Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86508
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林詩舜(Shih-Shun Lin)
dc.contributor.authorPham Thanh Haen
dc.contributor.author范青河zh_TW
dc.date.accessioned2023-03-19T23:59:57Z-
dc.date.copyright2022-08-18
dc.date.issued2022
dc.date.submitted2022-08-15
dc.identifier.citationAnandalakshmi, R., Pruss, G. J., Ge, X., Marathe, R., Mallory, A. C., Smith, T. H., & Vance, V. B. (1998). A viral suppressor of gene silencing in plants. Proc Natl Acad Sci U S A, 95(22), 13079-13084. https://doi.org/10.1073/pnas.95.22.13079 Aukerman, M. J., & Sakai, H. (2003). Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell, 15(11), 2730-2741. https://doi.org/10.1105/tpc.016238 Axtell, M. J. (2013). Classification and comparison of small RNAs from plants. Annu Rev Plant Biol, 64, 137-159. https://doi.org/10.1146/annurev-arplant-050312-120043 Azevedo, J., Garcia, D., Pontier, D., Ohnesorge, S., Yu, A., Garcia, S., Braun, L., Bergdoll, M., Hakimi, M. A., Lagrange, T., & Voinnet, O. (2010). Argonaute quenching and global changes in Dicer homeostasis caused by a pathogen-encoded GW repeat protein. Genes Dev, 24(9), 904-915. https://doi.org/10.1101/gad.1908710 Boutet, S., Vazquez, F., Liu, J., Béclin, C., Fagard, M., Gratias, A., Morel, J. B., Crété, P., Chen, X., & Vaucheret, H. (2003). Arabidopsis HEN1: a genetic link between endogenous miRNA controlling development and siRNA controlling transgene silencing and virus resistance. Curr Biol, 13(10), 843-848. https://doi.org/10.1016/s0960-9822(03)00293-8 Burgyán, J., & Havelda, Z. (2011). Viral suppressors of RNA silencing. Trends Plant Sci, 16(5), 265-272. https://doi.org/10.1016/j.tplants.2011.02.010 Carthew, R. W., & Sontheimer, E. J. (2009). Origins and Mechanisms of miRNAs and siRNAs. Cell, 136(4), 642-655. https://doi.org/10.1016/j.cell.2009.01.035 Chao, C. H., Wu, H. W., Chen, K. C., Lin, S. S., & Yeh, S. D. (2010). Aphid transmissibility and cross-protection effectiveness of an attenuated mutant of zucchini yellow mosaic virus. Plant Protection Bulletin, 52(1), 1-16. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84887593610&partnerID=40&md5=6b68e82d8139fe6195ce63849875c1d7 Chapman, E. J., Prokhnevsky, A. I., Gopinath, K., Dolja, V. V., & Carrington, J. C. (2004). Viral RNA silencing suppressors inhibit the microRNA pathway at an intermediate step. Genes Dev, 18(10), 1179-1186. https://doi.org/10.1101/gad.1201204 Chen, H. Y., Yang, J., Lin, C., & Yuan, Y. A. (2008). Structural basis for RNA-silencing suppression by Tomato aspermy virus protein 2b. EMBO Rep, 9(8), 754-760. https://doi.org/10.1038/embor.2008.118 Chiu, M. H., Chen, I. H., Baulcombe, D. C., & Tsai, C. H. (2010). The silencing suppressor P25 of Potato virus X interacts with Argonaute1 and mediates its degradation through the proteasome pathway. Mol Plant Pathol, 11(5), 641-649. https://doi.org/10.1111/j.1364-3703.2010.00634.x Cronin, S., Verchot, J., Haldeman-Cahill, R., Schaad, M. C., & Carrington, J. C. (1995). Long-distance movement factor: a transport function of the potyvirus helper component proteinase. Plant Cell, 7(5), 549-559. https://doi.org/10.1105/tpc.7.5.549 Csorba, T., & Burgyán, J. (2011). Gel mobility shift assays for RNA binding viral RNAi suppressors. Methods Mol Biol, 721, 245-252. https://doi.org/10.1007/978-1-61779-037-9_15 Derrien, B., Baumberger, N., Schepetilnikov, M., Viotti, C., De Cillia, J., Ziegler-Graff, V., Isono, E., Schumacher, K., & Genschik, P. (2012). Degradation of the antiviral component ARGONAUTE1 by the autophagy pathway. Proc Natl Acad Sci U S A, 109(39), 15942-15946. https://doi.org/10.1073/pnas.1209487109 Fagard, M., Boutet, S., Morel, J. B., Bellini, C., & Vaucheret, H. (2000). AGO1, QDE-2, and RDE-1 are related proteins required for post-transcriptional gene silencing in plants, quelling in fungi, and RNA interference in animals. Proc Natl Acad Sci U S A, 97(21), 11650-11654. https://doi.org/10.1073/pnas.200217597 Gandikota, M., Birkenbihl, R. P., Höhmann, S., Cardon, G. H., Saedler, H., & Huijser, P. (2007). The miRNA156/157 recognition element in the 3' UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. Plant J, 49(4), 683-693. https://doi.org/10.1111/j.1365-313X.2006.02983.x Giner, A., Lakatos, L., García-Chapa, M., López-Moya, J. J., & Burgyán, J. (2010). Viral protein inhibits RISC activity by argonaute binding through conserved WG/GW motifs. PLoS Pathog, 6(7), e1000996. https://doi.org/10.1371/journal.ppat.1000996 Guleria, P., Mahajan, M., Bhardwaj, J., & Yadav, S. K. (2011). Plant small RNAs: biogenesis, mode of action and their roles in abiotic stresses. Genomics Proteomics Bioinformatics, 9(6), 183-199. https://doi.org/10.1016/s1672-0229(11)60022-3 Guo, Q., Liu, Q., Smith, N. A., Liang, G., & Wang, M. B. (2016). RNA Silencing in Plants: Mechanisms, Technologies and Applications in Horticultural Crops. Curr Genomics, 17(6), 476-489. https://doi.org/10.2174/1389202917666160520103117 Hu, S. F., Wei, W. L., Hong, S. F., Fang, R. Y., Wu, H. Y., Lin, P. C., Sanobar, N., Wang, H. P., Sulistio, M., Wu, C. T., Lo, H. F., & Lin, S. S. (2020). Investigation of the effects of P1 on HC-pro-mediated gene silencing suppression through genetics and omics approaches. Bot Stud, 61(1), 22. https://doi.org/10.1186/s40529-020-00299-x Huang, Y., Ji, L., Huang, Q., Vassylyev, D. G., Chen, X., & Ma, J. B. (2009). Structural insights into mechanisms of the small RNA methyltransferase HEN1. Nature, 461(7265), 823-827. https://doi.org/10.1038/nature08433 Incarbone, M., & Dunoyer, P. (2013). RNA silencing and its suppression: novel insights from in planta analyses. Trends Plant Sci, 18(7), 382-392. https://doi.org/10.1016/j.tplants.2013.04.001 Ivanov, K. I., Eskelin, K., Bašić, M., De, S., Lõhmus, A., Varjosalo, M., & Mäkinen, K. (2016). Molecular insights into the function of the viral RNA silencing suppressor HCPro. Plant J, 85(1), 30-45. https://doi.org/10.1111/tpj.13088 Kasschau, K. D., & Carrington, J. C. (1998). A counterdefensive strategy of plant viruses: suppression of posttranscriptional gene silencing. Cell, 95(4), 461-470. https://doi.org/10.1016/s0092-8674(00)81614-1 Kasschau, K. D., Xie, Z., Allen, E., Llave, C., Chapman, E. J., Krizan, K. A., & Carrington, J. C. (2003). P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA unction. Dev Cell, 4(2), 205-217. https://doi.org/10.1016/s1534-5807(03)00025-x Kung, Y. J., Lin, P. C., Yeh, S. D., Hong, S. F., Chua, N. H., Liu, L. Y., Lin, C. P., Huang, Y. H., Wu, H. W., Chen, C. C., & Lin, S. S. (2014). Genetic analyses of the FRNK motif function of Turnip mosaic virus uncover multiple and potentially interactive pathways of cross-protection. Mol Plant Microbe Interact, 27(9), 944-955. https://doi.org/10.1094/mpmi-04-14-0116-r Lakatos, L., Csorba, T., Pantaleo, V., Chapman, E. J., Carrington, J. C., Liu, Y. P., Dolja, V. V., Calvino, L. F., López-Moya, J. J., & Burgyán, J. (2006). Small RNA binding is a common strategy to suppress RNA silencing by several viral suppressors. Embo j, 25(12), 2768-2780. https://doi.org/10.1038/sj.emboj.7601164 Li, J., Yang, Z., Yu, B., Liu, J., & Chen, X. (2005). Methylation protects miRNAs and siRNAs from a 3'-end uridylation activity in Arabidopsis. Curr Biol, 15(16), 1501-1507. https://doi.org/10.1016/j.cub.2005.07.029 Mi, S., Cai, T., Hu, Y., Chen, Y., Hodges, E., Ni, F., Wu, L., Li, S., Zhou, H., Long, C., Chen, S., Hannon, G. J., & Qi, Y. (2008). Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5' terminal nucleotide. Cell, 133(1), 116-127. https://doi.org/10.1016/j.cell.2008.02.034 Peng, Y. H., Kadoury, D., Gal-On, A., Huet, H., Wang, Y., & Raccah, B. (1998). Mutations in the HC-Pro gene of zucchini yellow mosaic potyvirus: effects on aphid transmission and binding to purified virions. J Gen Virol, 79 ( Pt 4), 897-904. https://doi.org/10.1099/0022-1317-79-4-897 Pratt, A. J., & MacRae, I. J. (2009). The RNA-induced silencing complex: a versatile gene-silencing machine. J Biol Chem, 284(27), 17897-17901. https://doi.org/10.1074/jbc.R900012200 Sahana, N., Kaur, H., Jain, R. K., Palukaitis, P., Canto, T., & Praveen, S. (2014). The asparagine residue in the FRNK box of potyviral helper-component protease is critical for its small RNA binding and subcellular localization. J Gen Virol, 95(Pt 5), 1167-1177. https://doi.org/10.1099/vir.0.060269-0 Sanobar, N., Lin, P. C., Pan, Z. J., Fang, R. Y., Tjita, V., Chen, F. F., Wang, H. C., Tsai, H. L., Wu, S. H., Shen, T. L., Chen, Y. H., & Lin, S. S. (2021). Investigating the Viral Suppressor HC-Pro Inhibiting Small RNA Methylation through Functional Comparison of HEN1 in Angiosperm and Bryophyte. Viruses, 13(9). https://doi.org/10.3390/v13091837 Shiboleth, Y. M., Haronsky, E., Leibman, D., Arazi, T., Wassenegger, M., Whitham, S. A., Gaba, V., & Gal-On, A. (2007). The conserved FRNK box in HC-Pro, a plant viral suppressor of gene silencing, is required for small RNA binding and mediates symptom development. J Virol, 81(23), 13135-13148. https://doi.org/10.1128/jvi.01031-07 Silhavy, D., Molnár, A., Lucioli, A., Szittya, G., Hornyik, C., Tavazza, M., & Burgyán, J. (2002). A viral protein suppresses RNA silencing and binds silencing-generated, 21- to 25-nucleotide double-stranded RNAs. Embo j, 21(12), 3070-3080. https://doi.org/10.1093/emboj/cdf312 Singh, A., Gautam, V., Singh, S., Sarkar Das, S., Verma, S., Mishra, V., Mukherjee, S., & Sarkar, A. K. (2018). Plant small RNAs: advancement in the understanding of biogenesis and role in plant development. Planta, 248(3), 545-558. https://doi.org/10.1007/s00425-018-2927-5 Tran, P. A. (2021). Investigation of the HC-Pro interaction and interfering with critical components of RNA silencing through cell biology approach National Taiwan University]. Valli, A. A., Gallo, A., Rodamilans, B., López-Moya, J. J., & García, J. A. (2018). The HCPro from the Potyviridae family: an enviable multitasking Helper Component that every virus would like to have. Mol Plant Pathol, 19(3), 744-763. https://doi.org/10.1111/mpp.12553 Xu, X. J., Li, H. G., Cheng, D. J., Liu, L. Z., Geng, C., Tian, Y. P., & Li, X. D. (2020). A Spontaneous Complementary Mutation Restores the RNA Silencing Suppression Activity of HC-Pro and the Virulence of Sugarcane Mosaic Virus. Front Plant Sci, 11, 1279. https://doi.org/10.3389/fpls.2020.01279 Yang, Z., Ebright, Y. W., Yu, B., & Chen, X. (2006). HEN1 recognizes 21-24 nt small RNA duplexes and deposits a methyl group onto the 2' OH of the 3' terminal nucleotide. Nucleic Acids Res, 34(2), 667-675. https://doi.org/10.1093/nar/gkj474 Zhang, X., Du, P., Lu, L., Xiao, Q., Wang, W., Cao, X., Ren, B., Wei, C., & Li, Y. (2008). Contrasting effects of HC-Pro and 2b viral suppressors from Sugarcane mosaic virus and Tomato aspermy cucumovirus on the accumulation of siRNAs. Virology, 374(2), 351-360. https://doi.org/10.1016/j.virol.2007.12.045
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86508-
dc.description.abstract轉錄後基因靜默作用 (PTGS) 在植物中是抵抗病毒感染的重要防禦途徑。在參與 PTGS 的各種蛋白質中,HUA ENHANCER1 (HEN1) 負責 miRNA/miRNA* 雙鏈體的甲基化其隨後被加載到 ARGONAUTE1 (AGO1) 中,並形成功能複合物以切割目標 mRNA。然而,植物病毒一直在發展病毒抑制因子來預防 PTGS,例如已有廣泛研究的馬鈴薯Y病毒的 P1/HC-Pro 對 RNA 靜默的抑制。在這項研究中,我們研究了來自矮南瓜黃化嵌紋病毒 (ZYMV) 和蕪菁嵌紋病毒 (TuMV) 的 HC-Pros 在 RNA 沉默抑制中的作用,特別是在 AGO1 和 HEN1 抑制中的作用。為此目的,表現 TuMV 的 P1/HC-Pro (P1/HC-ProTu 植物) 或 ZYMV (P1/HC-ProZY 植物) 轉基因植物及重組 P1/HC-Pro 植物,包括 P1Tu/HC-ProZY 和 P1ZY/HC-ProTu 植物用於此研究中。所有植物均表現出相同的嚴重鋸齒狀捲曲葉表型。同時,P1和HC-Pro蛋白表現量可被穩定檢測。此外,表現HC-ProTu 的植物中的 AGO1 表現量顯著降低,表現 HC-ProZY 的植物中 AGO1 蛋白表現量略有降低,表明 AGO1 是 HC-ProTu 的主要靶標。此外,自噬相關基因 ATG8a 在 P1/HC-ProTu 和 P1/HC-ProZY 植物中的表現量增加,顯示 AGO1 的降解與 ATG8a 的表現相關。另一方面,在體內的甲基化檢測中,HC-ProTu 導致 miRNA 的非甲基化狀態,而 HC-ProZY 未在轉基因植物或 ZYMV 感染的筍瓜中顯示 miRNA 甲基化的負調控。我們還證明了 HEN1 與 miRNA 結合以進行甲基轉移。有趣的是,HC-ProZY 在體外顯示出對這種結合的部分抑制。相反,HC-ProTu 完全阻止了 HEN1及 miRNA 之間的反應,而 HC-ProTu-K 由於 FRNK 基序處的 Arg182Lys 取代而減弱了抑制。這提出了 FRNK 結構域對於 HC-Pro 和 HEN1 結合的重要性。儘管如此,我們的體外系統比體內系統更簡單,這可提供蛋白質抑制基因靜默最佳的條件,並瞭解 HC-ProZY 對 HEN1 甲基化過程的影響。總而言之,這項研究有助於我們更清楚地了解 HC-ProTu 和 HC-ProZY 對 PTGS 的抑制作用,讓我們更深入的發現病毒與宿主植物之間的防禦機制。zh_TW
