Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86467
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林逸彬(Yi-Pin Lin)
dc.contributor.authorYun-Chu Hsuen
dc.contributor.author徐筠茿zh_TW
dc.date.accessioned2023-03-19T23:57:31Z-
dc.date.copyright2022-09-02
dc.date.issued2022
dc.date.submitted2022-08-16
dc.identifier.citationBian, C., Ge, D., Wang, G., Dong, Y., Li, W., Zhu, N., Yuan, H. (2021). Enhancement of waste activated sludge dewaterability by ultrasound-activated persulfate oxidation: Operation condition, sludge properties, and mechanisms. Chemosphere, 262, 128385. Cha, J., Jin, S., Shim, J. H., Park, C. S., Ryu, H. J., Hong, S. H. (2016). Functionalization of carbon nanotubes for fabrication of CNT/epoxy nanocomposites. Materials & Design, 95, 1-8. Cheng, X., Guo, H., Zhang, Y., Korshin, G. V., Yang, B. (2019). Insights into the mechanism of nonradical reactions of persulfate activated by carbon nanotubes: Activation performance and structure-function relationship. Water research, 157, 406-414. Cheng, X., Guo, H., Zhang, Y., Liu, Y., Liu, H., Yang, Y. (2016). Oxidation of 2, 4-dichlorophenol by non-radical mechanism using persulfate activated by Fe/S modified carbon nanotubes. Journal of colloid and interface science, 469, 277-286. Ding, Y., Wang, X., Fu, L., Peng, X., Pan, C., Mao, Q., Wang, C., Yan, J. (2021). Nonradicals induced degradation of organic pollutants by peroxydisulfate (PDS) and peroxymonosulfate (PMS): Recent advances and perspective. Science of The Total Environment, 765, 142794. Du, X., Zhang, Y., Si, F., Yao, C., Du, M., Hussain, I., Kim, H., Huang, S., Lin, Z., Hayat, W. (2019). Persulfate non-radical activation by nano-CuO for efficient removal of chlorinated organic compounds: Reduced graphene oxide-assisted and CuO (0 0 1) facet-dependent. Chemical Engineering Journal, 356, 178-189. Duan, X., Ao, Z., Sun, H., Zhou, L., Wang, G., Wang, S. (2015). Insights into N-doping in single-walled carbon nanotubes for enhanced activation of superoxides: a mechanistic study. Chemical Communications, 51(83), 15249-15252. Duan, X., Sun, H., Kang, J., Wang, Y., Indrawirawan, S., Wang, S. (2015). Insights into heterogeneous catalysis of persulfate activation on dimensional-structured nanocarbons. Acs Catalysis, 5(8), 4629-4636. Evans, D. F., Upton, M. W. (1985). Studies on singlet oxygen in aqueous solution. Part 3. The decomposition of peroxy-acids. Journal of the Chemical Society, Dalton Transactions(6), 1151-1153. Feng, Y., Wu, D., Deng, Y., Zhang, T., Shih, K. (2016). Sulfate radical-mediated degradation of sulfadiazine by CuFeO2 rhombohedral crystal-catalyzed peroxymonosulfate: synergistic effects and mechanisms. Environmental Science & Technology, 50(6), 3119-3127. Furman, O. S., Teel, A. L., Watts, R. J. (2010). Mechanism of base activation of persulfate. Environmental Science & Technology, 44(16), 6423-6428. Gao, F., Li, Y., Xiang, B. (2018). Degradation of bisphenol A through transition metals activating persulfate process. Ecotoxicology and Environmental Safety, 158, 239-247. Gao, Y., Zhu, Y., Lyu, L., Zeng, Q., Xing, X., Hu, C. (2018). Electronic structure modulation of graphitic carbon nitride by oxygen doping for enhanced catalytic degradation of organic pollutants through peroxymonosulfate activation. Environmental Science & Technology, 52(24), 14371-14380. Gao, Y. Q., Gao, N. Y., Deng, Y., Yang, Y. Q., Ma, Y. (2012). Ultraviolet (UV) light-activated persulfate oxidation of sulfamethazine in water. Chemical Engineering Journal, 195, 248-253. Ghanbari, F., Moradi, M. (2017). Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants. Chemical Engineering Journal, 310, 41-62. Guo, H., Gao, N., Yang, Y., Zhang, Y. (2016). Kinetics and transformation pathways on oxidation of fluoroquinolones with thermally activated persulfate. Chemical Engineering Journal, 292, 82-91. Han, C., Duan, X., Zhang, M., Fu, W., Duan, X., Ma, W., Liu, S., Wang, S., Zhou, X. (2019). Role of electronic properties in partition of radical and nonradical processes of carbocatalysis toward peroxymonosulfate activation. Carbon, 153, 73-80. Hu, P., Long, M. (2016). Cobalt-catalyzed sulfate radical-based advanced oxidation: a review on heterogeneous catalysts and applications. Applied Catalysis B: Environmental, 181, 103-117. Huang, K. Z., Zhang, H. (2019). Direct electron-transfer-based peroxymonosulfate activation by iron-doped manganese oxide (δ-MnO2) and the development of galvanic oxidation processes (GOPs). Environmental Science & Technology, 53(21), 12610-12620. Huang, K. Z., Zhang, H. (2020). Galvanic oxidation processes (GOPs): An effective direct electron transfer approach for organic contaminant oxidation. Science of The Total Environment, 743, 140828. Huang, W., Xiao, S., Zhong, H., Yan, M., Yang, X. (2021). Activation of persulfates by carbonaceous materials: A review. Chemical Engineering Journal, 418, 129297. Lee, J., von Gunten, U., Kim, J. H. (2020). Persulfate-based advanced oxidation: critical assessment of opportunities and roadblocks. Environmental Science & Technology, 54(6), 3064-3081. Lei, Y., Chen, C. S., Tu, Y. J., Huang, Y. H., Zhang, H. (2015). Heterogeneous degradation of organic pollutants by persulfate activated by CuO-Fe3O4: mechanism, stability, and effects of pH and bicarbonate ions. Environmental Science & Technology, 49(11), 6838-6845. Li, H., Shan, C., Li, W., Pan, B. (2018). Peroxymonosulfate activation by iron (III)-tetraamidomacrocyclic ligand for degradation of organic pollutants via high-valent iron-oxo complex. Water research, 147, 233-241. Li, H., Tian, J., Xiao, F., Huang, R., Gao, S., Cui, F., Wang, S., Duan, X. (2020). Structure-dependent catalysis of cuprous oxides in peroxymonosulfate activation via nonradical pathway with a high oxidation capacity. Journal of hazardous materials, 385, 121518. Li, J., Liu, Q., Gou, G., Kang, S., Tan, X., Tan, B., Li, L., Li, N., Liu, C., Lai, B. (2022). New insight into the mechanism of peroxymonosulfate activation by Fe3S4: Radical and non-radical oxidation. Separation and Purification Technology, 286, 120471. Liang, C., Huang, C. F., Mohanty, N., Kurakalva, R. M. (2008). A rapid spectrophotometric determination of persulfate anion in ISCO. Chemosphere, 73(9), 1540-1543. Liang, J., Duan, X., Xu, X., Chen, K., Zhang, Y., Zhao, L., Qiu, H., Wang, S., Cao, X. (2021). Persulfate oxidation of sulfamethoxazole by magnetic iron-char composites via nonradical pathways: Fe (IV) versus surface-mediated electron transfer. Environmental Science & Technology, 55(14), 10077-10086. Liu, T., Cui, K., Chen, Y., Li, C., Cui, M., Yao, H., Chen, Y., Wang, S. (2021). Removal of chlorophenols in the aquatic environment by activation of peroxymonosulfate with nMnOx@ Biochar hybrid composites: Performance and mechanism. Chemosphere, 283, 131188. Lominchar, M., Santos, A., De Miguel, E., Romero, A. (2018). Remediation of aged diesel contaminated soil by alkaline activated persulfate. Science of The Total Environment, 622, 41-48. Matarredona, O., Rhoads, H., Li, Z., Harwell, J. H., Balzano, L., Resasco, D. E. (2003). Dispersion of single-walled carbon nanotubes in aqueous solutions of the anionic surfactant NaDDBS. J. Phys. Chem. B, 