89 5.4 %HRR工作負荷指標應用 94 5.5 本章小結 102 第 六 章 結論與建議 103 6.1結論與建議 103 6.2未來研究延伸 104 研究限制 105 參考文獻 106 問卷調查表 116 VBA程式碼 118 圖目錄 圖1. 1各國營造業職業災害死亡千人率 1 圖2. 1潛盾隧道工程施工流程 11 圖2. 2運動訓練強度與心率儲備量關係 17 圖3. 1 研究架構及流程 29 圖3. 2 2016年心率感測功能腕戴型健康手環商業產品 33 圖3. 3本研究試驗場域工區環境 36 圖3. 4本研究潛盾隧道場域感測系統分區規劃及設備配置 39 圖3. 5地面作業A區及工作井B區傳輸接收傳感器平面配置 40 圖3. 6隧道掘進C區傳輸接收傳感器配置 40 圖3. 7隧道場域接收傳輸器及系統設備配置安裝情形 41 圖3. 8現場感測蒐集數據即時傳送至雲端主機及電子看板 42 圖3. 9感測系統即時監測個人心率變化 42 圖3.10 IoT-PPG手環及ECG胸貼式心率感測裝置穿戴方式 44 圖3.11測試者運動模式下PPG與ECG感測心率比對 45 圖3.12本研究場域驗證勞工配戴IoT-PPG心率手環工作 49 圖3.13各工區時間窗選用與數據蒐集覆蓋率關係圖 50 圖4. 1場域休息心率概念圖 61 圖4. 2場域休息心率及工作負荷演算流程 63 圖4. 3 FRHR歷時優化趨勢 69 圖4. 4相鄰DRHR差值絕對值總和收斂趨勢圖 69 圖5. 1 電子看板顯示系統心率紀錄產出各類指標及個人化管理基準 77 圖5. 2潛盾隧道勞工工作日連續12小時心率歷線 80 圖5. 3工作日全工班%HRR變化歷線 83 圖5. 4應用系統心率數據統計任務別個人%HRR工作負荷四分位圖 87 圖5. 5全工班工作日%HRR之累積工時工作負荷分布 90 圖5. 6隧道工程工地主任% HRR工作負荷S曲線安全區間 92 圖5. 7潛盾機掘進操作勞工%HRR工作負荷S曲線安全區間 92 圖5. 8隧道工程RC環片組裝勞工%HRR工作負荷S曲線安全區間 93 圖5. 9隧道工程運輸台車駕駛勞工%HRR工作負荷S曲線安全區間 93 圖5. 10潛盾工班%HRR工作負荷工作時間分布模式 95 表目錄 表2. 1 長期體能工作難度與心血管反應 15 表2. 2 最大心率百分比分級在運動體能應用 16 表2. 3心率生理參數在醫學、運動科學及營建管理領域研究運用之比較 20 表2. 4心率感測研究採用設備及數據蒐集處理方法比較 27 表3. 1工地現場受測試人員基本資料 31 表3. 2實驗室PPG心率手環跑步健康男性受測試者資料 32 表3. 3商用健康手環心率感測適用性因子評估 34 表3. 4本研究心率感測網路系統設備及規格 35 表3. 5 PPG與 ECG 心率準確度測試比對運動模式 44 表3. 6 PPG心率手環準確度測試結果 45 表3. 7各階段PPG心率手環感測數據覆蓋率比較 49 表3. 8感測區離場時段修正之不同時間窗心率感測數據蒐集覆蓋率比較 50 表3. 9近年營建生理感測系統開發研究比較 57 表4. 1隧道場域實測勞工場域休息心率 67 表4. 2 FRHR候選值之統計值特徵 68 表4. 3各項候選FRHR計算值差異性檢定及相關性分析 68 表5. 1潛盾隧道施工環境勞工工作心率特徵 81 表5. 2全工時%HRR工作負荷分布特徵 85 表5. 3潛盾隧道工程工班一週工作期個人%HRR工作負荷統計 90 表5. 4潛盾工班%HRR工時模式分布特徵 98 表5. 5以5分鐘時間窗%HRR與場域管理變數統計檢核 101
dc.language.isozh-TW
dc.subject場域休息心率zh_TW
dc.subject心率zh_TW
dc.subject光體積變化掃描圖技術zh_TW
dc.subject工作負荷zh_TW
dc.subject儲備心率百分比zh_TW
dc.subject場域休息心率zh_TW
dc.subject心率zh_TW
dc.subject光體積變化掃描圖技術zh_TW
dc.subject工作負荷zh_TW
dc.subject儲備心率百分比zh_TW
dc.subjectworkloaden
dc.subjectphotoplethysmography(PPG)en
dc.subjectheart rate(HR)en
dc.subjectfield resting heart rate(FRHR)en
dc.subjectthe percentage of heart rate reserve(%HRR)en
dc.subjectworkloaden
dc.subjectphotoplethysmography(PPG)en
dc.subjectheart rate(HR)en
dc.subjectfield resting heart rate(FRHR)en
dc.subjectthe percentage of heart rate reserve(%HRR)en
dc.title應用穿戴裝置即時生理感測系統發展營建個人化工作負荷管理zh_TW
dc.titleDevelopment of Individual Workload Management of Construction Workers Using Wearable Devices in Real-Time Physiological Sensing Systemen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree博士
dc.contributor.author-orcid0000-0002-3185-6229
dc.contributor.oralexamcommittee王明德(Ming-Teh Wang),陳柏翰(Po-Han Chen),林祐正(Yu-Cheng Lin),林楨中(Chen-Chung Lin),林之謙(Jacob J. Lin)
dc.subject.keyword光體積變化掃描圖技術,心率,場域休息心率,儲備心率百分比,工作負荷,zh_TW
dc.subject.keywordphotoplethysmography(PPG),heart rate(HR),field resting heart rate(FRHR),the percentage of heart rate reserve(%HRR),workload,en
dc.relation.page134
dc.identifier.doi10.6342/NTU202202170
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-08-12
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
dc.date.embargo-lift2022-08-19-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
U0001-0808202221470100.pdf6.17 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved