請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86546完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 梁啟德(Chi-Te Liang) | |
| dc.contributor.author | Siang-Chi Wang | en |
| dc.contributor.author | 王翔麒 | zh_TW |
| dc.date.accessioned | 2023-03-20T00:02:21Z | - |
| dc.date.copyright | 2022-08-22 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-15 | |
| dc.identifier.citation | 1. Barnes, C., Quantum electronics in semiconductors. Part III lecture course, Cambridge University, 2005. 2. Ando, T., A.B. Fowler, and F. Stern, Electronic-Properties of Two-Dimensional Systems. Reviews of Modern Physics, 1982. 54(2): p. 437-672. 3. Ploog, K., et al., Simultaneous Modulation of Electron and Hole Conductivity in a New Periodic Gaas Doping Multilayer Structure. Applied Physics Letters, 1981. 38(11): p. 870-873. 4. Kunzel, H., et al., Modulation of Two-Dimensional Conductivity in a Molecular-Beam Epitaxially Grown Gaas Bulk Space-Charge System. Applied Physics Letters, 1981. 38(3): p. 171-174. 5. Zumbühl, D., Lecture notes for Introduction to Mesoscopic Physics and Quantum Dots (15466-01). 2007, University of Basel. p. chapter 2. 6. Bhandari, N., et al., Observation of a 0.5 conductance plateau in asymmetrically biased GaAs quantum point contact. Applied Physics Letters, 2012. 101(10): p. 102401. 7. McCann, E., Staying or going? Chirality decides! Physics, 2009. 2: p. 98. 8. Wikipedia contributors, Graphene, in Wikipedia, The Free Encyclopedia. 9. Das Sarma, S., et al., Electronic transport in two-dimensional graphene. Reviews of Modern Physics, 2011. 83(2): p. 407-470. 10. Bonaccorso, F., et al., Production and processing of graphene and 2d crystals. Materials Today, 2012. 15(12): p. 564-589. 11. Yang, W., et al., Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nature Materials, 2013. 12(9): p. 792-797. 12. Novoselov, K.S., et al., Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005. 438(7065): p. 197-200. 13. Wu, G.F., et al., Doping effects of surface functionalization on graphene with aromatic molecule and organic solvents. Applied Surface Science, 2017. 425: p. 713-721. 14. Sólyom, J., Fundamentals of the Physics of Solids: Volume II: Electronic Properties. Vol. 2. 2008: Springer Science & Business Media. 15. Tinkham, M., Introduction to superconductivity. 2004: Courier Corporation. 16. Likharev, K.K., Superconducting Weak Links - Stationary Properties. Uspekhi Fizicheskikh Nauk, 1979. 127(2): p. 185-220. 17. De Gennes, P.-G. and P.A. Pincus, Superconductivity of metals and alloys. 2018: CRC Press. 18. Andreev, A.F., The Thermal Conductivity of the Intermediate State in Superconductors. Soviet Physics Jetp-Ussr, 1964. 19(5): p. 1228-1231. 19. Golubov, A.A., M.Y. Kupriyanov, and E. Il'ichev, The current-phase relation in Josephson junctions. Reviews of Modern Physics, 2004. 76(2): p. 411-469. 20. Josephson, B.D., Possible New Effects in Superconductive Tunnelling. Physics Letters, 1962. 1(7): p. 251-253. 21. Buckel, W. and R. Kleiner, Superconductivity: fundamentals and applications. 2008: John Wiley & Sons. 22. Ambegaokar, V. and A. Baratoff, Tunneling Between Superconductors. Physical Review Letters, 1963. 10(11): p. 486-489. 23. Ketterson, J.B., et al., Superconductivity. 1999: Cambridge university press. 24. Gross, R. and A. Marx, Applied Superconductivity: Josephson Effect and Superconducting Electronics (2005). Lecture notes, 2013. 25. Sigrist, M., Superconductivity (2020). Lecture notes, 2020. 26. Gallop, J.C. and B.W. Petley, Squids and Their Applications. Journal of Physics E-Scientific Instruments, 1976. 9(6): p. 417-429. 27. Schwartz, B., Superconductor applications: SQUIDs and machines. Vol. 21. 2013: Springer Science & Business Media. 28. Matisoo, J., SUBNANOSECOND PAIR‐TUNNELING TO SINGLE‐PARTICLE TUNNELING TRANSITIONS IN JOSEPHSON JUNCTIONS. Applied Physics Letters, 1966. 9(4): p. 167-168. 29. Likharev, K.K. and V.K. Semenov, RSFQ Logic/Memory Family: A New Josephson-Junction Technology for Sub-Terahertz-Clock-Frequency Digital Systems. Ieee Transactions on Applied Superconductivity, 1991. 1(1): p. 3-28. 30. Girvin, S.M. and K. Yang, Modern condensed matter physics. 2019: Cambridge University Press. 31. Lenarcic, Z., Landau levels in graphene. University of Ljubljani, Ljubljana, 2010. 32. Goerbig, M.O. Quantum Hall Effects. 2009. arXiv:0909.1998. 33. Klitzing, K.v., G. Dorda, and M. Pepper, New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance. Physical Review Letters, 1980. 45(6): p. 494-497. 34. Ponomarenko, L.A., Experimental aspects of quantum criticality in het quantum Hall regime. 2005. 35. Pruisken, A., Topological principles in the theory of Anderson localization. International Journal of Modern Physics B, 2010. 24(12n13): p. 1895-1949. 36. Sondhi, S.L., et al., Continuous quantum phase transitions. Reviews of Modern Physics, 1997. 69(1): p. 315-333. 37. Pruisken, A.M., Quasiparticles in the theory of the integral quantum Hall effect (I). Nuclear Physics B, 1987. 285: p. 719-759. 38. Pruisken, A.M., Quasi particles in the theory of the integral quantum hall effect:(ii). renormalization of the hall conductance or instanton angle theta. Nuclear Physics B, 1987. 290: p. 61-86. 39. Pruisken, A.M.M., Universal Singularities in the Integral Quantum Hall Effect. Physical Review Letters, 1988. 61(11): p. 1297-1300. 40. Wei, H.P., et al., Experiments on Delocalization and University in the Integral Quantum Hall Effect. Physical Review Letters, 1988. 61(11): p. 1294-1296. 41. Real, M.A., et al., Graphene Epitaxial Growth on SiC(0001) for Resistance Standards. Ieee Transactions on Instrumentation and Measurement, 2013. 62(6): p. 1454-1460. 42. Kruskopf, M., et al., Comeback of epitaxial graphene for electronics: large-area growth of bilayer-free graphene on SiC. 2d Materials, 2016. 3(4). 43. Yang, Y.F., et al., Epitaxial graphene homogeneity and quantum Hall effect in millimeter-scale devices. Carbon, 2017. 115: p. 229-236. 44. Sarkar, S., et al., Organometallic chemistry of extended periodic pi-electron systems: hexahapto-chromium complexes of graphene and single-walled carbon nanotubes. Chemical Science, 2011. 2(7): p. 1326-1333. 45. Dai, J., et al., Organometallic Hexahapto-Functionalized Graphene: Band Gap Engineering with Minute Distortion to the Planar Structure. Journal of Physical Chemistry C, 2013. 117(42): p. 22156-22161. 46. Che, S.W., et al., Retained Carrier-Mobility and Enhanced Plasmonic-Photovoltaics of Graphene via ring-centered eta(6) Functionalization and Nanointerfacing. Nano Letters, 2017. 17(7): p. 4381-4389. 47. Chen, M.G., et al., Organometallic chemistry of graphene: Photochemical complexation of graphene with group 6 transition metals. Carbon, 2018. 129: p. 450-455. 48. Bekyarova, E., et al., Advances in the chemical modification of epitaxial graphene. Journal of Physics D-Applied Physics, 2012. 45(15). 49. Rigosi, A.F., et al., Gateless and reversible Carrier density tunability in epitaxial graphene devices functionalized with chromium tricarbonyl. Carbon, 2019. 142: p. 468-474. 50. Kim, G.H., et al., Tuning the insulator-quantum Hall liquid transitions in a two-dimensional electron gas using self-assembled InAs. Physical Review B, 2000. 61(16): p. 10910-10916. 51. Lo, S.T., et al., Insulator, semiclassical oscillations and quantum Hall liquids at low magnetic fields. Journal of Physics-Condensed Matter, 2012. 24(40). 52. Ceramic Leadless Chip Carrier LCC. Delivery of packages for ICs, Microwave, Semiconductor and Оptoelectronic devices [cited 2022 Angust 12th]; Available from: http://www.syntezmicro.ru/en/uslugi/postavka-korpusov-dlya-is-svch-i-poluprovodnikovyh-i-optoelektronnyh-priborov/keramicheskie-bezvyvodnye-korpusa-lcc. 53. Wikipedia, c., Dilution refrigerator, in Wikipedia, The Free Encyclopedia. 54. Marx, A., J. Hoess, and K. Uhlig Dry Dilution Refrigerator for Experiments on Quantum Effects in the Microwave Regime. 2014. arXiv:1412.3619. 55. Gabovich, A., Superconductors: Materials, Properties and Applications. 2012: BoD–Books on Demand. 56. Laurila, H. Resistance measurement; 2, 3 or 4 wire connection – How does it work and which to use? 2017 [cited 2022 July 20]. 57. Kleinsasser, A.W., et al., Observation of Multiple Andreev Reflections in Superconducting Tunnel-Junctions. Physical Review Letters, 1994. 72(11): p. 1738-1741. 58. Erts, D., et al., Maxwell and Sharvin conductance in gold point contacts investigated using TEM-STM. Physical Review B, 2000. 61(19): p. 12725-12727. 59. Sharvin, Y.V., A Possible Method for Studying Fermi Surfaces. Soviet Physics Jetp-Ussr, 1965. 21(3): p. 655-&. 60. Simmons, J.G., Electric Tunnel Effect between Dissimilar Electrodes Separated by a Thin Insulating Film. Journal of Applied Physics, 1963. 34(9): p. 2581-2590. 61. Simmons, J.G., Generalized Formula for the Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film. Journal of Applied Physics, 1963. 34(6): p. 1793-1803. 62. von Bassewitz, A. and E.N. Mitchell, Resistivity Studies of Single-Crystal and Polycrystal Films of Aluminum. Physical Review, 1969. 182(3): p. 712-716. 63. Shu, Q.Q. and W.G. Ma, Barrier parameter variation in Al‐Al2O3‐metal tunnel junctions. Applied Physics Letters, 1992. 61(21): p. 2542-2544. 64. Ma, P.F., et al., Electron transport mechanism through ultrathin Al2O3 films grown at low temperatures using atomic-layer deposition. Semiconductor Science and Technology, 2019. 34(10). 65. Gloos, K., P.J. Koppinen, and J.P. Pekola, Properties of native ultrathin aluminium oxide tunnel barriers. Journal of Physics-Condensed Matter, 2003. 15(10): p. 1733-1746. 66. Court, N.A., A.J. Ferguson, and R.G. Clark, Energy gap measurement of nanostructured aluminium thin films for single Cooper-pair devices. Superconductor Science & Technology, 2008. 21(1). 67. Bardeen, J., L.N. Cooper, and J.R. Schrieffer, Theory of Superconductivity. Physical Review, 1957. 108(5): p. 1175-1204. 68. Janssen, T.J.B.M., et al., Anomalously strong pinning of the filling factor $\ensuremath{\nu}=2$ in epitaxial graphene. Physical Review B, 2011. 83(23): p. 233402. 69. Huckestein, B., Quantum Hall Effect at Low Magnetic Fields. Physical Review Letters, 2000. 84(14): p. 3141-3144. 70. Lee, C.H., et al., Magnetic-field-induced delocalization in center-doped ${\mathrm{G}\mathrm{a}\mathrm{A}\mathrm{s}/\mathrm{A}\mathrm{l}}_{x}{\mathrm{Ga}}_{1\ensuremath{-}x}\mathrm{As}$ multiple quantum wells. Physical Review B, 1998. 58(16): p. 10629-10633. 71. Huang, C.F., et al., Insulator-quantum Hall conductor transitions at low magnetic field. Physical Review B, 2001. 65(4): p. 045303. 72. Wang, T., et al., Magnetic-field-induced metal-insulator transition in two dimensions. Physical Review Letters, 1994. 72(5): p. 709-712. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86546 | - |
| dc.description.abstract | 超導電路的實現和臨界量子相變的研究是當代凝聚態物理實驗研究的兩大支柱。我們在這兩個學科中分別選擇一個主題來研究:一個是關於約瑟夫森結的傳輸特性研究,另一個是關於絕緣體-量子霍爾(I-QH)躍遷的討論。在單層外延石墨烯中。 首先,我們可能觀察到主要由分子束外延(MBE)製造的垂直Al / AlOx / Al 約瑟夫森結中的多次安德烈夫反射(MAR)。雖然用於構建超導電極和穿隧能障的材料並不新穎,但論文中所提及之用以製造Al/AlOx/Al約瑟夫森結之製程複雜度相較於普遍使用之遮蔽式蒸渡製程已大幅降低。Al超導電極的沉積和AlOx氧化層的形成均在MBE系統中完成,而微影製程則只需對其中一個超導電極進行。電性量測方面,從標準的四端測量所獲得的電流-電壓特性曲線中觀察到兩階段轉變行為和 多次安德烈夫反射。然而,臨界電流對溫度和磁場的相依性則並沒有和理論模型之預測有很好的一致性,這歸因於約瑟夫森勢壘中短路通道的顯著貢獻。這一結果說明本篇論文中用以簡化Al/AlOx/Al 約瑟夫森結製程複雜度之方法仍需要修改,特別是在提供打線接合之金屬電極和 AlOx 氧化層的大面積重疊。 其次,我們在 SiC 上生長,以Cr(CO)3作為覆蓋層的單層外延石墨烯測量到電子的傳輸特性由原先之絕緣態(ν=0)轉變至佔據高朗道能階(ν=6>2)的量子霍爾態的現象。這類型的相變是所謂的直接絕緣態-量子霍爾態 (I-QH) 相變,其特徵為在臨界磁場 B_c 處測得的縱向電阻率ρ_xx,其數值將不隨溫度溫度改變而發生變化。通過進行直接絕緣態-量子霍爾態相變的標準標度分析,描述此一現象的臨界指數κ被發現為 0.15±0.02,此數值接近於文獻中從ν=6到 ν=2的量子霍爾平台間躍遷中提取的κ值( κ_(plateau-plateau)=0.14)。從這個發現,我們認為這兩種相變可能屬於同一個普適性。 | zh_TW |
| dc.description.abstract | The realization of superconducting circuits and the investigation of the critical quantum phase transition are two backbones of contemporary experimental research in condensed matter physics. We chose one topic from each of these two disciplines to study in this thesis: one is contributed to the electrical and magneto-transport properties of Josephson junctions, and the other focuses on the discussion of insulator-quantum Hall (I-QH) transition in monolayer epitaxial graphene. Firstly, we observe possibly the multiple Andreev reflection (MAR) in the vertical Al/AlOx/Al Josephson junction mainly fabricated by the molecular beam epitaxy (MBE). Although the materials used to construct the superconducting electrodes and the tunneling barrier are not novel, the complexity of the fabrication of the Josephson junction is considerably reduced. The deposition of the Al superconducting electrodes and the formation of the AlOx oxide layer are all completed in the MBE system, and the photolithography only needs to be performed with respect to one of the superconducting electrodes. In the current-voltage characteristics obtained from the standard four-terminal measurement, two-stage transition behaviors and MAR are perceived. However, the dependence of the critical current on the temperature and magnetic field does not show great agreement with the typical behaviors of tunneling junction, which are attributed to the appreciable contribution of the non-Josephson barrier shorts. This result demonstrates the development of the simpler fabrication process for the Al/AlOx/Al Josephson junction in this work needs to be modified, especially on the large-area overlap of the bonding pad and the AlOx oxide layer. Secondly, we detected a transition from an insulating state (ν=0), in which ρ_xx decreases with increasing temperature, to a high Landau-level-filling-factor >2 (ν=6) QH state in monolayer epitaxial graphene grown on SiC with additional multilayer Cr(CO)3 capping on the graphene. This transition is the so-called direct I-QH transition, which is characterized by an approximately temperature-independent point in the measured longitudinal resistivity ρ_xx at a critical magnetic field, B_c. Through the standard scaling analysis for the direct I-QH transition, the critical exponent κ is determined to be 0.15, which is close to the value of κextracted from the ν=6 to ν=2 plateau-plateau transition, 0.14, in the literature. With this finding, we suggest that these two phase transitions may belong to the same universality. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-20T00:02:21Z (GMT). No. of bitstreams: 1 U0001-1408202223504700.pdf: 6690031 bytes, checksum: c4bd559e0c49c64b48a721e6a61f9f6b (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員會審定書 # Acknowledgments i 中文摘要 iii Abstract vii Contents x List of Figures xiv List of Tables xxv Chapter 1 Introduction 1 1.1 GaAs/Al1-xGaxAs Heterostructures [1] 1 1.2 Monolayer Graphene 4 1.2.1 Band Structure of Monolayer Graphene 11 Chapter 2 Theoretical Background 17 2.1 Superconductivity and Josephson Effect 17 2.1.1 Ginzburg-Landau Theory [14] 17 2.1.2 Josephson Effect 24 2.1.3 RCSJ Model (Modified from section 3.2 of [24]) 33 2.1.4 Interference Pattern in Josephson Junctions 38 2.1.5 Application of Josephson Junction 46 2.2 Phase Transition in Quantum Hall Regime 49 2.2.1 Landau Quantization [14, 30] 49 2.2.2 Integer Quantum Hall Effect [30] 59 2.2.3 Plateau-plateau Transition and Insulator-qunatum Hall Transition [34, 35] 66 Chapter 3 Sample Fabrication and Measurement Techniques 77 3.1 Preparation of Single-layer Graphene Device 77 3.1.1 Growth of Epitaxial Graphene on the Silicon Carbide (SiC) Substrate 77 3.1.2 Functionalization of Graphene by Cr(CO)3 78 3.1.3 Molecular Beam Epitaxy (MBE) 79 3.1.4 Process Flow of AlGaAS/GaAs Heterostructure 81 3.1.5 Process flow of the Al Vertical Josephson Junction 83 3.1.6 Fabrication of the AlGaAs/GaAs Heterostructure and Al Josephson Junction 84 3.2 Packaging and Bonding 86 3.3 Cryogenic System and Superconducting Magnet 88 3.3.1 Principles of Dilution Fridge 89 3.3.2 Superconducting Magnet 91 3.4 Electrical Measurement Techniques 93 3.4.1 Standard Four-probe Measurements 93 3.4.2 Wiring of Circuits for AC RB Measurement 95 Chapter 4 Results and Discussions 99 4.1 Vertical Al/AlOx/Al Josephson Junctions 99 4.1.1 RN1757 99 4.1.2 RN1767 106 4.2 Plateau-plateau Transition in the AlGaAs/GaAs Quantum Well 110 4.3 Direct Insulator-quantum Hall Transition in Monolayer Epitaxial Graphene Grown on SiC 116 Chapter 5 Conclusion and Future Works 123 5.1 Conclusion 123 5.2 Future Works 124 Chapter 6 Appendix 127 6.1 London-London Equation 127 References 129 | |
| dc.language.iso | en | |
| dc.subject | 量子霍爾平台間躍遷 | zh_TW |
| dc.subject | 量子霍爾平台間躍遷 | zh_TW |
| dc.subject | 直接絕緣態-量子霍爾態相變 | zh_TW |
| dc.subject | 多次安德烈夫反射 | zh_TW |
| dc.subject | 鋁約瑟夫森結 | zh_TW |
| dc.subject | 鋁約瑟夫森結 | zh_TW |
| dc.subject | 多次安德烈夫反射 | zh_TW |
| dc.subject | 直接絕緣態-量子霍爾態相變 | zh_TW |
| dc.subject | Aluminum-based Josephson junction | en |
| dc.subject | Multiple Andreev reflection | en |
| dc.subject | Aluminum-based Josephson junction | en |
| dc.subject | Direct insulator-quantum Hall (I-QH) Transition | en |
| dc.subject | Multiple Andreev reflection | en |
| dc.subject | Plateau-plateau transition | en |
| dc.subject | Direct insulator-quantum Hall (I-QH) Transition | en |
| dc.subject | Plateau-plateau transition | en |
| dc.title | 二維系統中量子霍爾平臺間遷移和絕緣體-量子霍爾導體相變之標度分析與鋁-氧化鋁垂直約瑟夫森結電性傳輸之研究 | zh_TW |
| dc.title | Scaling Analysis of Plateau-plateau Transition and Insulator-Quantum Hall Transition in Two-dimensional System and the Electrical Transport Properties of Vertical Al/Al2O3/Al Josephson Junction | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王立民(Li-Min Wang),羅舜聰(Shun-Tsung Lo) | |
| dc.subject.keyword | 鋁約瑟夫森結,多次安德烈夫反射,直接絕緣態-量子霍爾態相變,量子霍爾平台間躍遷, | zh_TW |
| dc.subject.keyword | Aluminum-based Josephson junction,Multiple Andreev reflection,Direct insulator-quantum Hall (I-QH) Transition,Plateau-plateau transition, | en |
| dc.relation.page | 164 | |
| dc.identifier.doi | 10.6342/NTU202202386 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-08-15 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-08-22 | - |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1408202223504700.pdf | 6.53 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