107, 13357-13367. Monteagudo, J., Durán, A., González, R., Expósito, A. (2015). In situ chemical oxidation of carbamazepine solutions using persulfate simultaneously activated by heat energy, UV light, Fe2+ ions, and H2O2. Applied Catalysis B: Environmental, 176, 120-129. Peng, W., Dong, Y., Fu, Y., Wang, L., Li, Q., Liu, Y., Fan, Q., Wang, Z. (2021). Non-radical reactions in persulfate-based homogeneous degradation processes: A review. Chemical Engineering Journal, 421, 127818. Ren, W., Cheng, C., Shao, P., Luo, X., Zhang, H., Wang, S., Duan, X. (2021). Origins of electron-transfer regime in persulfate-based nonradical oxidation processes. Environmental Science & Technology, 56, 78-97 Ren, W., Nie, G., Zhou, P., Zhang, H., Duan, X., Wang, S. (2020). The intrinsic nature of persulfate activation and N-doping in carbocatalysis. Environmental Science & Technology, 54(10), 6438-6447. Ren, W., Xiong, L., Nie, G., Zhang, H., Duan, X., Wang, S. (2019). Insights into the electron-transfer regime of peroxydisulfate activation on carbon nanotubes: the role of oxygen functional groups. Environmental Science & Technology, 54(2), 1267-1275. Tang, L., Liu, Y., Wang, J., Zeng, G., Deng, Y., Dong, H., Feng, H., Wang, J., Peng, B. (2018). Enhanced activation process of persulfate by mesoporous carbon for degradation of aqueous organic pollutants: electron transfer mechanism. Applied Catalysis B: Environmental, 231, 1-10. Wang, J., Chen, S., Quan, X., Yu, H. (2018). Fluorine-doped carbon nanotubes as an efficient metal-free catalyst for destruction of organic pollutants in catalytic ozonation. Chemosphere, 190, 135-143. Wang, J., Wang, S. (2018). Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chemical Engineering Journal, 334, 1502-1517. Wang, L., Jiang, J., Pang, S. Y., Zhou, Y., Li, J., Sun, S., Gao, Y., Jiang, C. (2018). Oxidation of bisphenol A by nonradical activation of peroxymonosulfate in the presence of amorphous manganese dioxide. Chemical Engineering Journal, 352, 1004-1013. Wang, Y., Cao, D., Liu, M., Zhao, X. (2017). Insights into heterogeneous catalytic activation of peroxymonosulfate by Pd/g-C3N4: The role of superoxide radical and singlet oxygen. Catalysis Communications, 102, 85-88. Wang, Z., Jiang, J., Pang, S., Zhou, Y., Guan, C., Gao, Y., Li, J., Yang, Y., Qiu, W., Jiang, C. (2018). Is sulfate radical really generated from peroxydisulfate activated by iron (II) for environmental decontamination? Environmental Science & Technology, 52(19), 11276-11284. Xiao, S., Cheng, M., Zhong, H., Liu, Z., Liu, Y., Yang, X., Liang, Q. (2020). Iron-mediated activation of persulfate and peroxymonosulfate in both homogeneous and heterogeneous ways: a review. Chemical Engineering Journal, 384, 123265. Yang, W., Li, X., Jiang, Z., Li, C., Zhao, J., Wang, H., Liao, Q. (2020). Structure-dependent catalysis of Co3O4 crystals in persulfate activation via nonradical pathway. Applied Surface Science, 525, 146482. Yang, Z., Yao, Z., Li, G., Fang, G., Nie, H., Liu, Z., Zhou, X., Chen, X., Huang, S. (2012). Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS nano, 6(1), 205-211. Yu, J., Feng, H., Tang, L., Pang, Y., Zeng, G., Lu, Y., Dong, H., Wang, J., Liu, Y., Feng, C. (2020). Metal-free carbon materials for persulfate-based advanced oxidation process: Microstructure, property and tailoring. Progress in Materials Science, 111, 100654. Yun, E. T., Lee, J. H., Kim, J., Park, H. D., Lee, J. (2018). Identifying the nonradical mechanism in the peroxymonosulfate activation process: singlet oxygenation versus mediated electron transfer. Environmental Science & Technology, 52(12), 7032-7042. Zhang, T., Chen, Y., Wang, Y., Le Roux, J., Yang, Y., Croue, J. P. (2014). Efficient peroxydisulfate activation process not relying on sulfate radical generation for water pollutant degradation. Environmental Science & Technology, 48(10), 5868-5875. Zhou, M., Li, Q., Wang, X., Huang, Q., Cang, L. (2022). Electrokinetic combined peroxymonosulfate (PMS) remediation of PAH contaminated soil under different enhance methods. Chemosphere, 286, 131595. Zhou, Y., Jiang, J., Gao, Y., Pang, S. Y., Ma, J., Duan, J., Guo, Q., Li, J., Yang, Y. (2018). Oxidation of steroid estrogens by peroxymonosulfate (PMS) and effect of bromide and chloride ions: kinetics, products, and modeling. Water research, 138, 56-66. Zhou, Z., Liu, X., Sun, K., Lin, C., Ma, J., He, M., Ouyang, W. (2019). Persulfate-based advanced oxidation processes (AOPs) for organic-contaminated soil remediation: A review. Chemical Engineering Journal, 372, 836-851. Zhu, S., Jin, C., Duan, X., Wang, S., Ho, S. H. (2020). Nonradical oxidation in persulfate activation by graphene-like nanosheets (GNS): Differentiating the contributions of singlet oxygen (1O2) and sorption-dependent electron transfer. Chemical Engineering Journal, 393, 124725. Zhu, W., Ford, W. T. (1991). Oxidation of alkenes with aqueous potassium peroxymonosulfate and no organic solvent. The Journal of Organic Chemistry, 56(25), 7022-7026.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86467-
dc.description.abstract近年來,過硫酸鹽高級氧化程序因具備高效力的有機污染物降解能力而受到廣泛的關注。許多研究陸續提出了非自由基的降解途徑及相關證明。為了更直接地探討非自由基機制中的電子轉移途徑,本研究使用賈法尼電化學氧化程序(Galvanic oxidation process) ,以多壁奈米碳管作為活化劑,塗佈於石墨片上作為電極,並將2,4-二氯酚及過一硫酸鹽分別置於以鹽橋和銅線連接的陰極反應槽和陽極反應槽中,以排除自由基或具反應性表面錯合物對2,4-二氯酚的降解貢獻。在10 µM 2,4-二氯酚和25 mM 過一硫酸氫鉀複合鹽條件下,連接與未連接鹽橋和銅線的賈法尼氧化程序控制試驗中, 22 % 的2,4-二氯酚去除是源於吸附作用,而幾乎所有的2,4-二氯酚去除是由吸附和電子轉移途徑所貢獻。此外, 2,4-二氯酚的去除速率隨著過一硫酸鹽用量、2,4-二氯酚濃度、多壁奈米碳管塗佈量以及2,4-二氯酚陰極溶液pH的增加而提升。測得的電流大小也隨著2,4-二氯酚去除速率的提升而變大。於電極耐久性評估試驗中,2,4-二氯酚於第八次的循環使用中仍有92 % 左右的去除效率,顯示多壁奈米碳管電極具備良好的重複使用性及穩定性。最後,應用X射線光電子能譜儀(XPS)及拉曼光譜儀對使用過的多壁奈米碳管進行分析,多壁奈米碳管結構上減少的缺陷或紊亂及增加的氧原子含量說明其結構於過程中有吸附、活化及電子轉移的反應發生,有可能會影響更長期2,4-二氯酚的去除效率。zh_TW
dc.description.abstractPersulfate advanced oxidation process has gained increasing attentions in recent years due to its high capability to degrade organic contaminants. In addition to free radicals produced, studies suggested that the degradation of organic contaminants can be proceeded via the non-radical mechanism. In order to specifically investigate the electron transfer pathway of the non-radical mechanism, the galvanic oxidation process (GOP) was employed, in which the target contaminant 2,4-dichlorophenol (2,4-DCP) and peroxymonosulfate (PMS) were separated into two individual anodic and cathodic cells that were connected by a salt bridge and external copper wire. The separated cells can exclude the contributions of radicals and reactive surface complexes generated from the PMS activation toward the degradation of 2,4-DCP. Multi-walled carbon nanotube (MWCNT) was used as the PMS activator and was coated on the graphite sheet as electrodes. In the GOP control system that is connected or disconnected to salt bridge and external copper wire in the condition of 10 µM 2,4-DCP and 25 mM PMS, it was observed that 22% of 2,4-DCP removal could be attributed to adsorption on the electrode, while almost all of the 2,4-DCP was removed via the adsorption and direct electron transfer pathway in 7 h. The 2,4-DCP removal was enhanced by the increasing of PMS concentration, 2,4-DCP concentration, MWCNT coating and the pH of 2,4-DCP solution in the anodic cell. The magnitude of current measured was higher at a higher 2,4-DCP removal rate. In the electrode reusability test, the 2,4-DCP removal remained about 92% after 8 cycles, indicating the good reusability and stability of the MWCNT electrodes. X-ray photoelectron spectroscope (XPS) and Raman spectroscopy were applied to analyze the used MWCNT. The results of decreasing defects or disorders on MWCNT and the increasing of oxygen content suggested that the adsorption, activation and electron transfer did occur in the process and could gradually restrict the activation ability of MWCNT. These changes may affect the long term performance of the electrode and may require further investigation.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:57:31Z (GMT). No. of bitstreams: 1
U0001-1408202206063300.pdf: 1368219 bytes, checksum: b7aa2419dbd3f5e02fd6fcf6fc12c0df (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents謝辭 i 摘要 ii ABSTRACT iii CONTENT v LIST OF FIGURES viii LIST OF TABLES xiii Chapter 1 INTRODUCTION 1 1.1 Background 1 1.2 Research hypotheses 2 1.3 Research objectives 3 Chapter 2 Literature Review 4 2.1 Properties of PMS 4 2.2 Properties of carbon nanotubes 5 2.3 Non-radical persulfate oxidation processes 6 2.4 Galvanic Oxidation Processes 9 Chapter 3 MATERIAL AND METHODS 11 3.1 Research framework 11 3.2 Chemicals and reagents 13 3.3 Characterization of MWCNT 13 3.4 Determination of point of zero charge 14 3.5 Adsorption isotherm 15 3.6 Preparation of electrodes 16 3.7 GOP experimental procedure 16 3.8 PMS and 2,4-DCP measurements 17 Chapter 4 RESULTS AND DISCUSSION 19 4.1 Characterization of MWCNT 19 4.2 Adsorption isotherms of 2,4-DCP and PMS 23 4.3.1 Control experiments of GOP system 29 4.3.2 Control experiments of current 31 4.4 Influences of PMS concentration, 2,4-DCP concentration, pMWCNT coating and pH on the removal of 2,4-DCP in the GOP system 33 4.4.1 Influence of PMS concentration 33 4.4.2 Influence of 2,4-DCP concentration 36 4.4.3 Influence of pMWCNT coating 40 4.4.4 Influence of pH 44 4.5 Electrode reusability 48 4.6 Characterization of used MWCNT electrode 50 Chapter 5 57 5.1 Conclusions 57 5.2 Recommendations 58 REFERENCES 59
dc.language.isoen
dc.subject賈法尼氧化程序zh_TW
dc.subject過硫酸鹽zh_TW
dc.subject奈米碳管zh_TW
dc.subject氯酚zh_TW
dc.subject非自由基機制zh_TW
dc.subject電子轉移zh_TW
dc.subject過硫酸鹽zh_TW
dc.subject奈米碳管zh_TW
dc.subject氯酚zh_TW
dc.subject賈法尼氧化程序zh_TW
dc.subject非自由基機制zh_TW
dc.subject電子轉移zh_TW
dc.subjectcarbon nanotubeen
dc.subjectelectron transferen
dc.subjectchlorophenolen
dc.subjectpersulfateen
dc.subjectelectron transferen
dc.subjectnon-radical mechanismen
dc.subjectgalvanic oxidation processen
dc.subjectpersulfateen
dc.subjectcarbon nanotubeen
dc.subjectchlorophenolen
dc.subjectgalvanic oxidation processen
dc.subjectnon-radical mechanismen
dc.title"以奈米碳管活化過一硫酸氫鉀複合鹽藉由電子轉移途徑去除2,4-二氯酚 "zh_TW
dc.title2,4-Dichlorophenol Removal by Carbon Nanotube Activated Peroxymonosulfate Through Direct Electron Transfer Pathwayen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林郁真(Yu-Chen Lin),童心欣(Hsin-hsin Tung),黃鼎荃(Ding-Quan Ng)
dc.subject.keyword過硫酸鹽,奈米碳管,氯酚,賈法尼氧化程序,非自由基機制,電子轉移,zh_TW
dc.subject.keywordpersulfate,carbon nanotube,chlorophenol,galvanic oxidation process,non-radical mechanism,electron transfer,en
dc.relation.page65
dc.identifier.doi10.6342/NTU202202374
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-08-17
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
dc.date.embargo-lift2022-09-02-
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-1408202206063300.pdf1.34 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved