請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86515完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 丁建均(Jian-Jiun Ding) | |
| dc.contributor.author | Cheng-Hsuan Yu | en |
| dc.contributor.author | 游承軒 | zh_TW |
| dc.date.accessioned | 2023-03-20T00:00:23Z | - |
| dc.date.copyright | 2022-08-24 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-15 | |
| dc.identifier.citation | [1] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE Transactions on pattern analysis and machine intelligence, vol. 22, no. 8, pp. 888–905, 2000. 1, 16, 42 [2] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based image segmentation,” International journal of computer vision, vol. 59, no. 2, pp. 167–181, 2004. 1, 16, 20, 42 [3] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, “Contour detection and hierarchical image segmentation,” IEEE transactions on pattern analysis and machine intelligence, vol. 33, no. 5, pp. 898–916, 2010. 1, 16, 42, 49 [4] Z. Li, X.-M. Wu, and S.-F. Chang, “Segmentation using superpixels: A bipartite graph partitioning approach,” in 2012 IEEE conference on computer vision and pattern recognition. IEEE, 2012, pp. 789–796. 1, 16, 20, 42 [5] M.-Y. Liu, O. Tuzel, S. Ramalingam, and R. Chellappa, “Entropy rate superpixel segmentation,” in CVPR 2011. IEEE, 2011, pp. 2097–2104. 5, 8 [6] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. S¨usstrunk, “Slic superpixels compared to state-of-the-art superpixel methods,” IEEE transactions on pattern analysis and machine intelligence, vol. 34, no. 11, pp. 2274–2282, 2012. 5, 6, 8 [7] Z. Li and J. Chen, “Superpixel segmentation using linear spectral clustering,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 1356–1363. 5, 8 [8] V. Jampani, D. Sun, M.-Y. Liu, M.-H. Yang, and J. Kautz, “Superpixel sampling networks,” in Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 352–368. 5, 8, 12, 41 [9] F. Yang, Q. Sun, H. Jin, and Z. Zhou, “Superpixel segmentation with fully convolutional networks,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 13 964–13 973. 5, 12, 41 [10] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 3431–3440. 12 [11] L. Gao, J. Song, F. Nie, F. Zou, N. Sebe, and H. T. Shen, “Graph-withoutcut: An ideal graph learning for image segmentation,” in Thirtieth AAAI conference on artificial intelligence, 2016. 16 [12] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward feature space analysis,” IEEE Transactions on pattern analysis and machine intelligence, vol. 24, no. 5, pp. 603–619, 2002. 20, 42 [13] P. Arbel´aez, J. Pont-Tuset, J. T. Barron, F. Marques, and J. Malik, “Multiscale combinatorial grouping,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2014, pp. 328–335. 24 [14] T. Liu, M. Seyedhosseini, and T. Tasdizen, “Image segmentation using hierarchical merge tree,” IEEE transactions on image processing, vol. 25, no. 10, pp. 4596–4607, 2016. 24 [15] J. Malik, S. Belongie, T. Leung, and J. Shi, “Contour and texture analysis for image segmentation,” International journal of computer vision, vol. 43, no. 1, pp. 7 27, 2001. 32, 42 [16] A. P. Kelm, V. S. Rao, and U. Z¨olzer, “Object contour and edge detection with refinecontournet,” in International Conference on Computer Analysis of Images and Patterns. Springer, 2019, pp. 246–258. 32 [17] N. X. Vinh, J. Epps, and J. Bailey, “Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance,” The Journal of Machine Learning Research, vol. 11, pp. 2837–2854, 2010. 35, 42 [18] M. Meil˘a, “Comparing clusterings—an information based distance,” Journal of multivariate analysis, vol. 98, no. 5, pp. 873–895, 2007. 42 [19] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, “From contours to regions: An empirical evaluation,” in 2009 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2009, pp. 2294–2301. 42 [20] M. Donoser and D. Schmalstieg, “Discrete-continuous gradient orientation estimation for faster image segmentation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 3158–3165. 42, 49 [21] X. Xia and B. Kulis, “W-net: A deep model for fully unsupervised image segmentation,” arXiv preprint arXiv:1711.08506, 2017. 42, 49 [22] D. Huang, J.-H. Lai, C.-D. Wang, and P. C. Yuen, “Ensembling oversegmentations: From weak evidence to strong segmentation,” Neurocomputing, vol. 207, pp. 416–427, 2016. 42 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86515 | - |
| dc.description.abstract | 近年來,許多影像分割的方法使用超像素來減少運算成本,而有了深度學習的幫助,監督式學習的方法往往正確率比傳統的方法還要高。在這篇論文中,我們提出一個基於階層式超像素融合架構的新的影像分割方法。利用迭代的方式融合超像素同時更新結果,我們將影像分割轉換成一連串的超像素融合決策問題。與其他方法相比,我們從原影像提取大量特徵,利用特徵讓分類器學習如何分辨兩個超像素是否該合併。我們採用相同的階層式架構,把原本的超像素融合決策步驟改為用標準答案計算的標籤來產生訓練樣本。即使訓練集中只有一些訓練圖片,仍然可以得到大量的訓練樣本。而且,使用初始不同數量的超像素可以更進一步增加訓練樣本的數量,讓分類器達到更高的準確率與更好的穩定性。而多階級的結構用來實現可適性的超像素融合標準。在柏克萊分割資料集的實驗結果顯示我們的方法勝過其他的方法並且達到很高的影像分割準確率。 | zh_TW |
| dc.description.abstract | Recently, many image segmentation approaches are superpixel-based in order to reduce computation costs, and with the aid of deep learning, supervised methods achieve higher accuracy than traditional methods. In this thesis, we proposed a novel image segmentation method based on the hierarchical superpixel merging architecture for superpixels. With iterative operations of superpixel merging and result update, we transform image segmentation into a series of decision problems about superpixel merging. Compared with other superpixel-based methods, we extract a lot of features from original images, and decide whether two superpixels should be merged or not by learning classifiers with these features. We adopt the same hierarchical architecture for training sample generation by replacing superpixel merging decisions during testing with computing labels using ground truth. Even if there are only a few training images in the training set, a lot of training samples can be obtained. Furthermore, with different number of superpixels, we can get much larger number of training samples to make classifiers more accurate and robust. The multi-stage structure is used for implementing adaptive merging criteria for superpixels. Experiment results on the Berkeley segmentation dataset show that our proposed method outperforms other state-of-the-art methods and achieves high performance in image segmentation. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-20T00:00:23Z (GMT). No. of bitstreams: 1 U0001-0208202215384600.pdf: 5779668 bytes, checksum: ca47eee43893e68de83ed93cc1f4ee3f (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | Abstract i List of Figures v List of Tables vii 1 Introduction 1 2 Related Work 5 2.1 Superpixel Algorithms . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 Simple Linear Iterative Clustering (SLIC) Superpixels . . 6 2.1.2 Superpixel Sampling Networks (SSN) . . . . . . . . . . . 8 2.1.3 Superpixel Segmentation with Fully Convolutional Networks (SpixelFCN) . . . . . . . . . . . . . . . . . . . . . 12 2.2 Traditional Segmentation Algorithms . . . . . . . . . . . . . . . 16 2.2.1 Contour Detection and Hierarchical Image Segmentation (gPb-OWT-UCM) . . . . . . . . . . . . . . . . . . . . . 16 2.2.2 Segmentation Using Aggregating Superpixels (SAS) . . . 20 2.3 Learning-based Segmentation Algorithms . . . . . . . . . . . . . 24 2.3.1 Image Segmentation Using Hierarchical Merge Tree (HMT) 24 3 Proposed Method 29 3.1 Hierarchical Merging Architecture . . . . . . . . . . . . . . . . . 29 3.2 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.3 Training Sample Generation . . . . . . . . . . . . . . . . . . . . 35 3.4 Two-Stage Structure . . . . . . . . . . . . . . . . . . . . . . . . 38 3.4.1 Loss Function . . . . . . . . . . . . . . . . . . . . . . . . 38 4 Experiments 41 4.1 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.2 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 5 Simulations 49 6 Conclusion 55 Reference 57 | |
| dc.language.iso | zh-TW | |
| dc.subject | 影像分割 | zh_TW |
| dc.subject | 監督式學習 | zh_TW |
| dc.subject | 超像素融合 | zh_TW |
| dc.subject | 監督式學習 | zh_TW |
| dc.subject | 影像分割 | zh_TW |
| dc.subject | 超像素融合 | zh_TW |
| dc.subject | Image segmentation | en |
| dc.subject | superpixel merging | en |
| dc.subject | supervised learning | en |
| dc.subject | superpixel merging | en |
| dc.subject | Image segmentation | en |
| dc.subject | supervised learning | en |
| dc.title | 利用多階段階級式融合架構的影像分割技術 | zh_TW |
| dc.title | Image Segmentation Using Multi-Stage Hierarchical Merging Architecture | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王鵬華(Peng-Hua Wang),張榮吉(Jung-Chi Chang),簡鳳村(Feng-Tsun Chien) | |
| dc.subject.keyword | 影像分割,超像素融合,監督式學習, | zh_TW |
| dc.subject.keyword | Image segmentation,superpixel merging,supervised learning, | en |
| dc.relation.page | 59 | |
| dc.identifier.doi | 10.6342/NTU202201974 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-08-16 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-08-24 | - |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0208202215384600.pdf | 5.64 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
