Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86547
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝馬利歐(Mario Hofmann)
dc.contributor.authorYu-Chang Chuen
dc.contributor.author朱禹暢zh_TW
dc.date.accessioned2023-03-20T00:02:24Z-
dc.date.copyright2022-09-05
dc.date.issued2022
dc.date.submitted2022-08-14
dc.identifier.citation[1] Pathria, R. K. (2016). Statistical mechanics. Elsevier. [2] Zekry, A., Yahyaoui, I., & Tadeo, F. (2019, March). Generic Analytical Models for Organic and Perovskite Solar Cells. In 2019 10th International Renewable Energy Congress (IREC) (pp. 1-6). IEEE. [3] Ludwig, G. W., & Watters, R. L. (1956). Drift and conductivity mobility in silicon. Physical Review, 101(6), 1699. [4] Prince, M. B. (1953). Drift mobilities in semiconductors. I. Germanium. Physical Review, 92(3), 681. [5] Nuss, M. C., Auston, D. H., & Capasso, F. (1987). Direct subpicosecond measurement of carrier mobility of photoexcited electrons in gallium arsenide. Physical review letters, 58(22), 2355. [6] Nishi, Y., & Doering, R. (Eds.). (2000). Handbook of semiconductor manufacturing technology. CRC press. [7] Phillips, J. C. (1962). Band structure of silicon, germanium, and related semiconductors. Physical Review, 125(6), 1931. [8] Gerlach, W., Schlangenotto, H., & Maeder, H. (1972). On the radiative recombination rate in silicon. physica status solidi (a), 13(1), 277-283. [9] Wang, H., Liu, X., & Zhang, Z. M. (2013). Absorption coefficients of crystalline silicon at wavelengths from 500 nm to 1000 nm. International Journal of Thermophysics, 34(2), 213-225. [10] Carlson, D. E., & Wronski, C. R. (1976). Amorphous silicon solar cell. Applied Physics Letters, 28(11), 671-673. [11] Cohen, M. H., Fritzsche, H., & Ovshinsky, S. R. (1969). Simple band model for amorphous semiconducting alloys. Physical Review Letters, 22(20), 1065. [12] Oheda, H. (1980). Analysis of the modulated photocurrent in amorphous semiconductors. Solid State Communications, 33(2), 203-206. [13] Rose, A. (1963). Concepts in photoconductivity and allied problems (No. 19). Interscience publishers. [14] Oheda, H. (1981). Phase‐shift analysis of modulated photocurrent: Its application to the determination of the energetic distribution of gap states. Journal Of Applied Physics, 52(11), 6693-6700. [15] Yamaguchi, M., & Morigaki, K. (1981). Modulated Photocurrent in Hydrogenated Amorphous Silicon. Japanese Journal of Applied Physics, 20(9), L677. [16] Aktaş, G., & Skarlatos, Y. (1984). Determination of the gap density of states in amorphous silicon by phase shift analysis of the modulated photocurrent. Journal of applied physics, 55(10), 3577-3581. [17] Schumm, G., & Bauer, G. H. (1989). Spatially resolved and energy-resolved defect kinetics in a-Si: H: A comprehensive study by phase-shift analysis of modulated photocurrents. Physical Review B, 39(8), 5311. [18] Brüuggemann, R., Main, C., Berkin, J., & Reynolds, S. (1990). An evaluation of phase-shift analysis of modulated photocurrents. Philosophical Magazine B, 62(1), 29-45. [19] Kounavis, P. (2001). Analysis of the modulated photocurrent experiment. Physical Review B, 64(4), 045204. [20] Vapnik, V. (1999). The nature of statistical learning theory. Springer science & business media.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86547-
dc.description.abstract在許多材料特性的量測領域裡,光學激發技術是十分重要的,如定型化半導體中的激發子與晶格震動。然而在非晶半導體中有著更加複雜的能階與光致激發途徑。為了深入探討這些複雜的機制,新的光學激發技術與數據分析模型是不可或缺的。 在此篇論文裡,針對新的光學激發技術,我們在實驗室中開發並架設多色光激發光電流量測系統。此套系統是基於現有的雙波長雷射激發光電流量測系統的拓展與延伸。此套系統的優勢為此系統可同時以十台不通波長的雷射來激發樣品;除此之外,雷射的參數調控皆可由電腦完成,因此此系統亦可執行自動化多參數光電流量測,並建構龐大的數據資料庫。 在此篇論文裡,針對新的數據分析模型,我們在多年未演進的光電流相位分析技術的基礎上引入了卷積神經網絡來近似出以往無解析解的鎖相光電流。此數據分析模型在未來有潛力在無人協助下,針對實驗數據,提出可能的能階分布。 我們提出的多色光激發光電流量測系統在非晶矽的鎖相光電流實驗中發現了未曾被觀測過的共振現象,並自證其重要性;我們提出的數據分析模型成功的解釋了以往模型無法解釋的現象,並自證其重要性。 此論文在複雜能階的材料檢測上開闢了新的實驗方法與數據分析模型。zh_TW
dc.description.abstractOptical spectroscopy is a powerful technique for the characterization of collective phenomena, such as excitons and vibrations, in crystalline semiconductors. More complex excitation processes and the analysis of amorphous materials, however, are more challenging for optical spectroscopy, due to the importance of interactions between extended electronic states. We here realize a new spectroscopy technique that utilizes large numbers of simultaneous excitations to investigate the transition between extended defect states in amorphous silicon. Our approach is an extension of existing dual-beam photocurrent spectroscopy which generates large datasets. Our second advance is the automated analysis of the photocurrent spectra created by the simultaneous utilization of 10 laser sources with a variable phase difference and amplitude ratio. A neural network is built by the essence of the evolution operator and the concept of weight sharing in the convolution neural network. This neural network can deliver possible LASER-induced band transitions without any hypothesis from researchers. This function is proven useful by solving the resonance effect of modulated photocurrent in a-Si which has not been previously achieved. Our results open up a route toward materials characterization beyond the simple semiconductor picture.en
dc.description.provenanceMade available in DSpace on 2023-03-20T00:02:24Z (GMT). No. of bitstreams: 1
U0001-1408202219262300.pdf: 2181159 bytes, checksum: 86bac4e46894194bd28db8fcae790cfb (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents論文口試委員會審定書 ⅰ 誌謝 ⅱ 摘要 ⅲ ABSTRACT ⅳ CONTENTS ⅴ LIST OF FIGURES ⅶ LIST OF TABLES ⅸ Chapter 1 Introduction 1 1.1 Photophysics 1 1.2 Silicon and Amorphous Silicon 6 1.3 Photocurrent and Modulated Photocurrent 8 1.4 Aim of the Work 11 Chapter 2 Experimental Setup 13 2.1 Optical System 13 2.2 Electrical Measurement System 18 2.3 Automation 20 Chapter 3 Results 23 3.1 Photocurrent of a-Si 23 3.2 Dual-beam Modulated Photocurrent of a-Si 29 Chapter 4 Discussions 34 4.1 Analysis Tool 34 4.2 Simulation Results 45 4.3 Experimental Results 55 4.4 Model Comparison 59 Chapter 5 Conclusion and Outlook 61 5.1 Conclusion 61 5.2 Outlook 62 REFERENCE 63
dc.language.isoen
dc.subject多雷射系統zh_TW
dc.subject複雜能階zh_TW
dc.subject鎖相光電流zh_TW
dc.subject雙雷射系統zh_TW
dc.subject時間演化算符zh_TW
dc.subject神經網絡zh_TW
dc.subject複雜能階zh_TW
dc.subject鎖相光電流zh_TW
dc.subject雙雷射系統zh_TW
dc.subject多雷射系統zh_TW
dc.subject時間演化算符zh_TW
dc.subject神經網絡zh_TW
dc.subjectModulated photocurrenten
dc.subjectEvolution operatoren
dc.subjectNeural networken
dc.subjectDual-beamen
dc.subjectComplex band structureen
dc.subjectNeural networken
dc.subjectEvolution operatoren
dc.subjectMulti-beamen
dc.subjectComplex band structureen
dc.subjectModulated photocurrenten
dc.subjectDual-beamen
dc.subjectMulti-beamen
dc.title多色光激發光電流量測系統的實現與神經網絡在材料特性分析的應用zh_TW
dc.titleRealization of multi-excitation photocurrent system and its application towards extended materials characterization using a neural networken
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee謝雅萍(Ya-Ping Hsieh),溫偉源(Wei-Yen Woon)
dc.subject.keyword複雜能階,鎖相光電流,雙雷射系統,多雷射系統,時間演化算符,神經網絡,zh_TW
dc.subject.keywordComplex band structure,Modulated photocurrent,Dual-beam,Multi-beam,Evolution operator,Neural network,en
dc.relation.page65
dc.identifier.doi10.6342/NTU202202382
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-08-15
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理學研究所zh_TW
dc.date.embargo-lift2022-09-05-
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
U0001-1408202219262300.pdf2.13 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved