請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86509完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林詩舜(Shih-Shun Lin) | |
| dc.contributor.author | Abigail Chew Zhi Ying | en |
| dc.contributor.author | 周芝穎 | zh_TW |
| dc.date.accessioned | 2023-03-20T00:00:01Z | - |
| dc.date.copyright | 2022-08-18 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-15 | |
| dc.identifier.citation | Aguilar, E., Almendral, D., Allende, L., Pacheco, R., Chung, B. N., Canto, T., & Tenllado, F. (2015). The P25 protein of potato virus X (PVX) is the main pathogenicity determinant responsible for systemic necrosis in PVX-associated synergisms. J Virol, 89(4), 2090-2103. https://doi.org/10.1128/jvi.02896-14 Anandalakshmi, R., Pruss, G. J., Ge, X., Marathe, R., Mallory, A. C., Smith, T. H., & Vance, V. B. (1998). A viral suppressor of gene silencing in plants. Proc Natl Acad Sci U S A, 95(22), 13079-13084. https://doi.org/10.1073/pnas.95.22.13079 Anh, T. P. (2021). Investigation of the HC-Pro interaction and interfering with critical components of RNA silencing through cell biology approach Baumberger, N., & Baulcombe, D. C. (2005). Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci U S A, 102(33), 11928-11933. https://doi.org/10.1073/pnas.0505461102 Branscheid, A., Marchais, A., Schott, G., Lange, H., Gagliardi, D., Andersen, S. U., Voinnet, O., & Brodersen, P. (2015). SKI2 mediates degradation of RISC 5'-cleavage fragments and prevents secondary siRNA production from miRNA targets in Arabidopsis. Nucleic Acids Res, 43(22), 10975-10988. https://doi.org/10.1093/nar/gkv1014 Bu, F., Yang, M., Guo, X., Huang, W., & Chen, L. (2020). Multiple Functions of ATG8 Family Proteins in Plant Autophagy. Front Cell Dev Biol, 8, 466. https://doi.org/10.3389/fcell.2020.00466 Carbonell, A., & Carrington, J. C. (2015). Antiviral roles of plant ARGONAUTES. Curr Opin Plant Biol, 27, 111-117. https://doi.org/10.1016/j.pbi.2015.06.013 Carmell, M. A., Xuan, Z., Zhang, M. Q., & Hannon, G. J. (2002). The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev, 16(21), 2733-2742. https://doi.org/10.1101/gad.1026102 Carthew, R. W., & Sontheimer, E. J. (2009). Origins and Mechanisms of miRNAs and siRNAs. Cell, 136(4), 642-655. https://doi.org/10.1016/j.cell.2009.01.035 Clough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 16(6), 735-743. https://doi.org/10.1046/j.1365-313x.1998.00343.x Dorcey, E., Rodriguez-Villalon, A., Salinas, P., Santuari, L., Pradervand, S., Harshman, K., & Hardtke, C. S. (2012). Context-dependent dual role of SKI8 homologs in mRNA synthesis and turnover. PLoS Genet, 8(4), e1002652. https://doi.org/10.1371/journal.pgen.1002652 Fal, K., Cortes, M., Liu, M., Collaudin, S., Das, P., Hamant, O., & Trehin, C. (2019). Paf1c defects challenge the robustness of flower meristem termination in Arabidopsis thaliana. Development, 146(20). https://doi.org/10.1242/dev.173377 Garcia-Ruiz, H., Carbonell, A., Hoyer, J. S., Fahlgren, N., Gilbert, K. B., Takeda, A., Giampetruzzi, A., Garcia Ruiz, M. T., McGinn, M. G., Lowery, N., Martinez Baladejo, M. T., & Carrington, J. C. (2015). Roles and programming of Arabidopsis ARGONAUTE proteins during Turnip mosaic virus infection. PLoS Pathog, 11(3), e1004755. https://doi.org/10.1371/journal.ppat.1004755 Geng, J., & Klionsky, D. J. (2008). The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. 'Protein modifications: beyond the usual suspects' review series. EMBO Rep, 9(9), 859-864. https://doi.org/10.1038/embor.2008.163 Hafrén, A., Üstün, S., Hochmuth, A., Svenning, S., Johansen, T., & Hofius, D. (2018). Turnip Mosaic Virus Counteracts Selective Autophagy of the Viral Silencing Suppressor HCpro. Plant Physiol, 176(1), 649-662. https://doi.org/10.1104/pp.17.01198 Harvey, J. J., Lewsey, M. G., Patel, K., Westwood, J., Heimstädt, S., Carr, J. P., & Baulcombe, D. C. (2011). An antiviral defense role of AGO2 in plants. PLoS One, 6(1), e14639. https://doi.org/10.1371/journal.pone.0014639 Hu, S.-F., Wei, W.-L., Hong, S.-F., Fang, R.-Y., Wu, H.-Y., Lin, P.-C., Sanobar, N., Wang, H.-P., Sulistio, M., Wu, C.-T., Lo, H.-F., & Lin, S.-S. (2020). Investigation of the effects of P1 on HC-pro-mediated gene silencing suppression through genetics and omics approaches. Botanical Studies, 61(1). https://doi.org/10.1186/s40529-020-00299-x Iki, T., Yoshikawa, M., Nishikiori, M., Jaudal, M. C., Matsumoto-Yokoyama, E., Mitsuhara, I., Meshi, T., & Ishikawa, M. (2010). In vitro assembly of plant RNA-induced silencing complexes facilitated by molecular chaperone HSP90. Mol Cell, 39(2), 282-291. https://doi.org/10.1016/j.molcel.2010.05.014 Jonas, S., & Izaurralde, E. (2015). Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet, 16(7), 421-433. https://doi.org/10.1038/nrg3965 Kasschau, K. D., & Carrington, J. C. (1998). A counterdefensive strategy of plant viruses: suppression of posttranscriptional gene silencing. Cell, 95(4), 461-470. https://doi.org/10.1016/s0092-8674(00)81614-1 Kasschau, K. D., Xie, Z., Allen, E., Llave, C., Chapman, E. J., Krizan, K. A., & Carrington, J. C. (2003). P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA unction. Dev Cell, 4(2), 205-217. https://doi.org/10.1016/s1534-5807(03)00025-x Kung, Y. J., Lin, P. C., Yeh, S. D., Hong, S. F., Chua, N. H., Liu, L. Y., Lin, C. P., Huang, Y. H., Wu, H. W., Chen, C. C., & Lin, S. S. (2014). Genetic analyses of the FRNK motif function of Turnip mosaic virus uncover multiple and potentially interactive pathways of cross-protection. Mol Plant Microbe Interact, 27(9), 944-955. https://doi.org/10.1094/mpmi-04-14-0116-r Kurihara, Y., Takashi, Y., & Watanabe, Y. (2006). The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. Rna, 12(2), 206-212. https://doi.org/10.1261/rna.2146906 Martínez, F., & Daròs, J. A. (2014). Tobacco etch virus protein P1 traffics to the nucleolus and associates with the host 60S ribosomal subunits during infection. J Virol, 88(18), 10725-10737. https://doi.org/10.1128/jvi.00928-14 Meister, G. (2013). Argonaute proteins: functional insights and emerging roles. Nat Rev Genet, 14(7), 447-459. https://doi.org/10.1038/nrg3462 Michaeli, S., Clavel, M., Lechner, E., Viotti, C., Wu, J., Dubois, M., Hacquard, T., Derrien, B., Izquierdo, E., Lecorbeiller, M., Bouteiller, N., De Cilia, J., Ziegler-Graff, V., Vaucheret, H., Galili, G., & Genschik, P. (2019). The viral F-box protein P0 induces an ER-derived autophagy degradation pathway for the clearance of membrane-bound AGO1. Proc Natl Acad Sci U S A, 116(45), 22872-22883. https://doi.org/10.1073/pnas.1912222116 Müller, M., Fazi, F., & Ciaudo, C. (2019). Argonaute Proteins: From Structure to Function in Development and Pathological Cell Fate Determination. Front Cell Dev Biol, 7, 360. https://doi.org/10.3389/fcell.2019.00360 O'Brien, J., Hayder, H., Zayed, Y., & Peng, C. (2018). Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation [Review]. Frontiers in Endocrinology, 9. https://doi.org/10.3389/fendo.2018.00402 Orban, T. I., & Izaurralde, E. (2005). Decay of mRNAs targeted by RISC requires XRN1, the Ski complex, and the exosome. Rna, 11(4), 459-469. https://doi.org/10.1261/rna.7231505 Pitzalis, N., Amari, K., Graindorge, S., Pflieger, D., Donaire, L., Wassenegger, M., Llave, C., & Heinlein, M. (2020). Turnip mosaic virus in oilseed rape activates networks of sRNA-mediated interactions between viral and host genomes. Commun Biol, 3(1), 702. https://doi.org/10.1038/s42003-020-01425-y Ross, J. P., & Kassir, Z. (2014). The varied roles of nuclear argonaute-small RNA complexes and avenues for therapy. Mol Ther Nucleic Acids, 3(10), e203. https://doi.org/10.1038/mtna.2014.54 Shamandi, N., Zytnicki, M., Charbonnel, C., Elvira-Matelot, E., Bochnakian, A., Comella, P., Mallory, A. C., Lepère, G., Sáez-Vásquez, J., & Vaucheret, H. (2015). Plants Encode a General siRNA Suppressor That Is Induced and Suppressed by Viruses. PLoS Biol, 13(12), e1002326. https://doi.org/10.1371/journal.pbio.1002326 Shang, Q. W. (2020). Identification of Cas9 gene in Lactobacillus reuteri Pg4 and investigation of the role of ATG genes in PTGS suppression through CRISPR/Cas9 knock out approach Shpilka, T., Weidberg, H., Pietrokovski, S., & Elazar, Z. (2011). Atg8: an autophagy-related ubiquitin-like protein family. Genome Biol, 12(7), 226. https://doi.org/10.1186/gb-2011-12-7-226 Soitamo, A. J., Jada, B., & Lehto, K. (2011). HC-Pro silencing suppressor significantly alters the gene expression profile in tobacco leaves and flowers. BMC Plant Biol, 11, 68. https://doi.org/10.1186/1471-2229-11-68 Su, H., Trombly, M. I., Chen, J., & Wang, X. (2009). Essential and overlapping functions for mammalian Argonautes in microRNA silencing. Genes Dev, 23(3), 304-317. https://doi.org/10.1101/gad.1749809 Tan, H., Li, B., & Guo, H. (2020). The diversity of post-transcriptional gene silencing mediated by small silencing RNAs in plants. Essays Biochem, 64(6), 919-930. https://doi.org/10.1042/ebc20200006 Wang, X. B., Jovel, J., Udomporn, P., Wang, Y., Wu, Q., Li, W. X., Gasciolli, V., Vaucheret, H., & Ding, S. W. (2011). The 21-nucleotide, but not 22-nucleotide, viral secondary small interfering RNAs direct potent antiviral defense by two cooperative argonautes in Arabidopsis thaliana. Plant Cell, 23(4), 1625-1638. https://doi.org/10.1105/tpc.110.082305 Wang, Z. P., Xing, H. L., Dong, L., Zhang, H. Y., Han, C. Y., Wang, X. C., & Chen, Q. J. (2015). Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biol, 16(1), 144. https://doi.org/10.1186/s13059-015-0715-0 Yang, Z., & Klionsky, D. J. (2009). An overview of the molecular mechanism of autophagy. Curr Top Microbiol Immunol, 335, 1-32. https://doi.org/10.1007/978-3-642-00302-8_1 Ying, X. B., Dong, L., Zhu, H., Duan, C. G., Du, Q. S., Lv, D. Q., Fang, Y. Y., Garcia, J. A., Fang, R. X., & Guo, H. S. (2010). RNA-dependent RNA polymerase 1 from Nicotiana tabacum suppresses RNA silencing and enhances viral infection in Nicotiana benthamiana. Plant Cell, 22(4), 1358-1372. https://doi.org/10.1105/tpc.109.072058 Zhang, H., Ransom, C., Ludwig, P., & van Nocker, S. (2003). Genetic analysis of early flowering mutants in Arabidopsis defines a class of pleiotropic developmental regulator required for expression of the flowering-time switch flowering locus C. Genetics, 164(1), 347-358. https://doi.org/10.1093/genetics/164.1.347 Zhang, X., Niu, D., Carbonell, A., Wang, A., Lee, A., Tun, V., Wang, Z., Carrington, J. C., Chang, C. E., & Jin, H. (2014). ARGONAUTE PIWI domain and microRNA duplex structure regulate small RNA sorting in Arabidopsis. Nat Commun, 5, 5468. https://doi.org/10.1038/ncomms6468 Zhang, X., Yuan, Y. R., Pei, Y., Lin, S. S., Tuschl, T., Patel, D. J., & Chua, N. H. (2006). Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis Argonaute1 cleavage activity to counter plant defense. Genes Dev, 20(23), 3255-3268. https://doi.org/10.1101/gad.1495506 Zhang, X., Zhu, Y., Wu, H., & Guo, H. (2016). Post-transcriptional gene silencing in plants: a double-edged sword. Sci China Life Sci, 59(3), 271-276. https://doi.org/10.1007/s11427-015-4972-7 Zhang, Z., Hu, F., Sung, M. W., Shu, C., Castillo-González, C., Koiwa, H., Tang, G., Dickman, M., Li, P., & Zhang, X. (2017). RISC-interacting clearing 3'- 5' exoribonucleases (RICEs) degrade uridylated cleavage fragments to maintain functional RISC in Arabidopsis thaliana. Elife, 6. https://doi.org/10.7554/eLife.24466 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86509 | - |
| dc.description.abstract | 轉錄後基因靜默作用 (PTGS) 是植物利用mRNA降解和轉譯抑制來抵抗病毒的重要機制。然而,馬鈴薯Y病毒如蕪菁嵌紋病毒 (TuMV) 的致病蛋白 P1/HC-Pro 可突破此防禦機制。在植物感染過程中,P1 蛋白與HC-Pro 分割且增強 HC-Pro 的作用,但其機制尚不清楚。先前研究表示三種馬鈴薯病毒的 P1,包括 TuMV、煙草蝕刻病毒 (TEV) 和矮南瓜黃化嵌紋病毒 (ZYMV) 在體內與VERNALIZATION INDEPENDENCE 3 (VIP3) 相互作用。VIP3 作為 RNA 胞泌體的組成蛋白,在阿拉伯芥中參與降解RNA誘導型緘黙化複合體 (RISC) 5' 端的切割片段。在這項研究中,我們透過 CRISPR/Cas9 基因編輯在阿拉伯芥中創造了 vip3ge 突變體。同時,我們產製 VIP3 特異性抗體來檢測不同突變體中的 VIP3 蛋白表現量。我們利用mRNA 北方墨點法分析 P1/HC-ProTu 和 vip3ge 突變株的5' 端切割片段的降解狀況。結果顯示CSD2 5'-切割片段在 vip3ge 突變體和 P1/HC-ProTu植物中累積。此外,我們還研究了 ARGONAUTE 2 (AGO2),它是 Argonaute (AGO) 蛋白之一,可結合小 RNA 並進行切割。先前研究發現由miR403所標定的AGO2 mRNA 是由 AGO1 所調節。我們的結果顯示P1/HC-ProTu植物中 AGO1 蛋白表現量減少,AGO2 蛋白表現量上升,表明 AGO2 取代 AGO1 抵抗病毒的防禦作用。此外,我們產製 ATG8a 特異性抗體 (α-ATG8a 抗體) 來研究 P1/HC-ProTu植物中觸發AGO1 降解的自噬機制。 α-ATG8a 抗體能夠檢測 Col-0 和其他突變株的內源性 ATG8a。總體而言,這項研究有助於我們闡明阿拉伯芥中 PTGS 的相關基因如 VIP3、AGO2 及 ATG8a,以及病毒抑制因子 P1/HC-ProTu如何抑制 PTGS 。 | zh_TW |
| dc.description.abstract | Post-transcriptional gene silencing (PTGS) is an essential mechanism for plants to suppress viruses by mRNA decay and translational repression. However, potyvirus such as turnip mosaic virus (TuMV) encodes pathogenicity proteins, P1/HC-Pro that counteract this defence mechanism. During infection upon the plant, P1 protein cleaves itself from HC-Pro. Previous research showed that HC-Pro which has an FRNK motif triggers degradation of AGO1, while the function of P1 in enhancing HC-Pro remains unclear. It was demonstrated that P1 of three potyviruses, including TuMV, tobacco etch virus (TEV) and zucchini yellow mosaic virus (ZYMV) interacted with VERNALIZATION INDEPENDENCE 3 (VIP3) in vivo. VIP3 is a component of RNA exosome that is involved in the degradation of RNA-induced silencing complex (RISC) 5'-cleavage fragments in Arabidopsis. In this study, we created vip3ge mutants in Arabidopsis by CRISPR/Cas9 gene editing approach. We also generated a VIP3-specific antibody to detect VIP3 protein level in different mutants. The generated α-VIP3 antibody is able to detect endogenous VIP3 in Arabidopsis. We performed mRNA northern blot with P1/HC-ProTu and vip3ge mutants. The accumulation of CSD2 5'-cleavage fragments was shown in vip3ge mutants and P1/HC-ProTu plants. In addition, we also study on ARGONAUTE 2 (AGO2) which is one of the Argonaute (AGO) proteins that bind small RNAs and cleave at their target sites. Previous research showed that AGO2 mRNA is targeted by miR403 which is regulated by AGO1. Our result also showed that level of AGO1 decreased and AGO2 protein increased in P1/HC-ProTu plants, suggesting that AGO2 takes over the role of AGO1 in antiviral defence. Besides, we generated ATG8a-specific antibodies (α-ATG8a antibody) to investigate the mechanism of autophagic AGO1 degradation that is triggered in P1/HC-ProTu plants. The α-ATG8a antibody is able to detect endogenous ATG8a in the wild-type Col-0 and other transgenic lines. Overall, this study helps us elucidate the relevance of PTGS-related genes, including VIP3, AGO2, and ATG8a in Arabidopsis and how the viral suppressor P1/HC-ProTu disrupted the components of PTGS in the transgenic plants. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-20T00:00:01Z (GMT). No. of bitstreams: 1 U0001-1208202219314700.pdf: 2522371 bytes, checksum: 6bc690cc2efde34f828f407a68586d21 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | Table of Contents Acknowledgement I 中文摘要 II Abstract III List of tables VII List of figures VIII Introduction 1 Post-transcriptional gene silencing 1 Gene silencing viral suppressor P1/HC-Pro 2 The P1-interacting protein, VIP3 3 AGO1 vs. AGO2 4 Autophagy-related 8 proteins and its related gene ATG8a 5 Materials and methods 6 Plant materials and growth conditions 6 Generation of mutant lines with CRISPR/Cas9 6 Mutant genotyping 6 RNA extraction 7 Antibody production 7 Western blotting 9 mRNA cleavage fragments analysis by northern blotting 9 Nuclear-Cytoplasmic Fractionation 10 Results 12 VIP3 genes knocked out by CRISPR/Cas9 12 Detection of endogenous VIP3 protein 13 Demonstration of mRNA cleavage fragments in vip3ge mutants and P1/HC-ProTu plants 14 AGO2 genes knocked out by CRISPR/Cas9 15 AGO1 and AGO2 protein expression in P1/HC-ProTu plants and TuMV-infected plants 16 Detection of endogenous ATG8a protein 17 Discussion 20 P1/HC-ProTu inhibits RISC 5'-cleavage fragment degradation 20 Study of AGO2 protein in PTGS and antiviral defense 20 Subcellular localization of ATG8a 22 Working Hypothesis 23 Conclusion 23 References 25 Tables and figures 32 | |
| dc.language.iso | en | |
| dc.subject | ATG8a | zh_TW |
| dc.subject | PTGS | zh_TW |
| dc.subject | TuMV | zh_TW |
| dc.subject | VIP3 | zh_TW |
| dc.subject | AGO2 | zh_TW |
| dc.subject | ATG8a | zh_TW |
| dc.subject | PTGS | zh_TW |
| dc.subject | TuMV | zh_TW |
| dc.subject | VIP3 | zh_TW |
| dc.subject | AGO2 | zh_TW |
| dc.title | 阿拉伯芥轉錄後基因靜默路徑相關基因研究 | zh_TW |
| dc.title | Investigation of post-transcriptional gene silencing pathway related genes in Arabidopsis thaliana | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 邱子珍(Tzyy-Jen Chiou),吳素幸(Shu-Hsing Wu),陳荷明(Ho-Ming Chen) | |
| dc.subject.keyword | PTGS,TuMV,VIP3,AGO2,ATG8a, | zh_TW |
| dc.relation.page | 46 | |
| dc.identifier.doi | 10.6342/NTU202202356 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-08-16 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物科技研究所 | zh_TW |
| dc.date.embargo-lift | 2022-08-18 | - |
| 顯示於系所單位: | 生物科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1208202219314700.pdf | 2.46 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
