請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86540完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 施上粟(Shang-Shu Shih) | |
| dc.contributor.author | Chen-Yu Lee | en |
| dc.contributor.author | 李宸羽 | zh_TW |
| dc.date.accessioned | 2023-03-20T00:01:59Z | - |
| dc.date.copyright | 2022-08-22 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-12 | |
| dc.identifier.citation | Angeler, D. G., and Allen, C. R. (2016). Quantifying resilience. Journal of applied ecology, 53(3), 617-624. http://www.jstor.org/stable/43869692 Barbé, D. E., Fagot, K., and McCorquodale, J. A. (2000). Effects on dredging due to diversions from the lower Mississippi River. Journal of Waterway, Port, Coastal, and Ocean Engineering, 126(3), 121-129. Battin, J., Wiley, M. W., Ruckelshaus, M. H., Palmer, R. N., Korb, E., Bartz, K. K., and Imaki, H. (2007). Projected impacts of climate change on salmon habitat restoration. Proceedings of the National Academy of Sciences, 104(16), 6720-6725. https://doi.org/doi:10.1073/pnas.0701685104 Bednarek, A. T. (2001). Undamming Rivers: A Review of the Ecological Impacts of Dam Removal. Environmental Management, 27(6), 803-814. https://doi.org/10.1007/s002670010189 Beesley, L., and Prince, J. (2010). Fish community structure in an intermittent river: the importance of environmental stability, landscape factors and within-pool habitat descriptors. Marine and freshwater research, 61(5), 605-614. Bond, N. R., and Lake, P. S. (2003). Local habitat restoration in streams: Constraints on the effectiveness of restoration for stream biota. Ecological Management and Restoration, 4(3), 193-198. https://doi.org/10.1046/j.1442-8903.2003.00156.x Bond, N. R., Lake, P. S., and Arthington, A. H. (2008). The impacts of drought on freshwater ecosystems: an Australian perspective. Hydrobiologia, 600(1), 3-16. https://doi.org/10.1007/s10750-008-9326-z Boulton, A. J. (2003). Parallels and contrasts in the effects of drought on stream macroinvertebrate assemblages. Freshwater Biology, 48(7), 1173-1185. https://doi.org/10.1046/j.1365-2427.2003.01084.x Bovee, K. D. (1982). A guide to stream habitat analysis using the instream flow incremental methodology (Vol. 1). Western Energy and Land Use Team, Office of Biological Services, Fish and …. Bovee, K. D., Lamb, B. L., Bartholow, J. M., Stalnaker, C. B., and Taylor, J. (1998). Stream habitat analysis using the instream flow incremental methodology. Bray, R. N. (2008). Environmental aspects of dredging. CRC Press. Brown, B. L., and Swan, C. M. (2010). Dendritic network structure constrains metacommunity properties in riverine ecosystems. Journal of Animal Ecology, 79(3), 571-580. https://doi.org/10.1111/j.1365-2656.2010.01668.x Brown, S. K., Buja, K. R., Jury, S. H., Monaco, M. E., and Banner, A. (2000). Habitat suitability index models for eight fish and invertebrate species in Casco and Sheepscot Bays, Maine. North American Journal of Fisheries Management, 20(2), 408-435. Bunn, S. E., and Arthington, A. H. (2002). Basic Principles and Ecological Consequences of Altered Flow Regimes for Aquatic Biodiversity. Environmental Management, 30(4), 492-507. https://doi.org/10.1007/s00267-002-2737-0 Chang, F.-J., Tsai, M.-J., Tsai, W.-P., and Herricks, E. E. (2008). Assessing the ecological hydrology of natural flow conditions in Taiwan. Journal of Hydrology, 354(1-4), 75-89. https://doi.org/10.1016/j.jhydrol.2008.02.022 Chang, H.-Y., Chiu, M.-C., Chuang, Y.-L., Tzeng, C.-S., Kuo, M.-H., Yeh, C.-H., Wang, H.-W., Wu, S.-H., Kuan, W.-H., Tsai, S.-T., Shao, K.-T., and Lin, H.-J. (2017). Community responses to dam removal in a subtropical mountainous stream. Aquatic Sciences, 79(4), 967-983. https://doi.org/10.1007/s00027-017-0545-0 Cheng, H. Y., & Chen, S. C. (2018). Modeling evolution of river morphology after dam removal by using SRH-2D. In AGU Fall Meeting Abstracts (Vol. 2018, pp. EP41C-2685). Chessman, B. C. (2013). Identifying species at risk from climate change: Traits predict the drought vulnerability of freshwater fishes. Biological Conservation, 160, 40-49. https://doi.org/https://doi.org/10.1016/j.biocon.2012.12.032 Chiu, M.-C., Pan, C.-W., and Lin, H.-J. (2017). A framework for assessing risk to coastal ecosystems in Taiwan due to climate change. Terrestrial, Atmospheric and Oceanic Sciences, 28(1). Chou, J. S., and Chiu, Y. C. (2021). Identifying critical risk factors and responses of river dredging projects for knowledge management within organisation. Journal of Flood Risk Management, 14(1). https://doi.org/10.1111/jfr3.12690 Chow, V. T. (1959). Open-channel hydraulics (Vol. 1). McGraw-Hill New York. Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T., Friedlingstein, P., Gao, X., Gutowski, W. J., Johns, T., and Krinner, G. (2013). Long-term climate change: projections, commitments and irreversibility. In Climate Change 2013-The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1029-1136). Cambridge University Press. Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Hsieh, M.-L., Willett, S. D., Hu, J.-C., Horng, M.-J., Chen, M.-C., Stark, C. P., Lague, D., and Lin, J.-C. (2003). Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature, 426(6967), 648-651. https://doi.org/10.1038/nature02150 Dixo, M., Metzger, J. P., Morgante, J. S., and Zamudio, K. R. (2009). Habitat fragmentation reduces genetic diversity and connectivity among toad populations in the Brazilian Atlantic Coastal Forest. Biological Conservation, 142(8), 1560-1569. https://doi.org/https://doi.org/10.1016/j.biocon.2008.11.016 Douglas, M. M., Bunn, S. E., and Davies, P. M. (2005). River and wetland food webs in Australia's wet - dry tropics: general principles and implications for management. Marine and freshwater research, 56(3), 329. https://doi.org/10.1071/mf04084 Eaton, J. G., and Scheller, R. M. (1996). Effects of climate warming on fish thermal habitat in streams of the United States. Limnology and Oceanography, 41(5), 1109-1115. https://doi.org/10.4319/lo.1996.41.5.1109 Fahrig, L. (2003). Effects of Habitat Fragmentation on Biodiversity. Annual Review of Ecology, Evolution, and Systematics, 34, 487-515. http://www.jstor.org/stable/30033784 Francingues, K. E. G., Burton, G. A., R, N., Wolfe, J., Reible, D. D., Vorhees, D. J., and R, J. (2008). Evaluating the effectiveness of contaminated-sediment dredging. In: ACS Publications. Geist, J. (2021). Editorial: Green or red: Challenges for fish and freshwater biodiversity conservation related to hydropower. Aquatic Conservation: Marine and Freshwater Ecosystems, 31(7), 1551-1558. https://doi.org/10.1002/aqc.3597 Gillenwater, D., Granata, T., and Zika, U. (2006). GIS-based modeling of spawning habitat suitability for walleye in the Sandusky River, Ohio, and implications for dam removal and river restoration. ecological engineering, 28(3), 311-323. Goniea, T. M., Keefer, M. L., Bjornn, T. C., Peery, C. A., Bennett, D. H., and Stuehrenberg, L. C. (2006). Behavioral thermoregulation and slowed migration by adult fall Chinook salmon in response to high Columbia River water temperatures. Transactions of the American Fisheries Society, 135(2), 408-419. Haith, D. A., Mandel, R., and Wu, R. S. (1992). GWLF: Generalized Watershed Loading Functions, Version 2.0, User's Manual. Dept. of Agricultural and Biological Engineering, Cornell University, Ithaca, NY. Haith, D. A., and Shoemaker, L. L. (1987). Generalized watershed loading functions for stream flow nutrients 1. JAWRA Journal of the American Water Resources Association, 23(3), 471-478. Harrel, R. C., Davis, B. J., and Dorris, T. C. (1967). Stream Order and Species Diversity of Fishes in an Intermittent Oklahoma Stream. The American Midland Naturalist, 78(2), 428-436. https://doi.org/10.2307/2485240 Hauer, C., Unfer, G., Holzmann, H., Schmutz, S., and Habersack, H. (2013). The impact of discharge change on physical instream habitats and its response to river morphology. Climatic change, 116(3-4), 827-850. https://doi.org/10.1007/s10584-012-0507-4 Hsu, H. H., and Chen, C. T. (2002). Observed and projected climate change in Taiwan. Meteorology and Atmospheric Physics, 79(1-2), 87-104. https://doi.org/10.1007/s703-002-8230-x Huang, M., Ding, L., Wang, J., Ding, C., and Tao, J. (2021). The impacts of climate change on fish growth: A summary of conducted studies and current knowledge. Ecological Indicators, 121, 106976. https://doi.org/https://doi.org/10.1016/j.ecolind.2020.106976 Icobescu, D. (2014). 2D Hydraulic Modeling of the State Route 76 Hatchie River Bridge Replacement in West Tennessee Using SRH-2D. In National Hydraulic Engineering Conference 2014 (Vol. 1, No. 2014). University of Iowa. Jähnig, S. C., Lorenz, A. W., Hering, D., Antons, C., Sundermann, A., Jedicke, E., and Haase, P. (2011). River restoration success: a question of perception. Ecological Applications, 21(6), 2007-2015. https://doi.org/10.1890/10-0618.1 Kareiva, P. (1990). Population dynamics in spatially complex environments: theory and data. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 330(1257), 175-190. Kim, J., Choi, J., Choi, C., and Park, S. (2013). Impacts of changes in climate and land use/land cover under IPCC RCP scenarios on streamflow in the Hoeya River Basin, Korea. Science of The Total Environment, 452, 181-195. Kindlmann, P., & Burel, F. (2008). Connectivity measures: a review. Landscape ecology, 23(8), 879-890. Kingsford, R. T. (2000). Ecological impacts of dams, water diversions and river management on floodplain wetlands in Australia. Austral Ecology, 25(2), 109-127. https://doi.org/10.1046/j.1442-9993.2000.01036.x Krause, P., Boyle, D. P., and Bäse, F. (2005). Comparison of different efficiency criteria for hydrological model assessment. Advances in Geosciences, 5, 89-97. https://doi.org/10.5194/adgeo-5-89-2005 Kuo, P.-H., Shih, S.-S., and Otte, M. L. (2021). Restoration recommendations for mitigating habitat fragmentation of a river corridor. Journal of Environmental Management, 296, 113197. https://doi.org/https://doi.org/10.1016/j.jenvman.2021.113197 Kurylyk, B. L., Macquarrie, K. T. B., Linnansaari, T., Cunjak, R. A., and Curry, R. A. (2015). Preserving, augmenting, and creating cold‐water thermal refugia in rivers: concepts derived from research on the Miramichi River, New Brunswick (Canada). Ecohydrology, 8(6), 1095-1108. https://doi.org/10.1002/eco.1566 Lagasse, P. F. (1986). River response to dredging. Journal of Waterway, Port, Coastal, and Ocean Engineering, 112(1), 1-14. Lai, Y. G. (2008). SRH-2D version 2: Theory and User’s Manual. Sedimentation and River Hydraulics–Two-Dimensional River Flow Modeling, US Department of Interior, Bureau of Reclamation, November. Lee, S., Kim, J., and Hur, J. W. (2013). Assessment of ecological flow rate by flow duration and environmental management class in the Geum River, Korea. Environmental earth sciences, 68(4), 1107-1118. Leimu, R., Vergeer, P., Angeloni, F., and Ouborg, N. J. (2010). Habitat fragmentation, climate change, and inbreeding in plants. Annals of the New York Academy of Sciences, 1195(1), 84-98. https://doi.org/10.1111/j.1749-6632.2010.05450.x Leroy Poff, N., Angermeier, P. L., Cooper, S. D., Lake, P. S., Fausch, K. D., Winemiller, K. O., Mertes, L. A. K., Oswood, M. W., Reynolds, J., and Rahel, F. J. (2001). Fish Diversity in Streams and Rivers. In (pp. 315-349). Springer New York. https://doi.org/10.1007/978-1-4613-0157-8_14 Lewis Jr, W. M. (2008). Physical and chemical features of tropical flowing waters. In Tropical stream ecology (pp. 1-21). Elsevier. Lin, C.-T., and Chiu, C.-A. (2018). The Relic Trochodendron aralioides Siebold and Zucc. (Trochodendraceae) in Taiwan: Ensemble Distribution Modeling and Climate Change Impacts. Forests, 10(1), 7. https://doi.org/10.3390/f10010007 Lin, C.-Y., and Tung, C.-P. (2017). Procedure for selecting GCM datasets for climate risk assessment. Terrestrial, Atmospheric and Oceanic Sciences, 28(1). Liu, T.-M., Tung, C. P., Ke, K. Y., Chuang, L. H., and Lin, C. Y. (2009). Application and development of a decision-support system for assessing water shortage and allocation with climate change. Paddy and Water Environment, 7(4), 301-311. https://doi.org/10.1007/s10333-009-0177-7 Liu, T., Tung, C., and Li, M. (2011). Mapping Climate Change Vulnerability Distribution of Water Resources in a Regional Water Supply System. AGU Fall Meeting Abstracts, Liu, T., Tung, C., and Li, M. (2012). Establishing Vulnerability Map of Water Resources in Regional Water Supply System. EGU General Assembly Conference Abstracts, Lorenz, A. W., Stoll, S., Sundermann, A., and Haase, P. (2013). Do adult and YOY fish benefit from river restoration measures? ecological engineering, 61, 174-181. https://doi.org/https://doi.org/10.1016/j.ecoleng.2013.09.027 Luo, Y., Ficklin, D. L., Liu, X., and Zhang, M. (2013a). Assessment of climate change impacts on hydrology and water quality with a watershed modeling approach. Science of The Total Environment, 450-451, 72-82. https://doi.org/https://doi.org/10.1016/j.scitotenv.2013.02.004 Luo, Y., Ficklin, D. L., Liu, X., and Zhang, M. (2013b). Assessment of climate change impacts on hydrology and water quality with a watershed modeling approach. Science of The Total Environment, 450, 72-82. Maddock, I. (1999). The importance of physical habitat assessment for evaluating river health. Freshwater Biology, 41(2), 373-391. https://doi.org/10.1046/j.1365-2427.1999.00437.x Matthews, W. J. (1986). Fish Faunal Structure in an Ozark Stream: Stability, Persistence and a Catastrophic Flood. Copeia, 1986(2), 388-397. https://doi.org/10.2307/1444997 Miller, J. R., and Hobbs, R. J. (2007). Habitat Restoration—Do We Know What We’re Doing? Restoration Ecology, 15(3), 382-390. https://doi.org/10.1111/j.1526-100x.2007.00234.x Mohseni, O., Stefan, H. G., and Eaton, J. G. (2003). Global warming and potential changes in fish habitat in U.S. streams. Climatic change, 59(3), 389-409. https://doi.org/10.1023/a:1024847723344 Morales-Marín, L. A., Rokaya, P., Sanyal, P. R., Sereda, J., and Lindenschmidt, K. E. (2019). Changes in streamflow and water temperature affect fish habitat in the Athabasca River basin in the context of climate change. Ecological Modelling, 407, 108718. https://doi.org/https://doi.org/10.1016/j.ecolmodel.2019.108718 Morrongiello, J. R., Beatty, S. J., Bennett, J. C., Crook, D. A., Ikedife, D. N. E. N., Kennard, M. J., Kerezsy, A., Lintermans, M., McNeil, D. G., Pusey, B. J., and Rayner, T. (2011). Climate change and its implications for Australia's freshwater fish. Marine and freshwater research, 62(9), 1082. https://doi.org/10.1071/mf10308 Murray, B. R., Zeppel, M. J., Hose, G. C., and Eamus, D. (2003). Groundwater-dependent ecosystems in Australia: It's more than just water for rivers. Ecological Management and Restoration, 4(2), 110-113. Nakao, K., Higa, M., Tsuyama, I., Lin, C.-T., Sun, S.-T., Lin, J.-R., Chiou, C.-R., Chen, T.-Y., Matsui, T., and Tanaka, N. (2014). Changes in the potential habitats of 10 dominant evergreen broad-leaved tree species in the Taiwan-Japan archipelago. Plant Ecology, 215(6), 639-650. https://doi.org/10.1007/s11258-014-0329-8 Palmer, M. A., Ambrose, R. F., and Poff, N. L. (1997). Ecological Theory and Community Restoration Ecology. Restoration Ecology, 5(4), 291-300. https://doi.org/10.1046/j.1526-100x.1997.00543.x Palmer, M. A., Bernhardt, E., Allan, J., Lake, P. S., Alexander, G., Brooks, S., Carr, J., Clayton, S., Dahm, C., and Follstad Shah, J. (2005). Standards for ecologically successful river restoration. Journal of applied ecology, 42(2), 208-217. Pander, J., Nagel, C., Ingermann, H., and Geist, J. (2022). Water level induced changes of habitat quality determine fish community composition in restored and modified riverbanks of a large alpine river. International Review of Hydrobiology, 107(1-2), 46-59. https://doi.org/10.1002/iroh.202002079 Papadaki, C., Soulis, K., Muñoz-Mas, R., Martinez-Capel, F., Zogaris, S., Ntoanidis, L., and Dimitriou, E. (2016). Potential impacts of climate change on flow regime and fish habitat in mountain rivers of the south-western Balkans. Science of The Total Environment, 540, 418-428. https://doi.org/https://doi.org/10.1016/j.scitotenv.2015.06.134 Puckridge, J., Sheldon, F., Walker, K., and Boulton, A. (1998). Flow variability and the ecology of large rivers. Marine and freshwater research, 49(1), 55-72. Qi, Z., Kang, G., Chu, C., Qiu, Y., Xu, Z., and Wang, Y. (2017). Comparison of SWAT and GWLF model simulation performance in humid south and semi-arid north of China. Water, 9(8), 567. Richter, B. D., Baumgartner, J. V., Powell, J., and Braun, D. P. (1996). A method for assessing hydrologic alteration within ecosystems. Conservation biology, 10(4), 1163-1174. Rodriguez, J. F. (2003). Mean flow and turbulence characteristics of pool-riffle structures in low-gradient streams. University of Illinois at Urbana-Champaign. Ross, S. T., and Baker, J. A. (1983). The Response of Fishes to Periodic Spring Floods in a Southeastern Stream. The American Midland Naturalist, 109(1), 1-14. https://doi.org/10.2307/2425509 Schwartz, J. S., and Herricks, E. E. (2007). Evaluation of pool‐riffle naturalization structures on habitat complexity and the fish community in an urban Illinois stream. River Research and Applications, 23(4), 451-466. Searcy, J. K. (1959). Flow-duration curves. US Government Printing Office. Sedell, J. R., Reeves, G. H., Hauer, F. R., Stanford, J. A., and Hawkins, C. P. (1990). Role of refugia in recovery from disturbances: Modern fragmented and disconnected river systems. Environmental Management, 14(5), 711-724. https://doi.org/10.1007/bf02394720 Shao, K. T. (2019). Taiwan Fish Database. Web electronic publication. In: Academia Sinica Center for Digital Cultures and Biodiversity Research Center, Academia Sinica, Taiwan. Sinokrot, B. A., Stefan, H. G., McCormick, J. H., and Eaton, J. G. (1995). Modeling of climate change effects on stream temperatures and fish habitats below dams and near groundwater inputs. Climatic change, 30(2), 181-200. https://doi.org/10.1007/bf01091841 Skalski, G. T., and Gilliam, J. F. (2000). MODELING DIFFUSIVE SPREAD IN A HETEROGENEOUS POPULATION: A MOVEMENT STUDY WITH STREAM FISH. Ecology, 81(6), 1685-1700. https://doi.org/10.1890/0012-9658(2000)081[1685:mdsiah]2.0.co;2 Stanford, J. W. J. (1983). The serial discontinuity concept of lotic ecosystems. Ann Arbor Science Publishers. Suen, J.-P. (2010). Potential impacts to freshwater ecosystems caused by flow regime alteration under changing climate conditions in Taiwan. Hydrobiologia, 649(1), 115-128. https://doi.org/10.1007/s10750-010-0234-7 Suen, J.-P., and Lai, H.-N. (2013). A salinity projection model for determining impacts of climate change on river ecosystems in Taiwan. Journal of Hydrology, 493, 124-131. https://doi.org/https://doi.org/10.1016/j.jhydrol.2013.04.020 TCCiP. (2021). 網格化觀測資料與統計降尺度不確定性分析說明。https://tccip.ncdr.nat.gov.tw/publish_01_data_document_one.aspx?dd_id=20210609213136 Torgersen, C. E., Baxter, C. V., Li, H. W., and McIntosh, B. A. (2006). Landscape influences on longitudinal patterns of river fishes: spatially continuous analysis of fish-habitat relationships. American Fisheries Society Symposium, Travis, J. M. J. (2003). Climate change and habitat destruction: a deadly anthropogenic cocktail. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1514), 467-473. https://doi.org/10.1098/rspb.2002.2246 Tung, C.-P., Lee, T.-Y., and Yang, Y.-C. (2006). Modelling climate-change impacts on stream temperature of Formosan landlocked salmon habitat. Hydrological Processes, 20(7), 1629-1649. https://doi.org/10.1002/hyp.5959 Tung, C., Liu, T., Chen, S., Ke, K., and Li, M. (2014). Carrying capacity and sustainability appraisals on regional water supply systems under climate change. British Journal of Environment and Climate Change, 4(1), 27-44. USFWS. (1980). Ecological services manual. Report 101 ESM (Vol. 12). US Fish and Wildlife Service. Van Looy, K., Tonkin, J. D., Floury, M., Leigh, C., Soininen, J., Larsen, S., Heino, J., Leroy Poff, N., Delong, M., Jähnig, S. C., Datry, T., Bonada, N., Rosebery, J., Jamoneau, A., Ormerod, S. J., Collier, K. J., and Wolter, C. (2019). The three Rs of river ecosystem resilience: Resources, recruitment, and refugia. River Research and Applications, 35(2), 107-120. https://doi.org/10.1002/rra.3396 Van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., and Lamarque, J.-F. (2011). The representative concentration pathways: an overview. Climatic change, 109(1), 5-31. Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R., and Cushing, C. E. (1980). The river continuum concept. Canadian journal of fisheries and aquatic sciences, 37(1), 130-137. Wenger, A. S., Harvey, E., Wilson, S., Rawson, C., Newman, S. J., Clarke, D., Saunders, B. J., Browne, N., Travers, M. J., and Mcilwain, J. L. (2017). A critical analysis of the direct effects of dredging on fish. Fish and Fisheries, 18(5), 967-985. Wenger, S. J., Isaak, D. J., Luce, C. H., Neville, H. M., Fausch, K. D., Dunham, J. B., Dauwalter, D. C., Young, M. K., Elsner, M. M., Rieman, B. E., Hamlet, A. F., and Williams, J. E. (2011). Flow regime, temperature, and biotic interactions drive differential declines of trout species under climate change. Proceedings of the National Academy of Sciences of the United States of America, 108(34), 14175-14180. https://doi.org/10.1073/pnas.1103097108 Wiens, J. A. (2002). Riverine landscapes: taking landscape ecology into the water. Freshwater Biology, 47(4), 501-515. https://doi.org/10.1046/j.1365-2427.2002.00887.x Wyrick, J., and Pasternack, G. (2012). Landforms of the lower Yuba River. University of California, Davis. Wyrick, J. R., and Pasternack, G. B. (2014). Geospatial organization of fluvial landforms in a gravel–cobble river: Beyond the riffle–pool couplet. Geomorphology, 213, 48-65. https://doi.org/10.1016/j.geomorph.2013.12.040 Xenopoulos, M. A., Lodge, D. M., Alcamo, J., Marker, M., Schulze, K., and Van Vuuren, D. P. (2005). Scenarios of freshwater fish extinctions from climate change and water withdrawal. Global Change Biology, 11(10), 1557-1564. https://doi.org/10.1111/j.1365-2486.2005.001008.x Yang, H.-C., Suen, J.-P., and Chou, S.-K. (2016). Estimating the Ungauged Natural Flow Regimes for Environmental Flow Management. Water Resources Management, 30(13), 4571-4584. https://doi.org/10.1007/s11269-016-1437-0 Yozzo, D. J., Wilber, P., and Will, R. J. (2004). Beneficial use of dredged material for habitat creation, enhancement, and restoration in New York–New Jersey Harbor. Journal of Environmental Management, 73(1), 39-52. https://doi.org/https://doi.org/10.1016/j.jenvman.2004.05.008 Yu-Min, W., Jan-Mou, L., Seydou, T., Chou-Ping, Y., Lian-Tsai, D., and Tso-Hsin, W. (2010). Apprehending the potential effect of sediment deposition due to dredging in Laonong River upstream, Southern Taiwan. International Journal of Physical Sciences, 5(14), 2135-2142. Yu, P.-S., Yang, T.-C., and Kuo, C.-C. (2006). Evaluating Long-Term Trends in Annual and Seasonal Precipitation in Taiwan. Water Resources Management, 20(6), 1007-1023. https://doi.org/10.1007/s11269-006-9020-8 Yu, P.-S., Yang, T.-C., and Wu, C.-K. (2002). Impact of climate change on water resources in southern Taiwan. Journal of Hydrology, 260(1), 161-175. https://doi.org/https://doi.org/10.1016/S0022-1694(01)00614-X Zhao, Y., Weng, Z., Chen, H., and Yang, J. (2020). Analysis of the Evolution of Drought, Flood, and Drought-Flood Abrupt Alternation Events under Climate Change Using the Daily SWAP Index. Water, 12(7), 1969. https://doi.org/10.3390/w12071969 牛敏威,2009。氣候變遷對台中地區缺水風險之影響評估。國立交通大學。 行政院農業委員會特有生物研究保育中心,2019。河川原生魚種及棲地適合度曲線調查與資料庫建置。 李明熹、廖怡雯與郭峯豪,2017。運用 TaiWAP 評估高屏溪集水區未來情境之降雨量與降雨沖蝕指數。農業工程學報,63(4), 50-64。 汪靜明,2000。大甲溪水資源環境教育。經濟部水資源局。 周銘泰,2020。臺灣淡水及河口魚蝦圖鑑 (初版)。晨星出版。 胡通哲與葉明峰,2002。基隆河員山子至八堵河段環境基流量之研究。中華水土保持學報。(Vol. 33, pp. 241-247) 莊明德、周文杰與曾友聖,2016。河川棲地分類方法之研究-以烏溪大旗橋河段為例。台灣生物多樣性研究,18(2), 157-168。 溫博文,2005。台灣中部河川生態棲地分佈特性及時空變化之研究。國立中央大學。桃園縣。https://hdl.handle.net/11296/enarg9 經濟部水利署。 2015。河川情勢調查作業要點。 經濟部水利署,2022。歷年疏濬成果。https://iriver.wra.gov.tw/Dredge/EfficiencyDetail?Y=110 經濟部水利署第三河川局,2010。大安溪水系治理規劃檢討報告(本流白布帆堤防堤頭至河口及支流景山溪。 經濟部水利署第三河川局,2016。大安溪水系治理規劃檢討(含本流與支流景山溪、烏石坑溪)水文分析報告。https://ebook.wra.gov.tw:8443/flip/2016/10105A0008B/mobile/index.html#p=1 詹見平,1994。台中縣大甲溪魚類誌。台中縣立文化中心。 農委會特有生物研究保育中心,2010。河川生物指標物種分析及其適合度曲線研究正式報告書。台中縣。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86540 | - |
| dc.description.abstract | 本研究主要目的是探討多砂河川的水文、河相與原生魚類(包含鯉科、鰕虎科以及爬鰍科)棲地結構問題。因氣候變遷會對魚類棲地造成影響,且目前此方面的研究在東亞亞熱帶地區較為缺乏,因此本研究也同時考量在氣候變遷情境下,河川流態如何被改變及對原生種魚類影響棲地品質的影響程度。本研究並以台灣中部大安溪流域為研究案例,提出新穎的「生態疏濬」概念,透過地形地貌營造改善現有棲地問題,並分析如何強化面對氣候變遷的生態韌性。 透過二維水理模式SRH-2D以及棲地適合度模型,針對現況分析的結果顯示大安溪棲地的現有問題包含了棲地多樣性不足、缺乏深水避難所,而中下游區域有中高品質棲地稀少且連續性不佳的問題。透過大安溪棲地結構類型(MU)隨流量的動態轉換,本研究發現在超越機率70%流量(Q70)下的深潭(Pool)及深流(Run)可在低流量時提供生物避難所,而淺流(Glide)則可作為高流量情境下的避難所。經由流量與棲地空間分布的關係,可歸納出大安溪合適棲地之縱向不連續與橫向不連續的發生原因以及出現時機,研究成果相較於過去文獻提出更小尺度的棲地不連續概念,並有助於進一步營造健康且具逆境韌性的魚類生態廊道。 另外,政府間氣候變化專門委員會第五次評估報告(IPCC-AR5)所提出的大部分氣候變遷情境下,流量延時曲線(FDC)顯示整體流量有下降趨勢,且越小流量事件之流量減少幅度越大,顯示氣候變遷可能加遽水生生物逆境條件。本研究模擬氣候變遷情境後發現,大安溪乾季流量減少將造成魚類的棲地品質明顯劣化,以最嚴重的RCP8.5之長期情境而言(2081-2100),四種目標魚種之權重可使用面積(WUA)減少5.7%至19.1%不等,且因中高品質棲地面積減少,將導致更嚴重的合適棲地縱向不連續問題。 本研究根據國際自然保護聯盟(IUCN)的NbS自然解方精神提出「生態疏濬」模擬條件,嘗試為棲地及廊道劣化問題提出創新的緩解及改善策略。「生態疏濬」是基於提升生物多樣性及棲地多樣性的河川疏濬概念。結合棲地動態分析及潭瀨結構模擬結果,本研究發現生態疏濬策略對棲地品質有顯著的正面效益,包括:(1)針對縱向合適棲地不連續的疏濬規劃,可成功改善棲地品質、並提高面對氣候變遷流量擾動的韌性;(2)針對橫向合適棲地不連續問題,降挖的疏濬方法(相較於回填)無論在氣候變遷前、後皆有較好的生態成效,可改善廊道連續性並增加棲地多樣性,惟需注意流量較小的支流須配合主流調整疏濬深度以避免合適棲地產生縱向不連續的情形。 | zh_TW |
| dc.description.abstract | This study aimed to explore the interconnections of hydrology, river morphology, and the habitat dynamics of endemic fishes in an alluvial river. The effect of climate change was also taken into account, considering its worldwide influence and lack of discussion in East Asia. In addition, novel solutions were provided based on the newly introduced concept of “ecological dredging” to improve current habitat problems and strengthen the resilience to climate change. Our result based on SRH-2D modeling indicated that lack of high-quality habitat, unsatisfied habitat diversity, deficiency in refugia, and disconnectivity were the primary habitat defects of the study region, Da-An Creek. The reasons and timing of both longitudinal and lateral disconnectivity of proper habitat, which were the finer-scale of disconnectivity related to the past works, were introduced and studied herein. Also, the dynamic translation of morphological unit (MU) was analyzed to understand further the relationship between habitat structure and flow discharge as the reference for the nature-based solutions. Under most climate change scenarios of the 5th Assessment Report from the Intergovernmental Panel on Climate Change (IPCC-AR5), the alteration of the flow duration curve (FDC) showed that the reduction of flow discharge during the dry season would aggravate fishes’ habitat. The weighted usable area (WUA) of four target species will decrease 5.7%-19.1% under the RCP8.5 scenario after 2100. Besides, we found that climate change would worsen habitat quality and disconnectivity. In the end, the concept of “ecological dredging” was proposed and designated to solve the abovementioned problem, and our findings exhibited significantly improved habitat quality. The strategy implemented in the longitudinal disconnectivity area positively impacted both habitat quality and environmental resilience to climate change. As for the strategies conducted in the lateral disconnectivity area, dredging was better than filling to form the pool-riffle structure, though both effectively improve habitat diversity, quality, and connectivity. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-20T00:01:59Z (GMT). No. of bitstreams: 1 U0001-0808202213390100.pdf: 7174982 bytes, checksum: 212c68e28c7231f90b2cdd048e0424fc (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 致謝 i 摘要 ii ABSTRACT iv 目錄 vi 表目錄 ix 圖目錄 x 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的 1 1.3 研究內容 2 1.4 論文架構說明 2 第二章 文獻回顧 4 2.1 氣候變遷與棲地 4 2.2 棲地復育 7 2.3 生態疏濬 13 第三章 研究材料及方法 16 3.1 研究區域 16 3.1.1 大安溪簡介 16 3.1.2 研究範圍 16 3.2 研究流程 19 3.3 氣候變遷情境設置 20 3.3.1 氣候變遷情境 20 3.3.2 GCM大氣環流模式 21 3.3.3 氣候變遷與水文模式軟體:TaiWAP 25 3.3.4 GWLF模式率定 29 3.4 水文統計分析 35 3.4.1 流量延時曲線(FDC)分析 35 3.4.2 流量延時曲線之比例改變 38 3.4.3 模式邊界流量Qp選定 40 3.5 SRH-2D水理模式 40 3.5.1 SRH-2D模式介紹 40 3.5.2 SRH-2D模式建立 42 3.5.3 SRH-2D模式率定驗證 45 3.6 棲地影響評估計算 48 3.6.1 棲地型態劃分(MU) 48 3.6.2 魚類棲地適合度指標 50 3.7 生態疏濬設計及模擬 57 第四章 大安溪水文與棲地現況 59 4.1 水文統計 59 4.2 流量與棲地類型(MU) 63 4.3 棲地類型隨流量的動態轉換 67 4.4 流量與魚類棲地適合度 72 4.5 流量與棲地品質分布 74 4.6 棲地適合度與棲地類型之空間分布 80 第五章 氣候變遷情境分析 87 5.1 氣候變化與水文統計 87 5.2 氣候變遷與棲地型態 96 5.3 氣候變遷與棲地適合度 98 5.4 氣候變遷下棲地類型與適合度之空間分布 106 第六章 生態疏濬情境分析 113 6.1 疏濬目標與疏濬規劃 113 6.2 疏濬結果 115 第七章 結果討論 129 7.1 水文 129 7.2 棲地類型(MU) 130 7.3 棲地適合度與棲地品質 134 7.4 棲地空間分布與連續性 137 7.5 生態疏濬 141 第八章 結論與建議 145 參考文獻 149 | |
| dc.language.iso | zh-TW | |
| dc.subject | 棲地連續性 | zh_TW |
| dc.subject | 避難所 | zh_TW |
| dc.subject | 流態 | zh_TW |
| dc.subject | 棲地復育 | zh_TW |
| dc.subject | 氣候變遷 | zh_TW |
| dc.subject | 生態疏濬 | zh_TW |
| dc.subject | 流態 | zh_TW |
| dc.subject | 避難所 | zh_TW |
| dc.subject | 潭—瀨結構 | zh_TW |
| dc.subject | 棲地連續性 | zh_TW |
| dc.subject | 棲地復育 | zh_TW |
| dc.subject | 氣候變遷 | zh_TW |
| dc.subject | 生態疏濬 | zh_TW |
| dc.subject | 潭—瀨結構 | zh_TW |
| dc.subject | flow regime | en |
| dc.subject | ecological dredging | en |
| dc.subject | climate change | en |
| dc.subject | habitat restoration | en |
| dc.subject | refugia | en |
| dc.subject | connectivity | en |
| dc.subject | pool-riffle structure | en |
| dc.subject | ecological dredging | en |
| dc.subject | climate change | en |
| dc.subject | habitat restoration | en |
| dc.subject | flow regime | en |
| dc.subject | refugia | en |
| dc.subject | connectivity | en |
| dc.subject | pool-riffle structure | en |
| dc.title | 考量氣候變遷及魚類棲地結構之多砂河川生態疏濬研究 | zh_TW |
| dc.title | Ecological dredging alters fish habitat structure and river corridor connectivity in an alluvial river to mitigate climate change effects | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 胡明哲(Ming-Che Hu),胡通哲(Tung-Jer Hu) | |
| dc.subject.keyword | 生態疏濬,氣候變遷,棲地復育,流態,避難所,棲地連續性,潭—瀨結構, | zh_TW |
| dc.subject.keyword | ecological dredging,climate change,habitat restoration,flow regime,refugia,connectivity,pool-riffle structure, | en |
| dc.relation.page | 158 | |
| dc.identifier.doi | 10.6342/NTU202202141 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-08-15 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-08-22 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0808202213390100.pdf | 7.01 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