dc.description.abstractIn plants, post-transcriptional gene silencing (PTGS) is an important defence pathway to counteract virus infection. Among various proteins involved in the PTGS, HUA ENHANCER1 (HEN1) is responsible for the methylation of miRNA/miRNA* duplex, which is subsequently loaded into ARGONAUTE1 (AGO1) to form a functional complex to cleave the targeted mRNAs. However, plant viruses have been developing several viral suppressors to prevent the PTGS. Typically, P1/HC-Pro of potyviruses has been studied widely on its inhibition activity towards RNA silencing. In this research, we study the effects of HC-Pros from turnip mosaic virus (TuMV) and zucchini yellow mosaic virus (ZYMV) in RNA silencing suppression, especially in AGO1 and HEN1 inhibition. For that purpose, transgenic plants which express P1/HC-Pro of TuMV (P1/HC-ProTu plant) or ZYMV (P1/HC-ProZY plant) and recombinant P1/HC-Pro plants, including P1Tu/HC-ProZY and P1ZY/HC-ProTu plants, were used in the study. All the plants showed the identical severe serrated-curling leaf phenotype; besides, P1 and HC-Pro protein levels could be detectable stably. Moreover, AGO1 level markedly decreased in plants expressing HC-ProTu and slightly reduced in plants expressing HC-ProZY, indicating that AGO1 is the prime target of HC-ProTu. In addition, the autophagic-related gene ATG8a expression was increased in the P1/HC-ProTu and P1/HC-ProZY plants, demonstrating that the degradation of AGO1 is correlated with the expression of ATG8a. On the other hand, in the in vivo methylation assay, HC-ProTu caused the unmethylation status of miRNA, while HC-ProZY did not show any negative regulation of the methylation of miRNA in the transgenic plants or ZYMV-infected zucchini plants. We also proved that HEN1 binds miRNA to perform its methyltransferase activity. Intriguingly, HC-ProZY showed partial inhibition to this binding in vitro. Oppositely, HC-ProTu completely prevented the reaction between HEN1 and miRNA, while HC-ProTu-K had attenuated repression due to the Arg182Lys substitution at the FRNK motif. This proposed the importance of the FRNK domain for the binding of HC-Pro and HEN1. Nonetheless, our in vitro system is simpler than the in vivo system, which might provide the proteins with the optimized conditions for their gene silencing suppression, leading to the different effects of HC-ProZY on the methylation process of HEN1. Collectively, this study helps us to understand more clearly the suppression activity of HC-ProTu and HC-ProZY on PTGS, which provides us with the background to discover deeper about the defence response between virus and host plants.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:59:57Z (GMT). No. of bitstreams: 1
U0001-1208202218480100.pdf: 1278169 bytes, checksum: 19d54b7a6bd0c0f9eba2a7d9fa36adbf (MD5)
Previous issue date: 2022
en
dc.description.tableofcontentsContents Acknowledgement I 中文摘要 II Abstract III Contents V List of Tables VII List of Figures VIII Introduction 1 Post-transcriptional gene silencing pathway in plants 1 The viral suppressor P1/HC-Pro of potyviruses in suppressing the PTGS pathway 2 Materials and methods 5 Plant materials and growth conditions 5 Western blot analysis 5 RT-qPCR 6 Total RNA extraction 6 β-elimination and northern blot analysis 7 Protein purification 8 Electrophoretic mobility shift assay (EMSA) 9 Results 10 P1/HC-Pro plants have the typical severe phenotypes with stable protein levels of P1 and HC-Pro 10 HC-ProTu is a crucial factor in triggering the degradation of AGO1 10 HC-ProTu suppresses the methylation of miRNA 11 HC-ProZY does not influence the methylation of miRNA in its host plant zucchini squash plants 12 The purification of five different proteins 13 HEN1 has miRNA duplex binding activity 13 The HEN1-miRNA duplex binding is inhibited strongly by HC-ProTu, and weakly by HC-ProTu-K or HC-ProZY 14 Discussion 15 The AGO1-mediated PTGS inhibition by the viral suppressors 15 FRNK motif is important for HC-Pros to bind HEN1; however, it is not the only requirement for the methylation suppression 16 Working hypothesis 18 Conclusions 19 References 20
dc.language.isoen
dc.subject矮南瓜黃化嵌紋病毒zh_TW
dc.subject蕪菁嵌紋病毒zh_TW
dc.subject阿拉伯芥zh_TW
dc.subjectARGONAUTE1 (AGO1)zh_TW
dc.subject蕪菁嵌紋病毒zh_TW
dc.subject矮南瓜黃化嵌紋病毒zh_TW
dc.subject阿拉伯芥zh_TW
dc.subject轉錄後基因靜默zh_TW
dc.subjectHUA ENHANCER1 (HEN1)zh_TW
dc.subjectARGONAUTE1 (AGO1)zh_TW
dc.subjectHUA ENHANCER1 (HEN1)zh_TW
dc.subject轉錄後基因靜默zh_TW
dc.subjectHUA ENHANCER1 (HEN1)en
dc.subjectArabidopsis thalianaen
dc.subjectTurnip mosaic virus (TuMV)en
dc.subjectZucchini yellow mosaic virus (ZYMV)en
dc.subjectPost-transcriptional gene silencing (PTGS)en
dc.subjectARGONAUTE1 (AGO1)en
dc.subjectHUA ENHANCER1 (HEN1)en
dc.subjectArabidopsis thalianaen
dc.subjectTurnip mosaic virus (TuMV)en
dc.subjectZucchini yellow mosaic virus (ZYMV)en
dc.subjectPost-transcriptional gene silencing (PTGS)en
dc.subjectARGONAUTE1 (AGO1)en
dc.title蕪菁嵌紋病毒及矮南瓜嵌紋病毒協同蛋白(HC-Pro)抑制HEN1甲基化能力及誘導AGO1細胞自噬作用降解之研究zh_TW
dc.titleInvestigation of TuMV and ZYMV HC-Pros in HEN1 methyltransferase inhibition and AGO1 autophagic degradationen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee邱子珍(Tzyy-Jen Chiou),吳素幸(Shu-Hsing Wu),陳荷明(Ho-Ming Chen)
dc.subject.keyword阿拉伯芥,蕪菁嵌紋病毒,矮南瓜黃化嵌紋病毒,轉錄後基因靜默,ARGONAUTE1 (AGO1),HUA ENHANCER1 (HEN1),zh_TW
dc.subject.keywordArabidopsis thaliana,Turnip mosaic virus (TuMV),Zucchini yellow mosaic virus (ZYMV),Post-transcriptional gene silencing (PTGS),ARGONAUTE1 (AGO1),HUA ENHANCER1 (HEN1),en
dc.relation.page33
dc.identifier.doi10.6342/NTU202202355
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-08-16
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物科技研究所zh_TW
dc.date.embargo-lift2022-08-18-
顯示於系所單位:生物科技研究所

文件中的檔案:
檔案 大小格式 
U0001-1208202218480100.pdf1.25 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved