Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86473Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 葉德銘(Der-Ming Yeh) | |
| dc.contributor.author | Tsung-Cheng Wang | en |
| dc.contributor.author | 王宗正 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:57:52Z | - |
| dc.date.copyright | 2022-08-18 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-16 | |
| dc.identifier.citation | 朱德民. 1995. 植物與照光壓力. p.237-264. 植物與環境逆境. 明文出版社. 臺北. 臺灣. 林方喜、李章汀. 2014. 海南菜豆樹的繁殖、栽培及在景觀中的應用. 安徽農學通報 20:109-110. 林詩庭. 2020. 溫度、礦物營養、介質體積含水量對沙漠玫瑰生長之影響. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北. 臺灣. 唐輝、李婷婷、沈朝華、胡淵淵、吳家勝. 2014. 氮素型態對香榧苗期光合作用及主要元素吸收及氮代謝的影響. 林業科學 50:158-163. 張聖顯. 2004. 景觀與盆栽觀賞皆宜之山菜豆. 花蓮農業專訊 47:16-18. 郭幸榮. 2011. 優質苗木的培育─光度及養分管理. 林業研究專訊 18: 4-10. 郭盛磊、閻秀峰、白冰、于爽. 2005. 供氮水平對落葉松幼苗光合作用的影響. 生態學報 25:1291-1298. 麥有專、曾冬琴、李善志、符傑雄. 2011. 海南菜豆樹育苗技術研究. 熱帶林業 39:27-30. 葉功富、朱世威、羅幼寧、林捷、沈德炎. 2004. 閩南丘陵山地引種栽培樹木的物候期與抗寒力調查. 亞熱帶植物科學 33:31-36. 劉登富. 2006. 變葉木扦插技術及六種變葉木光合特性之研究. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北. 臺灣. 鄧彭艷、陳洪松、聶雲鵬、譚巍. 2010. 桂西北喀斯特地區菜豆樹和红背山麻桿旱季與雨季光合特性比較. 生態學雜誌 29:1498-1504 蔡淑華. 1975. 植物組織切片技術綱要. 茂昌圖書有限公司. 臺北. 盧立華. 2007. 城鎮綠化觀賞樹種-海南菜豆樹. 中國城市林業 4:64. 賴思倫、鍾淨惠、謝廷芳、陳根旺、周英戀、張滋佳、余世芳、林慧玲、邱健誠. 2017. 從花卉拍賣市場看臺灣花卉消費需求. 花卉生活應用研討會專刊 204:15. 錢金娥、曾春鳳. 2010. 盆栽幸福樹的家庭蒔養技術. 河北林業科技 5:108-109. 謝沅陶、代色平. 2015. 香港觀賞植物資源及園林應用調查. 亞熱帶植物科學 44:58-64. Abbasi, H.N., V. Vasileva, and X. Lu. 2017. The influence of the ratio of nitrate to ammonium nitrogen on nitrogen removal in the economical growth of vegetation in hybrid constructed wetlands. Environments 4:24. Abuzinadah, R. and D. Read. 1989. Carbon transfer associated with assimilation of organic nitrogen sources by silver birch (Betula pendula Roth.). Trees 3:17-23. Ågren, G.I. and O. Franklin. 2003. Root: shoot ratios, optimization and nitrogen productivity. Ann. Bot. 92:795-800. Agyeman, V., M. Swaine, and J. Thompson. 1999. Responses of tropical forest tree seedlings to irradiance and the derivation of a light response index. J. Ecol. 87:815-827. Álvarez, S., A. Navarro, E. Nicolás, and M.J. Sánchez-Blanco. 2011. Transpiration, photosynthetic responses, tissue water relations and dry mass partitioning in Callistemon plants during drought conditions. Scientia Hort. 129:306-312. Álvarez, S., P. Rodríguez, F. Broetto, and M.J. Sánchez-Blanco. 2018. Long term responses and adaptive strategies of Pistacia lentiscus under moderate and severe deficit irrigation and salinity: Osmotic and elastic adjustment, growth, ion uptake and photosynthetic activity. Agr. Water Magt. 202:253-262. Araújo, J.M.d., R.d.C. Andrade, J.R.d. Oliveira, A.M.P. Lunz, and U.O.d. Almeida. 2019. Shading and slow release fertilizer effects on the growth characteristics of assai seedlings (Euterpe oleracea). Floresta e Ambient. 26. Ashraf, M. and M. Arfan. 2005. Gas exchange characteristics and water relations in two cultivars of Hibiscus esculentus under waterlogging. Biol. Plant. 49:459-462. Assuero, S., A. Mollier, and S. Pellerin. 2004. The decrease in growth of phosphorus‐deficient maize leaves is related to a lower cell production. Plant Cell Environ. 27:887-895. Augé, R.M., A.J. Stodola, J.L. Moore, W.E. Klingeman, and X. Duan. 2003. Comparative dehydration tolerance of foliage of several ornamental crops. Scientia Hort. 98:511-516. Beringer, H. and F. Nothdurft. 1985. Effects of potassium on plant and cellular structures, p. 351-367. In: R. D. Munson (ed.). Potassium in agriculture. American Society of Agronomy, USA. Bispo, T.M. and E.A. Vieira. 2022. Assimilatory deficit and energy regulation in young Handroanthus chrysotrichus plants under flooding stress. J. Plant Res. 135:1-14. Björkman, O. and B. Demmig-Adams. 1995. Regulation of photosynthetic light energy capture, conversion, and dissipation in leaves of higher plants, p. 17-47. In: E. D. Schulze (ed.). Ecophysiology of photosynthesis. Springer. Blanusa, T., E. Vysini, and R.W. Cameron, 2009. Growth and flowering of Petunia and Impatiens: Effects of competition and reduced water content within a container. HortScience 44:1302-1307 Broadley, M. and P. Brown, I. Cakmak, Z. Rengel, and F. Zhao. 2011. Function of nutrients: micronutrients, p. 212-223. In: Marschner P, (ed.). Marschner’s mineral nutrition of higher plants. Academic Press. Broschat, T.K. 2002. Influence of light intensity on optimum fertilization rate in five species of tropical ornamental plants. HortTechnology 12:226-229. Broschat, T.K. 2008. Nutrient deficiency symptoms of woody ornamental plants of south Florida. Univ. Florida Environ. Hort. Dept. Circ. ENH1098. Bunt, A.C. 1988. Media and mixes for container-grown plants. Unwin-Hyman, London, UK. Cabrera, R.I. 2003. Nitrogen balance for two container-grown woody ornamental plants. Scientia Hort. 97:297-308. Cannell, M.G. and J. Grace. 1993. Competition for light: detection, measurement, and quantification. Can. J. For. Res. 23:1969-1979. Cetner, M., H. Kalaji, V. Goltsev, V. Aleksandrov, K. Kowalczyk, W. Borucki, and A. Jajoo. 2017. Effects of nitrogen-deficiency on efficiency of light-harvesting apparatus in radish. Plant Physiol. Biochem. 119:81-92. Chase, A.R. and R.T. Poole. 1989. Nutrition of Radermachera sinica. CFREC-A Foliage Plant Res. Note RH-89-10. Chyliński, W. K., A.J. Łukaszewska, and K. Kutnik. 2007. Drought response of two bedding plants. Acta Physiol. Plant. 29:399-406. Cirillo, C., V. De Micco, Y. Rouphael, A. Balzano, R. Caputo, and S. De Pascale. 2017. Morpho anatomical and physiological traits of two Bougainvillea genotypes trained to two shapes under deficit irrigation. Trees 31:173-187. Clark, M., H. Mills, C. Robacker, and J. Latimer. 2003. Influence of nitrate: ammonium ratios on growth and elemental concentration in two azalea cultivars. J. Plant Nutr. 26:2503-2520. Cornic, G. 2000. Drought stress inhibits photosynthesis by decreasing stomatal aperture–not by affecting ATP synthesis. Trends Plant Sci. 5:187-188. Conover, C.A. and R.T. Poole 1984. Acclimation of indoor foliage plant, p. 120-147. In: J. Janick (eds.). Horticultural Reviews. AVI Publishing Company, Apoka, Florida. Conover, C.A. and R.T. Poole. 1973. Ficus benjamina leaf drop. Florists' Rev. 151:67-68. Coskun, D., D.T. Britto, and H.J. Kronzucker. 2017. The nitrogen–potassium intersection: membranes, metabolism, and mechanism. Plant Cell Environ. 40:2029-2041. Cox, W.J. and H. Reisenauer. 1973. Growth and ion uptake by wheat supplied nitrogen as nitrate, or ammonium, or both. Plant Soil 38:363-380. Crawford, N.M. and A.D. Glass. 1998. Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci. 3:389-395. Cruz, J., P. Mosquim, C. Pelacani, W. Araújo, and F. DaMatta. 2003. Photosynthesis impairment in cassava leaves in response to nitrogen deficiency. Plant Soil 257:417-423. Delucia, E., K. Nelson, T. Vogelmann, and W. Smith. 1996. Contribution of intercellular reflectance to photosynthesis in shade leaves. Plant Cell Environ. 19:159-170. Duff, S.M., G.B. Moorhead, D.D. Lefebvre, and W.C. Plaxton. 1989. Phosphate starvation inducible bypasses of adenylate and phosphate dependent glycolytic enzymes in Brassica nigra suspension cells. Plant Physiol. 90:1275-1278. Egilla, J.N. and F.T. Davies. 1995. Response of Hibiscus rosa‐sinensis L. to varying levels of potassium fertilization: Growth, gas exchange and mineral element concentration. J. Plant Nutr. 18:1765-1783. Epstein, E. and A.J. Bloom. 2005. Mineral nutrition of plants: Principles and perspectives. 2nd edition. Sinauer Associates, Massachusetts, U.S. Evans, J.R. 1989. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78:9-19. Evans, J.R. 1999. Leaf anatomy enables more equal access to light and CO2 between chloroplasts. New Phytol. 143:93-104. Farooq, M., A. Wahid, N. Kobayashi, D. Fujita, and S. Basra. 2009. Plant drought stress: Effects, mechanisms and management, p. 153-188. In: M. Farooq (ed.). Sustainable agriculture. Springer. Farquhar, G.D. and T.D. Sharkey. 1982. Stomatal conductance and photosynthesis. Annu. Rev. Plant Biol. 33:317-345. Feng, H., X. Fan, A.J. Miller, and G. Xu. 2020. Plant nitrogen uptake and assimilation: regulation of cellular pH homeostasis. J. Expt. Bot. 71:4380-4392. Fischer, E., I. Theisen, and L.G. Lohmann. 2004. Bignoniaceae, p. In: K. Kubitkzki (ed.). The families and genera of vascular plants. Springer, London. Frydenvang, J., M. van Maarschalkerweerd, A. Carstensen, S. Mundus, S.B. Schmidt, P.R. Pedas, K.H. Laursen, J.K. Schjoerring, and S. Husted. 2015. Sensitive detection of phosphorus deficiency in plants using chlorophyll a fluorescence. Plant Physiol. 169:353-361. Fu, Y., H. Li, J. Yu, H. Liu, Z. Cao, N. Manukovsky, and H. Liu. 2017. Interaction effects of light intensity and nitrogen concentration on growth, photosynthetic characteristics and quality of lettuce (Lactuca sativa L. var. youmaicai). Scientia Hort. 214:51-57. Glass, A.D. 2003. Nitrogen use efficiency of crop plants: Physiological constraints upon nitrogen absorption. Crit. Rev. Plant Sci. 22:453-470. Gniazdowska, A., M. Mikulska, and A. Rychter. 1998. Growth, nitrate uptake and respiration rate in bean roots under phosphate deficiency. Biol. Plant. 41:217-226. Griffith, L.P. 2006. Tropical foliage plants: a grower’s guide. Ball Pub, Batavia, IL. Guo, S., Y. Zhou, Q. Shen, and F. Zhang. 2007. Effect of ammonium and nitrate nutrition on some physiological processes in higher plants-growth, photosynthesis, photorespiration, and water relations. Plant Biol. 9:21-29. Hermans, C., J.P. Hammond, P.J. White, and N. Verbruggen. 2006. How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci. 11:610-617. Herrera, A., W. Tezara, O. Marín, and E. Rengifo. 2008. Stomatal and non‐stomatal limitations of photosynthesis in trees of a tropical seasonally flooded forest. Physiol. Plant 134:41-48. Hu, W., Z. Lu, F. Meng, X. Li, R. Cong, T. Ren, T.D. Sharkey, and J. Lu. 2020. The reduction in leaf area precedes that in photosynthesis under potassium deficiency: The importance of leaf anatomy. New Phytol. 227:1749-1763. Hu, Y., V. Fernández, and L. Ma. 2014. Nitrate transporters in leaves and their potential roles in foliar uptake of nitrogen dioxide. Front. Plant Sci. 5:360. Jacobs, D.F. and V.R. Timmer. 2005. Fertilizer-induced changes in rhizosphere electrical conductivity: relation to forest tree seedling root system growth and function. New For. 30:147-166. Jakobsen, S.T. 1993. Interaction between plant nutrients: III. Antagonism between potassium, magnesium and calcium. Acta Agr. Scand. B. Soil Plant Sci. 43:1-5. Jensen, H.E. and H. Andersen. 1992. Effects of high temperatures and DIF on potted foliage plants. Acta Hort. 305:27-36. Jiménez-Moreno, M.J. and R. Fernández-Escobar. 2016. Response of young olive plants (Olea europaea) to phosphorus application. HortScience 51:1167-1170. Khaleghi, A., R. Naderi, C. Brunetti, B.E. Maserti, S.A. Salami, and M. Babalar. 2019. Morphological, physiochemical and antioxidant responses of Maclura pomifera to drought stress. Sci. Rpt. 9:1-12. Khan, M.I.R., A. Trivellini, H. Chhillar, P. Chopra, A. Ferrante, N.A. Khan, and A.M. Ismail. 2020. The significance and functions of ethylene in flooding stress tolerance in plants. Environ. Expt. Bot. 179:104188. Kim, H. and X. Li. 2016. Effects of phosphorus on shoot and root growth, partitioning, and phosphorus utilization efficiency in Lantana. HortScience 51:1001-1009. Kim, T., H.A. Mills, and H.Y. Wetzstein. 2002. Studies on effects of nitrogen form on growth, development, and nutrient uptake in pecan. J. Plant Nutr. 25:497-508. Kozlowski, T. 1997. Responses of woody plants to flooding and salinity. Tree Physiol. 17:490-490. Krapp, A. 2015. Plant nitrogen assimilation and its regulation: A complex puzzle with missing pieces. Curr. Opin. Plant Biol. 25:115-122. Kraus, H.T., S.L. Warren, and C.E. Anderson. 2002. Nitrogen form affects growth, mineral nutrient content, and root anatomy of Cotoneaster and Rudbeckia. HortScience 37:126-129. Kreuzwieser, J. and H. Rennenberg. 2014. Molecular and physiological responses of trees to waterlogging stress. Plant Cell Environ. 37:2245-2259. Krishnakanth, M., S. Srikrishnah, and S. Sutharsan. 2017. Effects of graded shade levels on the growth and quality of Cordyline fruiticosa variety ‘Purple Compacta’in the Batticaloa district. J. Agr. Sci. 11:17-24. Lüttge, U. and R. Ratajczak. 1997. The physiology, biochemistry and molecular biology of the plant vacuolar ATPase, p. 253-296. In: R. A. Leigh, D. Sanders and J. A. Callow (eds.). Adv. Bot. Res. Vol. 25. Elsevier. Lang, Y., M. Wang, G. Zhang, and Q. Zhao. 2013. Experimental and simulated light responses of photosynthesis in leaves of three tree species under different soil water conditions. Photosynthetica 51:370-378. Li, Q., M. Deng, Y. Xiong, A. Coombes, and W. Zhao. 2014. Morphological and photosynthetic response to high and low irradiance of Aeschynanthus longicaulis. Sci. World J. 2014:1-8. Liu, Z., R. Cheng, W. Xiao, Q. Guo, and N. Wang. 2014. Effect of off-season flooding on growth, photosynthesis, carbohydrate partitioning, and nutrient uptake in Distylium chinense. PLoS One 9:1-8. Loreti, E., H. van Veen, and P. Perata. 2016. Plant responses to flooding stress. Curr. Opin. Plant Biol. 33:64-71. Maathuis, F.J. and D. Sanders. 1996. Mechanisms of potassium absorption by higher plant roots. Physiol. Plant. 96:158-168. Marschner, H. 1995. Functions of mineral nutrients, macronutrients, p. 299-312. In: H. Marschner (ed.). Mineral nutrition of higher plants. Academic Press, New York. Marschner, P. 2012. Mineral nutrition of higher plants. 3rd ed. Elsevier, London, UK. Mathur, S., L. Jain, and A. Jajoo. 2018. Photosynthetic efficiency in sun and shade plants. Photosynthetica 56:354-365. Maxwell, K. and G.N. Johnson. 2000. Chlorophyll fluorescence—a practical guide. J. Expt. Bot. 51:659-668. Medrano, H., M.A. Parry, X.D.W.L. Socias, amd D.W. Lawlor. 1997. Long term water stress inactivates Rubisco in subterranean clover. Ann. Appl. Biol. 131:491-501. Mengel, K., E.A. Kirkby, H. Kosegarten, and T. Appel. 2001. Nitrogen, p. 397-434. In: K. Mengel and E. A. Kirkby (eds.). Principles of plant nutrition. Springer, Dordrecht. Mielke, M.S., E.M. Matos, V.B. Couto, A.A. Almeida, and P.A.O. Mangabeira. 2005. Some photosynthetic and growth responses of Annona glabra L. seedlings to soil flooding. Acta Bot. Brasilica 19:905-911. Mielke, M.S. and B. Schaffer. 2010. Photosynthetic and growth responses of Eugenia uniflora L. seedlings to soil flooding and light intensity. Environ. Expt. Bot. 68:113-121. Miralles, J., J. Martínez-Sánchez, J. Franco, and S. Bañón. 2011. Rhamnus alaternus growth under four simulated shade environments: morphological, anatomical and physiological responses. Scientia Hort. 127:562-570. Mohidin, H., M.M. Hanafi, Y.M. Rafii, S.N.A. Abdullah, A.S. Idris, S. Man, J. Idris, and M. Sahebi. 2015. Determination of optimum levels of nitrogen, phosphorus and potassium of oil palm seedlings in solution culture. Bragantia 74:247-254. Morgan, P.W. and M.C. Drew. 1997. Ethylene and plant responses to stress. Physiol. Plant 100:620-630. Naidu, S.L. and E.H. Dalucia. 1997. Acclimation of shade-developed leaves on saplings exposed to late-season canopy gaps. Tree Physiol. 17:367-376. Nemali, K.S. and M.W. van Iersel. 2004. Light intensity and fertilizer concentration: II. Optimal fertilizer solution concentration for species differing in light requirement and growth rate. HortScience 39:1293-1297. Nezami, A., H.R. Khazaei, R.Z. Boroumand, and A. Hosseini. 2008. Effects of drought stress and defoliation on sunflower (Helianthus annuus) in controlled conditions. Nguyen, G., S. Rothstein, G. Spangenberg, and S. Kant. 2015. Role of microRNAs involved in plant response to nitrogen and phosphorous limiting conditions. Front. Plant Sci. 6:629. Niinemets, Ü. and O. Kull. 1998. Stoichiometry of foliar carbon constituents varies along light gradients in temperate woody canopies: Implications for foliage morphological plasticity. Tree Physiol. 18:467-479. Nikolic, M. and V. Römheld. 2003. Nitrate does not result in iron inactivation in the apoplast of sunflower leaves. Plant Physiol. 132:1303-1314. Niu, F., D. Zhang, Z. Li, M.W. Van Iersel, and P. Alem. 2015. Morphological response of Eucalypts seedlings to phosphorus supply through hydroponic system. Scientia Hort. 194:295-303. Niyogi, K.K. 1999. Photoprotection revisited: genetic and molecular approaches. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50:333-359. Novoa, M.A., D. Miranda, and L. Melgarejo. 2018. Effect of deficiencies and excesses of phosphorus, potassium and boron on the physiology and growth of avocado (Persea americana, cv. Hass) plants. Rev. Co. Sci. Hort. 12:293-307. Nunes, M.A., J.C. Ramalho, and M.A. Dias. 1993. Effect of nitrogen supply on the photosynthetic performance of leaves from coffee plants exposed to bright light. J. Expt. Bot. 44:893-899. Pezeshki, S. 2001. Wetland plant responses to soil flooding. Environ. Expt. Bot. 46:299-312. Pfannschmidt, T. 2003. Chloroplast redox signals: how photosynthesis controls its own genes. Trends Plant Sci. 8:33-41. Phares, R.E. 1971. Growth of red oak (Quercus rubra L.) seedlings in relation to light and nutrients. Ecology 52:669-672. Plantation, F.L. 1986. Effect of medium composition and light level on growth of Radermachera sinica. Proc. Fla. State. Hort. Soc. 99:284-286. Poole, R.T. and C.A. Conover. 1988. Response of foliage plants to minimum temperatures and fertilizer levels. Foliage Digest 11:1-3. Poole, R.T., A.R. Chase, and L.S. Osborne. 1991. China Doll. . CFREC-A Foliage Plant Res. Note RH-91-11. Poole, R.T. and Conover, C.A. 1981. Influence of maximum air temperature and irrigation frequencies during high temperature periods on growth of four foliage. HortScience 16:556-557. Pospíšilová, J., H. Synková, and J. Rulcová. 2000. Cytokinins and water stress. Biol. Plant. 43:321-328. Poudyal, S., J.S. Owen, T.D. Sharkey, R. Fernandez, and B. Cregg. 2021. Phosphorus requirement for biomass accumulation is higher compared to photosynthetic biochemistry for three ornamental shrubs. Scientia Hort. 275:109719. Prajapati, K. and H. Modi. 2012. The importance of potassium in plant growth–a review. Indian J. Plant Sci. 1:177-186. Pukacki, P.M. and E. Kamińska-Rożek. 2005. Effect of drought stress on chlorophyll a fluorescence and electrical admittance of shoots in Norway spruce seedlings. Trees 19:539-544. Raab, T.K. and N. Terry. 1994. Nitrogen source regulation of growth and photosynthesis in Beta vulgaris L. Plant Physiol. 105:1159-1166. Raker, R.J. and M.A. Dirr. 1979. Effect of nitrogen form and rate on appearance and cold acclimation of three container-grown woody ornamentals. Scientia Hort. 10:231-236. Rasberry, F. and T. Blessington. 1981. Influence of photosynthetically active radiation levels and fertilizer sources on production and acclimatization of Brassaia actinophylla endl. J. Plant Nutr. 4:409-417. Razaq, M., P. Zhang, and H.l. Shen. 2017. Influence of nitrogen and phosphorous on the growth and root morphology of Acer mono. PLoS One 12:1-13. Rembiałkowska, E. 2007. Quality of plant products from organic agriculture. J. Sci. Food Agric. 87:2757-2762. Ruan, J., J. Gerendás, R. Härdter, and B. Sattelmacher. 2007. Effect of nitrogen form and root-zone pH on growth and nitrogen uptake of tea (Camellia sinensis) plants. Ann. Bot. 99:301-310. Ruiz, J.M. and L. Romero. 1999. Cucumber yield and nitrogen metabolism in response to nitrogen supply. Scientia Hort. 82:309-316. Schachtman, D.P., R.J. Reid, and S.M. Ayling. 1998. Phosphorus uptake by plants: From soil to cell. Plant Physiol. 116:447-453. Schindler, C. and H.K. Lichtenthaler. 1996. Photosynthetic CO2-assimilation, chlorophyll fluorescence and zeaxanthin accumulation in field grown maple trees in the course of a sunny and a cloudy day. J. Hortic. Sci. Biotechnol. 148:399-412. Schubert, S. and F. Yan. 1997. Nitrate and ammonium nutrition of plants: effects on acid/base balance and adaptation of root cell plasmalemma H+ ATPase. Zeitschrift für Pflanzenernahrung und Bodenkunde 160:275-281. Scoggins, H.L., D.A. Bailey, and P.V. Nelson. 2002. Efficacy of the press extraction method for bedding plant plug nutrient monitoring. HortScience 37:108-112. Scuderi, D., F. Giuffrida, S. Toscano, and D. Romano. 2012. Growth, physiological response, and quality characteristics of weeping fig in response to shading levels and climatic conditions. HortScience 47:1586-1592. Shi, Q., J. Pang, J.W.H. Yong, C. Bai, C.G. Pereira, Q. Song, D. Wu, Q. Dong, X. Cheng, and F. Wang. 2020. Phosphorus-fertilisation has differential effects on leaf growth and photosynthetic capacity of Arachis hypogaea L. Plant Soil 447:99-116. Shipeng, L. 2006. Stomatal distribution and character analysis of leaf epidermis of jujube under drought stress. J. Anhui Agr.. 34:1315. Silber, A., J. Ben-Jaacov, A. Ackerman, A. Bar-Tal, I. Levkovitch, T. Matsevitz-Yosef, D. Swartzberg, J. Riov, and D. Granot. 2002. Interrelationship between phosphorus toxicity and sugar metabolism in Verticordia plumosa L. Plant Soil 245:249-260. Taiz, L.E., I.M. Zeiger, and A. Murphy. 2015. Plant physiology and development. Sixth edition. Sinauer Associates Inc, Sunderland, U.S.A. Takagi, D., A. Miyagi, Y. Tazoe, M. Suganami, M. Kawai‐Yamada, A. Ueda, Y. Suzuki, K. Noguchi, N. Hirotsu, and A. Makino. 2020. Phosphorus toxicity disrupts Rubisco activation and reactive oxygen species defence systems by phytic acid accumulation in leaves. Plant Cell Environ. 43:2033-2053. Takahashi, A., K. Takeda, and T. Ohnishi. 1991. Light-induced anthocyanin reduces the extent of damage to DNA in UV-irradiated Centaurea cyanus cells in culture. Plant Cell Physiol. 32:541-547. Ter Hell, B. and L. Hendriks. 1995. The influence of nitrogen nutrition on keeping quality of pot plants. Acta Hort. 405:138-147. Teskey, R.O. and T.M. Hinckley. 1981. Influence of temperature and water potential on root growth of white oak. Physiol. Plant 52:363-369. Thomas, M.B., M.I. Spurway, and B.A.J. Richards. 1995. Nutrition of container‐grown Radermachera sinica hemsl. N. Z. J. Crop Hort. Sci. 23:461-465. Toscano, S., A. Ferrante, and D. Romano. 2019. Response of Mediterranean ornamental plants to drought stress. Horticulturae 5:6. Toscano, S., A. Ferrante, A. Tribulato, and D. Romano. 2018. Leaf physiological and anatomical responses of Lantana and Ligustrum species under different water availability. Plant Physiol. Biochem. 127:380-392. Tsabarducas, V., T. Chatzistathis, I. Therios, and A. Patakas. 2017. How nitrogen form and concentration affect growth, nutrient accumulation and photosynthetic performance of Olea europaea L.(cv.‘Kalamon’). Scientia Hort. 218:23-29. Tworkoski, T. and S. Miller. 2007. Endogenous hormone concentrations and bud-break response to exogenous benzyl adenine in shoots of apple trees with two growth habits grown on three rootstocks. J. Hortic. Sci. Biotechnol. 82:960-966. van Iersel, M.W., R.B. Beverly, P.A. Thomas, J.G. Latimer, and H.A. Mills. 1999. Nitrogen, phosphorus, and potassium effects on pre‐and post‐transplant growth of Salvia and Vinca seedlings. J. Plant Nutr. 22:1403-1413. van Steenis, C.G.G.J. 1976. Conspectus of the genera Radermachera and Fernandoa in Indo-Malesia (Bignoniaceae). Blumea 23:121-138. Vladimirova, S.V., D.B. McConnell, and M.E. Kane. 1997. Morphological plasticity of Dracaena sanderana ‘Ribbon’ in response to four light intensities. HortScience 32:1049-1052. Walch‐Liu, P., G. Neumann, F. Bangerth, and C. Engels. 2000. Rapid effects of nitrogen form on leaf morphogenesis in tobacco. J. Expt. Bot. 51:227-237. Wang, Q., J. Chen, R.H. Stamps, and Y. Li. 2005. Correlation of visual quality grading and SPAD reading of green-leaved foliage plants. J. Plant Nutr. 28:1215-1225. Wooldridge, J.M., S.L. Warren, and F.A. Blazich. 2009. Nitrogen nutrition of eastern redbud (Cercis canadensis). J. Environ. Hort. 27:223-228. Wu, C., Z. Fan, and Z. Wang. 2004. Effect of phosphorus stress on chlorophyll biosynthesis, photosynthesis and biomass partitioning pattern of Fraxinus mandchurica seedlings. J. Appl. Ecol. 15:935-940. Xie, K., I. Cakmak, S. Wang, F. Zhang, and S. Guo. 2021. Synergistic and antagonistic interactions between potassium and magnesium in higher plants. Crop J. 9:249-256. Xu, X., X. Du, F. Wang, J. Sha, Q. Chen, G. Tian, Z. Zhu, S. Ge, and Y. Jiang. 2020. Effects of potassium levels on plant growth, accumulation and distribution of carbon, and nitrate metabolism in apple dwarf rootstock seedlings. Front. Plant Sci. 11:904. Xu, Z., G. Zhou, and H. Shimizu. 2010. Plant responses to drought and rewatering. Plant Signal. Behav. 5:649-654. Yanagida, M., N. Ikai, M. Shimanuki, and K. Sajiki. 2011. Nutrient limitations alter cell division control and chromosome segregation through growth-related kinases and phosphatases. Philos. Trans. Royal Soc. Lond. B, Biol. Sci. 366:3508-3520. Zhang, F., J. Niu, W. Zhang, X. Chen, C. Li, L. Yuan, and J. Xie. 2010. Potassium nutrition of crops under varied regimes of nitrogen supply. Plant Soil 335:21-34. Zhang, H., P. Feng, W. Yang, X. Sui, X. Li, W. Li, R. Zhang, S. Gu, and N. Xu. 2018a. Effects of flooding stress on the photosynthetic apparatus of leaves of two Physocarpus cultivars. J. For. Res. 29:1049-1059. Zhang, H., W. Li, H.D. Adams, A. Wang, J. Wu, C. Jin, D. Guan, and F. Yuan. 2018b. Responses of woody plant functional traits to nitrogen addition: a meta-analysis of leaf economics, gas exchange, and hydraulic traits. Front. Plant Sci. 9:683. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86473 | - |
| dc.description.abstract | 海南菜豆樹(Radermachera hainanensis)及山菜豆(R. sinica)以葉色深綠,具有光澤,能耐低光,而為臺灣重要的木本觀葉植物。然對其育苗及苗期後遮光及介質體積含水量管理資訊尚不清晰。因此本研究擬探討海南菜豆樹與山菜豆光度及養液濃度、養液氮濃度、養液氮素型態比率、養液磷濃度與養液鉀濃度對苗期生長之影響,以及苗期後遮光與介質含水量生長之影響,以供栽培參考應用。 於第一對本葉展開時將海南菜豆樹及山菜豆穴盤苗以3種光強度(100、200、300 µmol·m–2·s–1 PPFD)配合施用3種強生氏養液(50%、100%、150%)及自來水栽培。兩物種於100 µmol·m–2·s–1 搭配50%-150%強生氏養液,海南菜豆樹新葉具有皺縮徵狀,山菜豆新葉則具展開受阻,根系褐化受損之鹽害徵狀。當光度增加至200-300 µmol·m–2·s–1並搭配施用50%之強生氏養液,兩物種葉片及乾重生長表現已達到飽和,養液濃度再增加對生長無益。 於第一對本葉展開時將海南菜豆樹及山菜豆穴盤苗,每週施以含0-32 mM N之強生氏養液1次。兩物種葉色於缺氮處理較為淺綠、生長明顯受限以及光化學效率較低,隨著養液氮濃度增加至12-16 mM N,能使植株生長及光化學效率最大化,使根冠比降低。超過20 mM N處理會使生長及光化學效率降低,於28-32 mM N有介質鹽類累積情形,造成根系受損。 於第一對本葉展開時將海南菜豆樹及山菜豆穴盤苗,每週施以含16 mM N,銨硝比率為0:100、25:75、50:50、75:25和100:0之強生氏養液。海南菜豆樹葉色於全硝酸態氮處理具有褪綠徵狀,全銨態氮處理則具新葉皺縮徵狀。兩物種隨著銨態氮比率增加至銨硝比為50:50時生長表現達到飽和,銨態氮比率再增加,則會使葉面積降低,而養液銨硝比不影響兩物種株高、葉片數及Fv/Fm表現。 於第一對本葉展開時將海南菜豆樹及山菜豆穴盤苗,每週施以含0-4 mM P之強生氏養液1次。兩物種外觀於缺磷處理無明顯缺磷徵狀,但顯著降低生長及光化學效益,而隨著養液磷濃度增加至0.25-0.5 mM P時能使生長及光化學效率最大化,超過1 mM P時則會造成生長及光化學效益顯著降低。 於第一對本葉展開時將海南菜豆樹及山菜豆穴盤苗,每週施以含0-10 mM K之強生氏養液。兩物種葉片生長於0-2 mM K處理會受限,於4 mM K處理生長表現及光化學效益較佳,超過時生長表現已不再增加,於8-10 mM K處理則會使介質EC值提升,具有明顯鹽類累積,並且光化學效益顯著降低。 將株高15 cm的海南菜豆樹及山菜豆種於15 cm盆內,以四種遮光處理(0%、70%、78%及83%)。海南菜豆樹外觀表現於各遮光處理下無明顯差異,葉面積於70%遮光處理較大,隨著遮光增加葉片會變薄,光飽和點於70%遮光處理較大,為477.2 µmol·m–2·s–1。山菜豆於無遮光處理植株較矮,光飽和點較高,為540 µmol·m–2·s–1,株高、節間長及葉面積於70%遮光處理較大,葉片無明顯變薄。兩物種乾重於無遮光及70%遮光處理下無顯著差異,但當超過78%遮光時,生長會受限。並且隨著遮光增加光補償點可由42 µmol CO2·m–2·s–1。降至26 µmol CO2·m–2·s–1。 將株高15 cm之海南菜豆樹及山菜豆種於15 cm盆,給予4種介質含水量處理(20% VWC、20/70% VWC、40% VWC及70% VWC)。兩物種植株、葉片生長於20% VWC處理較差,為蒸散作用及氣孔導度降低,細胞間隙二氧化碳濃度較低,為氣孔因素及光合系統功能受損所致。兩物種生長表現皆於40% VWC處理較佳,但氣孔導度、蒸散作用及乾重變化與70% VWC處理間無顯著差異,且相對乾重與20% VWC處理相比降低較少,顯示兩物種為耐濕潤而不耐旱的作物。 | zh_TW |
| dc.description.abstract | Radermachera hainanensis and R. sinica are important indoor foliage plants with dark glossy green leaves, and low-light tolerance. However, the information on pulg production and subsequent management of shading and volumetric water content (VWC) of the medium after plug prodution is still unclear. Therefore, the objective of this study were to determine the effects of light intensity and nutrient solution strenght, nutrient solution nitrogen, phosphorus, potassium concentration, and nitrogen form on the growth of both speices during plug stage and the effects of shading and medium VWC on growth after transplant. R. hainanensis and R. sinica plug seedlings with the first expanded leaf pairs were grown under three light intensity level (100, 200, or 300 µmol·m–2·s–1 PPFD) with four Johnson's solution (J; 0%, 50%, 100%, 150%). When two species were supplied with full J strength higher than 50% at 100 µmol·m–2·s–1, new leaves and roots showed symptoms of salt damage. When light intensity level increased to 200-300 µmol·m–2·s–1 with 50% J was sufficient for growth of leaves and dry weights of the two species. No further growth was observed with increased J strength. Plug seedlings of two species with the first expanded of leaf pairs were supplied with Johnson's solution containing 0-32 mM N weekly. Results show that nitrogen-deficient treatment (0 mM N) resulted in light green leaf color, restricted growth and low photochemical efficiency fot both species. Maximum plant growth and photochemical efficiency were recorded for both species when nutrient solution concentration increased to 12-16 mM N, accompanied with lower root and shoot ratio. Treatmenet with 20 mM N, or higher reduced growth and photochemical efficiency. Salt accumulation in medium were observed at 28-32 mM N, causing damage to the root system. Plug seedlings of two species with the first expanded of leaf pairs were supplied with Johnson's solution containing 16 mM N in 0:100, 25:75, 50:50, 75:25 and 100:0 of NH4+:NO3-. R. hainanensis showed chlorotic leaves and shrinkage of new leaves when treated with full nitrate and ammonium J, respectively. Both species showed better when treated with J containing 50% nitrate and 50% ammonium. Further increase in NH4-N resulted in decreased leaf area. Nutrient solution ammonium to nitrate ratio did not affect plant height, number of leaves and Fv/ Fm value. Plug seedlings of two species with the first expanded of leaf pairs were supplied with Johnson's solution containing 0-4 mM P weekly. The two species did not express obvious symptoms of phosphorus deficiency in the P-deficiency treatment (0 mM P), however the growth and photochemical efficiency reduced. Maximum growth and photochemical efficiency of two speice recorded at 0.25-0.5 mM P. Treatment highter than 1 mM P reduced growth and photochemical efficiency. Plug seedlings of two species with the first expanded of leaf pairs were supplied with Johnson's solution containing 0-10 mM K weekly. Leaf growth of the two species was limited in 0-2 mM K treatments. the growth performance and photochemical efficiency were higher at 4 mM K, and no further increase was observed when exceeded 4 mM K. Significant salt accumulation and reduced the photochemical efficiency was recorded when treated with 8-10 mM K. R. hainanensis and R. sinica were planted in 15-cm pots and treated with 4 shading levels (0%, 70%, 78% and 83%). There was no significant difference in the appearance of R. hainanensis among treatments. Leaf area was larger at 70% shading. Leaves became thinner as the degree of shading increased. Light saturation point (LCP) was 477.2 µmol·m–2·s–1 in the 70% shading treatment and was larger than the other treatments. Full light had dwarfing effect on R. sinica. Plant height, internode length and leaf area were larger in 70% treatment. Leaf thickness did not change significantly with altering hight levels. LSP was 540 µmol·m–2·s–1 in the full light treatment and was larger than the other treatments. Growth of both species were limited when the shading was greater than 78% treatment. There was no significant difference in dry weight between full light and 70% treatment. The light compensation point (LCP) decreased from 42 µmol CO2·m–2·s–1 to 26 µmol CO2·m–2·s–1. R. hainanensis and R. sinica were planted in 15-cm pots and treated with four of medium volumetric water content (20% VWC, 20/70% VWC, 40% VWC and 70% VWC). Poor growth of both species was osbserved in the 20% VWC treatment, which was caused by both stomatal and non-stomatal limitation. The growth performance was better in 40% VWC treatment, but there was no significant difference in the stomatal conductance, evapotranspiration and dry weight in compared to the 70% VWC treatment, indicating that both species are moist-tolerant crops. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:57:52Z (GMT). No. of bitstreams: 1 U0001-1508202223214100.pdf: 5484851 bytes, checksum: e8cce6cef037000772666f3e7af46b4c (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 摘要 i Abstract iii 目錄 vi 表目錄 ix 圖目錄 xi 前言 (Introduction) 1 一、山菜豆屬概述 3 (一) 海南菜豆樹 3 (二) 山菜豆 3 二、栽培環境對海南菜豆樹及山菜豆生長之影響 3 (一) 光度 3 (二) 溫度 4 (三) 水分 4 (四) 肥培管理 4 三、無機養分對木本植物生理之影響 5 (一) 氮濃度對木本植物生理之影響 5 (二) 氮素型態對木本植物生理之影響 7 (三) 磷對木本植物生長及生理之影響 9 (四) 鉀對木本植物生長及生理之影響 10 四、光強度對木本觀葉植物生長及光合作用之影響 12 (一) 光強度對木本觀葉植物生長之影響 12 (二) 光強度對木本植物葉部形態之影響 13 (三) 光強度對木本植物光合作用及光系統之影響 13 (四) 光強度與肥料濃度對觀賞植物生長之影響 14 五、水分對木本植物生長及光合作用之影響 15 (一) 乾旱對木本植物生長之影響 15 (二) 乾旱對木本植物光合作用之影響 16 (三) 淹水對木本植物生長之影響 17 (四) 淹水對木本植物光合作用與光系統之影響 18 材料與方法 (Materials and Methods) 19 試驗一、光度及養液對海南菜豆樹及山菜豆穴盤苗生長之影響 19 試驗二、養液氮濃度對海南菜豆樹及山菜豆穴盤苗生長之影響 20 試驗三、養液氮型態比率對海南菜豆樹及山菜豆穴盤苗生長之影響 22 試驗四、養液磷濃度對海南菜豆樹及山菜豆穴盤苗生長之影響 24 試驗五、養液鉀濃度對海南菜豆樹及山菜豆穴盤苗生長之影響 25 試驗六、遮光對海南菜豆樹及山菜豆生長與光合作用之影響 26 試驗七、介質含水量對海南菜豆樹及山菜豆生長與光合作用之影響 28 結果 (Results) 31 試驗一、光度及養液對海南菜豆樹及山菜豆穴盤苗生長之影響 31 試驗二、養液氮濃度對海南菜豆樹及山菜豆穴盤苗生長之影響 32 試驗三、養液氮素型態對海南菜豆樹及山菜豆穴盤苗生長之影響 33 試驗四、養液磷濃度對海南菜豆樹及山菜豆穴盤苗生長之影響 34 試驗五、養液鉀濃度對海南菜豆樹及山菜豆穴盤苗生長之影響 35 試驗六、遮光對海南菜豆樹及山菜豆生長與光合作用之影響 36 試驗七、介質含水量對海南菜豆樹生長及光合作用之影響 37 討論 (Discussion) 113 試驗一、光度及養液對海南菜豆樹及山菜豆穴盤苗生長之影響 113 試驗二、養液氮濃度對海南菜豆樹及山菜豆穴盤苗生長之影響 114 試驗三、養液氮素型態對海南菜豆樹及山菜豆穴盤苗生長之影響 116 試驗四、養液磷濃度對海南菜豆樹及山菜豆穴盤苗生長之影響 118 試驗五、養液鉀濃度對海南菜豆樹及山菜豆穴盤苗生長之影響 121 試驗六、遮光對海南菜豆樹及山菜豆生長與光合作用之影響 123 試驗七、介質含水量對海南菜豆樹生長及光合作用之影響 124 結論 (Conclusion) 127 參考文獻 (References) 128 附錄 (Appendix) 144 | |
| dc.language.iso | zh-TW | |
| dc.subject | 光補償點 | zh_TW |
| dc.subject | 光系統 | zh_TW |
| dc.subject | 光補償點 | zh_TW |
| dc.subject | 穴盤育苗 | zh_TW |
| dc.subject | 觀葉植物 | zh_TW |
| dc.subject | 光系統 | zh_TW |
| dc.subject | 穴盤育苗 | zh_TW |
| dc.subject | 觀葉植物 | zh_TW |
| dc.subject | light compensation point | en |
| dc.subject | photosystem II | en |
| dc.subject | foliage plants | en |
| dc.subject | photosystem II | en |
| dc.subject | light compensation point | en |
| dc.subject | foliage plants | en |
| dc.subject | plug seedlings | en |
| dc.subject | plug seedlings | en |
| dc.title | 光度、礦物營養及介質含水量對海南菜豆樹與山菜豆生長與光合作用之影響 | zh_TW |
| dc.title | Effects of Light Intensity, Mineral Nutrition, and Volumetric Water Content on the Growth and Photosynthesis of Radermachera hainanensis and Radermachera sinica | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 沈榮壽(Rong-Show Shen),李國譚(Kuo-Tan Li),林淑怡(Shu-I Lin) | |
| dc.subject.keyword | 觀葉植物,穴盤育苗,光補償點,光系統, | zh_TW |
| dc.subject.keyword | foliage plants,plug seedlings,light compensation point,photosystem II, | en |
| dc.relation.page | 147 | |
| dc.identifier.doi | 10.6342/NTU202202426 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-08-17 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 園藝暨景觀學系 | zh_TW |
| dc.date.embargo-lift | 2022-08-18 | - |
| Appears in Collections: | 園藝暨景觀學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| U0001-1508202223214100.pdf | 5.36 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
