請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86544完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林信甫(Hsin-Fu Lin) | |
| dc.contributor.author | Kuo-Sheng Chiu | en |
| dc.contributor.author | 邱國聖 | zh_TW |
| dc.date.accessioned | 2023-03-20T00:02:13Z | - |
| dc.date.copyright | 2022-08-18 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-12 | |
| dc.identifier.citation | 參考文獻 1. Ash GI, Taylor BA, Thompson PD, MacDonald HV, Lamberti L, Chen MH, Farinatti P, Kraemer WJ, Panza GA, Zaleski AL, Deshpande V, Ballard KD, Mujtaba M, White CM, and Pescatello LS. The antihypertensive effects of aerobic versus isometric handgrip resistance exercise. J Hypertens 35: 291-299, 2017. 2. 卓俊辰。從運動生理學到預防醫學。中華體育季刊,3: 35-39,1990。 3. Augustine JA, Yoon ES, Choo J, Heffernan KS, and Jae SY. The Relationship Between Cardiorespiratory Fitness and Aortic Stiffness in Women with Central Obesity. J Womens Health (Larchmt) 25: 680-686, 2016. 4. Berlin JA, and Colditz GA. A meta-analysis of physical activity in the prevention of coronary heart disease. Am J Epidemiol 132: 612-628, 1990. 5. Bertovic DA, Waddell TK, Gatzka CD, Cameron JD, Dart AM, and Kingwell BA. Muscular strength training is associated with low arterial compliance and high pulse pressure. Hypertension 33: 1385-1391, 1999. 6. Bhat T, Teli S, Rijal J, Bhat H, Raza M, Khoueiry G, Meghani M, Akhtar M, and Costantino T. Neutrophil to lymphocyte ratio and cardiovascular diseases: a review. Expert Rev Cardiovasc Ther 11: 55-59, 2013. 7. Bijnen FC, Caspersen CJ, and Mosterd WL. Physical inactivity as a risk factor for coronary heart disease: a WHO and International Society and Federation of Cardiology position statement. Bull World Health Organ 72: 1-4, 1994. 8. Boutouyrie P, Lacolley P, Girerd X, Beck L, Safar M, and Laurent S. Sympathetic activation decreases medium-sized arterial compliance in humans. Am J Physiol 267: H1368-1376, 1994. 9. Cai K, Luo Q, Zhu B, Han L, Wu D, Dai Z, and Wang K. Neutrophil-lymphocyte ratio is associated with arterial stiffness in patients with peritoneal dialysis. BMC Nephrol 17: 191, 2016. 10. Casonatto J, Goessler KF, Cornelissen VA, Cardoso JR, and Polito MD. The blood pressure-lowering effect of a single bout of resistance exercise: A systematic review and meta-analysis of randomised controlled trials. Eur J Prev Cardiol 23: 1700-1714, 2016. 11. Cheng H-m, Chuang S-Y, Hsu P-F, Chou P, and Chen C-H. Systolic time intervals revisited: Correlations with N-terminal pro-brain natriuretic peptide in a community population. Heart and vessels 20: 256-263, 2005. 12. Cornelissen VA, and Smart NA. Exercise training for blood pressure: a systematic review and meta-analysis. J Am Heart Assoc 2: e004473, 2013. 13. Cortez-Cooper MY, DeVan AE, Anton MM, Farrar RP, Beckwith KA, Todd JS, and Tanaka H. Effects of high intensity resistance training on arterial stiffness and wave reflection in women. Am J Hypertens 18: 930-934, 2005. 14. DeVan AE, Anton MM, Cook JN, Neidre DB, Cortez-Cooper MY, and Tanaka H. Acute effects of resistance exercise on arterial compliance. J Appl Physiol (1985) 98: 2287-2291, 2005. 15. Eugene M, Vandewalle H, Bertholon JF, and Teillac A. Arterial elasticity and physical working capacity in young men. J Appl Physiol (1985) 61: 1720-1723, 1986. 16. Ferreira I, Twisk JW, Stehouwer CD, van Mechelen W, and Kemper HC. Longitudinal changes in .VO2max: associations with carotid IMT and arterial stiffness. Med Sci Sports Exerc 35: 1670-1678, 2003. 17. Flynn MG, McFarlin BK, and Markofski MM. The Anti-Inflammatory Actions of Exercise Training. Am J Lifestyle Med 1: 220-235, 2007. 18. Franklin BA. Evolution of the ACSM Guidelines: Historical Perspectives, New Insights, and Practical Implications. ACSM's Health & Fitness Journal 25: 26-32, 2021. 19. Friedrich MJ. WHO’s Top Health Threats for 2019. JAMA 321: 1041-1041, 2019. 20. Garrard CL, Jr., Weissler AM, and Dodge HT. The relationship of alterations in systolic time intervals to ejection fraction in patients with cardiac disease. Circulation 42: 455-462, 1970. 21. Gonçalves CAM, Dantas PMS, dos Santos IK, Dantas M, da Silva DCP, Cabral BGdAT, Guerra RO, and Júnior GBC. Effect of Acute and Chronic Aerobic Exercise on Immunological Markers: A Systematic Review. Frontiers in Physiology 10: 2020. 22. Gould L, Reddy CV, Goswami K, Venkataraman K, and Gomprecht RF. Cardiac effects of two cocktails in normal man. Chest 63: 943-947, 1973. 23. Jurik R, Żebrowska A, and Stastny P. Effect of an Acute Resistance Training Bout and Long-Term Resistance Training Program on Arterial Stiffness: A Systematic Review and Meta-Analysis. Journal of Clinical Medicine 10: 3492, 2021. 24. Kaptoge S, Pennells L, De Bacquer D, Cooney MT, Kavousi M, Stevens G, Riley LM, Savin S, Khan T, Altay S, Amouyel P, Assmann G, Bell S, Ben-Shlomo Y, Berkman L, Beulens JW, Björkelund C, Blaha M, Blazer DG, Bolton T, Bonita Beaglehole R, Brenner H, Brunner EJ, Casiglia E, Chamnan P, Choi Y-H, Chowdry R, Coady S, Crespo CJ, Cushman M, Dagenais GR, D'Agostino Sr RB, Daimon M, Davidson KW, Engström G, Ford I, Gallacher J, Gansevoort RT, Gaziano TA, Giampaoli S, Grandits G, Grimsgaard S, Grobbee DE, Gudnason V, Guo Q, Tolonen H, Humphries S, Iso H, Jukema JW, Kauhanen J, Kengne AP, Khalili D, Koenig W, Kromhout D, Krumholz H, Lam TH, Laughlin G, Marín Ibañez A, Meade TW, Moons KGM, Nietert PJ, Ninomiya T, Nordestgaard BG, O'Donnell C, Palmieri L, Patel A, Perel P, Price JF, Providencia R, Ridker PM, Rodriguez B, Rosengren A, Roussel R, Sakurai M, Salomaa V, Sato S, Schöttker B, Shara N, Shaw JE, Shin H-C, Simons LA, Sofianopoulou E, Sundström J, Völzke H, Wallace RB, Wareham NJ, Willeit P, Wood D, Wood A, Zhao D, Woodward M, Danaei G, Roth G, Mendis S, Onuma O, Varghese C, Ezzati M, Graham I, Jackson R, Danesh J, and Di Angelantonio E. World Health Organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions. The Lancet Global Health 7: e1332-e1345, 2019. 25. Katayama K, and Saito M. Muscle sympathetic nerve activity during exercise. J Physiol Sci 69: 589-598, 2019. 26. Kim JK, Lee AY, Kang JH, Yu BY, and Kim SJ. Association of Fasting Glucose Level with Neutrophil-Lymphocyte Ratio Compared to Leukocyte Count and Serum C-Reactive Protein. Korean J Fam Med 39: 42-50, 2018. 27. Kingwell BA. Large artery stiffness: implications for exercise capacity and cardiovascular risk. Clin Exp Pharmacol Physiol 29: 214-217, 2002. 28. Krohova J, Czippelova B, Turianikova Z, Lazarova Z, Tonhajzerova I, and Javorka M. Preejection period as a sympathetic activity index: a role of confounding factors. Physiol Res 66: S265-s275, 2017. 29. Lakens D. Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Front Psychol 4: 863, 2013. 30. Lee SH, and Chae YR. Characteristics of Aerobic Exercise as Determinants of Blood Pressure Control in Hypertensive Patients: A Systematic Review and Meta-Analysis. J Korean Acad Nurs 50: 740-756, 2020. 31. Lewis RP, Rittogers SE, Froester WF, and Boudoulas H. A critical review of the systolic time intervals. Circulation 56: 146-158, 1977. 32. Li Y, Chen X, Huang L, and Lu J. Association between neutrophil-lymphocyte ratio and arterial stiffness in patients with acute coronary syndrome. Biosci Rep 39: 2019. 33. Liu Y, Lai X, Guo W, Ma L, Li W, Fang Q, Yang H, Cai Y, Liu M, Zhang X, and Yang L. Total White Blood Cell Count Mediated the Association Between Increased Arterial Stiffness and Risk of Type 2 Diabetes Mellitus in Chinese Adults. Arterioscler Thromb Vasc Biol 40: 1009-1015, 2020. 34. Lopes S, Afreixo V, Teixeira M, Garcia C, Leitão C, Gouveia M, Figueiredo D, Alves AJ, Polonia J, Oliveira J, Mesquita-Bastos J, and Ribeiro F. Exercise training reduces arterial stiffness in adults with hypertension: a systematic review and meta-analysis. J Hypertens 39: 214-222, 2021. 35. MacDonald HV, Johnson BT, Huedo-Medina TB, Livingston J, Forsyth KC, Kraemer WJ, Farinatti PT, and Pescatello LS. Dynamic Resistance Training as Stand-Alone Antihypertensive Lifestyle Therapy: A Meta-Analysis. J Am Heart Assoc 5: 2016. 36. Mackinnon LT. Chronic exercise training effects on immune function. Med Sci Sports Exerc 32: S369-376, 2000. 37. Mackinnon LT, Hooper SL, Jones S, Gordon RD, and Bachmann AW. Hormonal, immunological, and hematological responses to intensified training in elite swimmers. Med Sci Sports Exerc 29: 1637-1645, 1997. 38. Mancia G, and Mark AL. Arterial Baroreflexes in Humans. In: Comprehensive Physiologyp. 755-793. 39. Meyer ML, Tanaka H, Palta P, Patel MD, Camplain R, Couper D, Cheng S, Al Qunaibet A, Poon AK, and Heiss G. Repeatability of Central and Peripheral Pulse Wave Velocity Measures: The Atherosclerosis Risk in Communities (ARIC) Study. Am J Hypertens 29: 470-475, 2016. 40. Mezzacappa ES, Kelsey RM, and Katkin ES. The effects of epinephrine administration on impedance cardiographic measures of cardiovascular function. Int J Psychophysiol 31: 189-196, 1999. 41. Michael S, Graham KS, and Davis GMO. Cardiac Autonomic Responses during Exercise and Post-exercise Recovery Using Heart Rate Variability and Systolic Time Intervals-A Review. Front Physiol 8: 301, 2017. 42. Mitchell JB, Paquet AJ, Pizza FX, Starling RD, Holtz RW, and Grandjean PW. The effect of moderate aerobic training on lymphocyte proliferation. Int J Sports Med 17: 384-389, 1996. 43. Miyachi M, Kawano H, Sugawara J, Takahashi K, Hayashi K, Yamazaki K, Tabata I, and Tanaka H. Unfavorable effects of resistance training on central arterial compliance: a randomized intervention study. Circulation 110: 2858-2863, 2004. 44. Namgoong H, Lee D, Hwang MH, and Lee S. The relationship between arterial stiffness and maximal oxygen consumption in healthy young adults. J Exerc Sci Fit 16: 73-77, 2018. 45. Nieman D, Henson D, Sampson C, Herring J, Suttles J, Conley M, Stone M, Butterworth D, and Davis J. The acute immune response to exhaustive resistance exercise. International journal of sports medicine 16: 322-328, 1995. 46. Nieman DC. Is infection risk linked to exercise workload? Med Sci Sports Exerc 32: S406-411, 2000. 47. Nowak KL, Rossman MJ, Chonchol M, and Seals DR. Strategies for Achieving Healthy Vascular Aging. Hypertension (Dallas, Tex : 1979) 71: 389-402, 2018. 48. Okada Y, Galbreath MM, Shibata S, Jarvis SS, VanGundy TB, Meier RL, Vongpatanasin W, Levine BD, and Fu Q. Relationship between sympathetic baroreflex sensitivity and arterial stiffness in elderly men and women. Hypertension 59: 98-104, 2012. 49. Parati G, and Salvi P. Arterial Stiffness and the Sympathetic Nervous System. In: Blood Pressure and Arterial Wall Mechanics in Cardiovascular Diseases, edited by Safar ME, O'Rourke MF, and Frohlich ED. London: Springer London, 2014, p. 163-173. 50. Park BJ, Shim JY, Lee HR, Lee JH, Jung DH, Kim HB, Na HY, and Lee YJ. Relationship of neutrophil-lymphocyte ratio with arterial stiffness and coronary calcium score. Clin Chim Acta 412: 925-929, 2011. 51. Parks JC, Marshall EM, Tai YL, and Kingsley JD. Free-weight versus weight machine resistance exercise on pulse wave reflection and aortic stiffness in resistance-trained individuals. Eur J Sport Sci 20: 944-952, 2020. 52. Pelliccia A, Sharma S, Gati S, Bäck M, Börjesson M, Caselli S, Collet J-P, Corrado D, Drezner JA, Halle M, Hansen D, Heidbuchel H, Myers J, Niebauer J, Papadakis M, Piepoli MF, Prescott E, Roos-Hesselink JW, Graham Stuart A, Taylor RS, Thompson PD, Tiberi M, Vanhees L, Wilhelm M, and Group ESD. 2020 ESC Guidelines on sports cardiology and exercise in patients with cardiovascular disease: The Task Force on sports cardiology and exercise in patients with cardiovascular disease of the European Society of Cardiology (ESC). European Heart Journal 42: 17-96, 2020. 53. Pollock ML, and Froelicher VF. Position Stand of the American College of Sports Medicine: The Recommended Quantity and Quality of Exercise for Developing and Maintaining Cardiorespiratory and Muscular Fitness in Healthy Adults. Journal of Cardiopulmonary Rehabilitation and Prevention 10: 235-245, 1990. 54. Powell KE, Caspersen CJ, Koplan JP, and Ford ES. Physical activity and chronic diseases. Am J Clin Nutr 49: 999-1006, 1989. 55. Powers SK, Lennon SL, Quindry J, and Mehta JL. Exercise and cardioprotection. Current Opinion in Cardiology 17: 495-502, 2002. 56. Rall LC, Roubenoff R, Cannon JG, Abad LW, Dinarello CA, and Meydani SN. Effects of progressive resistance training on immune response in aging and chronic inflammation. Med Sci Sports Exerc 28: 1356-1365, 1996. 57. Raso V, Benard G, AJ DASD, and Natale VM. Effect of resistance training on immunological parameters of healthy elderly women. Med Sci Sports Exerc 39: 2152-2159, 2007. 58. Roos CJ, Djaberi R, Schuijf JD, de Koning EJ, Rabelink TJ, Smit JW, Pereira AM, Al Younis I, van der Hiel B, Scholte AJ, Bax JJ, and Jukema JW. Relationship between vascular stiffness and stress myocardial perfusion imaging in asymptomatic patients with diabetes. European Journal of Nuclear Medicine and Molecular Imaging 38: 2050, 2011. 59. Shadwick RE. Mechanical design in arteries. J Exp Biol 202: 3305-3313, 1999. 60. Shephard RJ, and Balady GJ. Exercise as cardiovascular therapy. Circulation 99: 963-972, 1999. 61. Shephard RJ, and Shek PN. Acute and chronic over-exertion: do depressed immune responses provide useful markers? Int J Sports Med 19: 159-171, 1998. 62. Shephard RJ, and Shek PN. Potential impact of physical activity and sport on the immune system--a brief review. Br J Sports Med 28: 247-255, 1994. 63. Shin JY, Lee HR, and Lee DC. Increased arterial stiffness in healthy subjects with high-normal glucose levels and in subjects with pre-diabetes. Cardiovasc Diabetol 10: 30, 2011. 64. Shirwany NA, and Zou M-h. Arterial stiffness: a brief review. Acta Pharmacologica Sinica 31: 1267-1276, 2010. 65. Steensberg A, Toft AD, Bruunsgaard H, Sandmand M, Halkjaer-Kristensen J, and Pedersen BK. Strenuous exercise decreases the percentage of type 1 T cells in the circulation. J Appl Physiol (1985) 91: 1708-1712, 2001. 66. Storer TW, Davis JA, and Caiozzo VJ. Accurate prediction of VO2max in cycle ergometry. Med Sci Sports Exerc 22: 704-712, 1990. 67. Tanaka H, DeSouza CA, and Seals DR. Absence of age-related increase in central arterial stiffness in physically active women. Arterioscler Thromb Vasc Biol 18: 127-132, 1998. 68. Vaitkevicius PV, Fleg JL, Engel JH, O'Connor FC, Wright JG, Lakatta LE, Yin FC, and Lakatta EG. Effects of age and aerobic capacity on arterial stiffness in healthy adults. Circulation 88: 1456-1462, 1993. 69. Vlachopoulos C, Aznaouridis K, Pietri P, Ioakeimidis N, and Stefanadis C. White blood cell count is a marker of wave reflections and arterial stiffness in healthy individuals. Atherosclerosis 187: 218-219, 2006. 70. Walsh NP, Gleeson M, Shephard RJ, Gleeson M, Woods JA, Bishop NC, Fleshner M, Green C, Pedersen BK, Hoffman-Goetz L, Rogers CJ, Northoff H, Abbasi A, and Simon P. Position statement. Part one: Immune function and exercise. Exerc Immunol Rev 17: 6-63, 2011. 71. Walzik D, Joisten N, Zacher J, and Zimmer P. Transferring clinically established immune inflammation markers into exercise physiology: focus on neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio and systemic immune-inflammation index. European Journal of Applied Physiology 121: 1803-1814, 2021. 72. Weissler AM, Peeler RG, and Roehll WH, Jr. Relationships between left ventricular ejection time, stroke volume, and heart rate in normal individuals and patients with cardiovascular disease. Am Heart J 62: 367-378, 1961. 73. Wen J, Huang Y, Lu Y, and Yuan H. Associations of non-high-density lipoprotein cholesterol, triglycerides and the total cholesterol/HDL-c ratio with arterial stiffness independent of low-density lipoprotein cholesterol in a Chinese population. Hypertens Res 42: 1223-1230, 2019. 74. Whelton SP, Chin A, Xin X, and He J. Effect of aerobic exercise on blood pressure: a meta-analysis of randomized, controlled trials. Ann Intern Med 136: 493-503, 2002. 75. Wolfe LA, Cunningham DA, Davis GM, and Rosenfeld H. Relationship between maximal oxygen uptake and left ventricular function in exercise. J Appl Physiol Respir Environ Exerc Physiol 44: 44-49, 1978. 76. Yamashina A, Tomiyama H, Takeda K, Tsuda H, Arai T, Hirose K, Koji Y, Hori S, and Yamamoto Y. Validity, reproducibility, and clinical significance of noninvasive brachial-ankle pulse wave velocity measurement. Hypertens Res 25: 359-364, 2002. 77. Zhou Y, Wang L, Jia L, Lu B, Gu G, Bai L, and Cui W. The monocyte to high-density lipoprotein cholesterol ratio in the prediction for atherosclerosis: a retrospective study in adult chinese participants. Lipids 56: 69-80, 2021. 78. Li T-L. Immunoendocrine responses to daily repeated exercise and the influence of carbohydrate supplementation. Journal of Exercise Physiology And Fitness,7: 1-13, 2008. 79. 洪傳岳、劉俊治。心縮時段。當代醫學,525-528,1978。 80. 黃森芳。一次運動對人體血液中白血球及淋巴球數量之影響。國民體育季刊,28: 62-79,1999。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86544 | - |
| dc.description.abstract | 摘要 目的:本研究以橫斷實驗設計,探討比較不同運動訓練型態之規律運動男性,在長期訓練後心臟功能與血管功能的差異,以及考驗血液生化指標、有氧能力與動脈硬度指標之關聯。方法:研究共納入98位年齡介於18至40歲至少一年規律運動習慣之健康成年男性,依運動型態分為混合運動組 (年齡:24 ± 3歲、腰臀圍比:0.80 ± 0.05、N=23)、有氧訓練組 (年齡:24 ± 6歲、腰臀圍比: 0.81 ± 0.05、N=31)、阻力訓練組 (年齡:23 ± 3歲、腰臀圍比:0.82 ± 0.05、N=44)。以血管功能測量儀獲得其血流動力學指標 (心跳、血壓、肱-踝脈波傳導速度) 與心臟功能指標(收縮時間間隔),同時以腳踏車進行最大運動測試獲得最大攝氧峰值。進一步分別考驗不同運動訓練型態於心跳、血壓、心臟功能(收縮時間間隔)與動脈硬度(肱-踝脈波傳導速度)各項指標之差異,並進一步結合血液生化指標考驗各生理指標之間以及與動脈硬度、最大攝氧峰值之預測關係。結果:阻力訓練組的平均血壓、平均動脈壓和脈壓均高於其他規律運動族群,而在 VO2peak也顯著低於另外兩組。合併各組別時VO2peak與平均動脈壓呈現高度負相關 (r = -0.31),也與收縮壓呈現負相關 (r = -0.26),而在心臟收縮時間間隔指標中則與PEP/ETc呈現正相關 (r = 0.25),此外baPWV在血液生化指標中,與空腹血糖呈現高度正相關 (r = 0.31),而與單核球、嗜中性白血球/淋巴球細胞比率呈現正相關 (r = 0.25、r = 0.26),另外與淋巴球呈現高度負相關 (r = -0.29),和白血球呈現負相關 (r = -0.23)。結論: (一) 長期規律阻力訓練者在血流動力學指標高於其他規律運動族群,且baPWV與VO2peak呈現顯著負相關,表示有氧能力較差者其動脈硬度也較高。(二) 長期規律有氧訓練組有較佳的血糖與脂質控制效果,可能與低動脈硬度水準有關,而就三種運動訓練型態比較,顯示單純從事有氧或阻力單一訓練所產生的發炎反應會低於混合運動組,然而本研究中混合運動組有較高的發炎反應也有可能是因為有較高的血糖水準。 | zh_TW |
| dc.description.abstract | Abstract Purpose: This cross-sectional study was aimed to compare the effects different types of habitual exercise training on cardiac and vascular function parameters in men, and examine the associations between blood biochemical parameters, aerobic capacity, arterial stiffness, and systolic time interval parameters. Methods: A total of 98 healthy adult males (aged 18-40 yrs ) who regularly engaged exercise training at least one year were included in this study. All subjects were divided into mixed exercise group (combined with aerobic and resistance training) (Age: 24 ± 3yrs、WHR : 0.80 ± 0.05、N=23), aerobic training group (Age: 24 ± 6yrs、WHR: 0.81 ± 0.05、N=31), and resistance training group (Age: 23 ± 3yrs、WHR: 0.82 ± 0.05、N=44) according to self-reported questionnaire. The hemodynamic indices (heart rate, blood pressure) and cardiac functional indices (systolic time intervals) were obtained by using a vascular screening device, and peak oxygen uptake (VO2peak) was obtained by performing a maximal cycling exercise test. Differences in heart rate, blood pressure, cardiac function (systolic time intervals) and arterial stiffness (brachial-ankle pulse wave velocity, baPWV) were further compared between groups. The associations between measured variables, including blood biomarkers, were established by using correlation and regression analysis. Result: Mean blood pressure, mean arterial pressure, and pulse pressure were higher in the habitual resistance-trained men compared with others, whereas VO2peak of resistance-trained men was significantly lower than that of the aerobic and mixed exercise groups. VO2peak showed a high negative correlation with mean arterial pressure (r = -0.31) and a negative correlation with systolic blood pressure (r = -0.26), and a correlation with PEP/ETc (r = 0.25) in the systolic time interval index when groups were combined. In addition, baPWV showed a high positive correlation with fasting glucose (r = 0.31) and a positive correlation with monocyte and neutrophil/lymphocyte ratios (r = 0.25, r = 0.26), and a high negative correlation with lymphocytes (r = -0.29) and white blood cells (r = -0.23). Conclusion: Habitual resistance-trained men had higher blood pressure than other groups; lower aerobic capacity was associated with high arterial stiffness in this exercise population. Moreover, better glycemic and lipid control was observed in the habitual aerobic training group, which may to related to the low arterial stiffness level. The inflammatory responses of habitual aerobic- and resistance-trained group were lower than those of the mixed exercise group. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-20T00:02:13Z (GMT). No. of bitstreams: 1 U0001-1008202214135000.pdf: 961969 bytes, checksum: 046ba66f07003fcc0bd3c8e70b0f3c8a (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 目 錄 口試委員會審定書……………………………………………………………………………………………………i 摘要…………………………………………………………………………………………………………………………………ii Abstract………………………………………………………………………………………………………………………iv 第一章 緒論 第一節 問題背景…………………………………………………………………………………………………………1 第二節 研究目的…………………………………………………………………………………………………………3 第三節 研究假設…………………………………………………………………………………………………………3 第二章 文獻探討 第一節 不同運動訓練型態與血壓、動脈硬化之關係……………………4 第二節 長期運動訓練與心臟收縮間隔指標………………………………………5 第三節 運動與免疫系統和發炎反應相關研究…………………………………8 第四節 本章小結……………………………………………………………………………………………9 第三章 研究方法 第一節 實驗對象…………………………………………………………………………………………11 第二節 實驗流程…………………………………………………………………………………………12 第三節 實驗量測方法………………………………………………………………………………13 第四節 統計方法…………………………………………………………………………………………15 第四章 研究結果 第一節 受試者基本特徵……………………………………………………………………………16 第二節 生理訊號分析結果………………………………………………………………………16 第三節 血液指標比較結果………………………………………………………………………18 第四節 影響有氧能力與動脈硬度生理變項之相關分析……………20 第五章 討論與結論 第一節 不同規律運動訓練型態對有氧適能與心臟收縮間隔指標影響……26 第二節 不同規律運動訓練型態動脈硬度與發炎指標相關之差異……………29 第三節 結論………………………………………………………………………………………………………………………31 第四節 研究限制與建議………………………………………………………………………………………………32 參考文獻…………………………………………………………………………………………………………………………………………33 | |
| dc.language.iso | zh-TW | |
| dc.subject | 最大攝氧峰值 | zh_TW |
| dc.subject | 嗜中性白血球與淋巴球細胞比率 | zh_TW |
| dc.subject | 最大攝氧峰值 | zh_TW |
| dc.subject | 嗜中性白血球與淋巴球細胞比率 | zh_TW |
| dc.subject | 脈波傳導速度 | zh_TW |
| dc.subject | 脈波傳導速度 | zh_TW |
| dc.subject | neutrophil-to-lymphocyte ratio | en |
| dc.subject | peak oxygen uptake | en |
| dc.subject | pulse wave velocity | en |
| dc.subject | pulse wave velocity | en |
| dc.subject | neutrophil-to-lymphocyte ratio | en |
| dc.subject | peak oxygen uptake | en |
| dc.title | 不同規律運動訓練型態男性心臟收縮時間間隔、血流動力學指標與有氧能力之橫斷比較研究 | zh_TW |
| dc.title | Cross-sectional Comparison of Cardiac Systolic Time Intervals, Hemodynamic Indices, and Aerobic Capacity in Different Habitual Exercise-Trained Men | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 廖翊宏(Yi-Hung Liao),周峻忠(Chun-Chung Chou) | |
| dc.subject.keyword | 最大攝氧峰值,嗜中性白血球與淋巴球細胞比率,脈波傳導速度, | zh_TW |
| dc.subject.keyword | peak oxygen uptake,neutrophil-to-lymphocyte ratio,pulse wave velocity, | en |
| dc.relation.page | 40 | |
| dc.identifier.doi | 10.6342/NTU202202255 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-08-15 | |
| dc.contributor.author-college | 共同教育中心 | zh_TW |
| dc.contributor.author-dept | 運動設施與健康管理碩士學位學程 | zh_TW |
| dc.date.embargo-lift | 2022-08-18 | - |
| 顯示於系所單位: | 運動設施與健康管理碩士學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1008202214135000.pdf | 939.42 kB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
