Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 解剖學暨細胞生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86459
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王淑慧(Shu-Huei Wang)
dc.contributor.authorTing-Yu Changen
dc.contributor.author張庭瑜zh_TW
dc.date.accessioned2023-03-19T23:57:04Z-
dc.date.copyright2022-10-03
dc.date.issued2022
dc.date.submitted2022-08-17
dc.identifier.citation1 Scott, N. A. Restenosis following implantation of bare metal coronary stents: pathophysiology and pathways involved in the vascular response to injury. Adv Drug Deliv Rev 58, 358-376, doi:10.1016/j.addr.2006.01.015 (2006). 2 Conti, P. & Shaik-Dasthagirisaeb, Y. Atherosclerosis: a chronic inflammatory disease mediated by mast cells. Cent Eur J Immunol 40, 380-386, doi:10.5114/ceji.2015.54603 (2015). 3 Mugge, A. The role of reactive oxygen species in atherosclerosis. Z Kardiol 87, 851-864, doi:10.1007/s003920050241 (1998). 4 Di Pietro, N., Formoso, G. & Pandolfi, A. Physiology and pathophysiology of oxLDL uptake by vascular wall cells in atherosclerosis. Vascul Pharmacol 84, 1-7, doi:10.1016/j.vph.2016.05.013 (2016). 5 Allahverdian, S., Pannu, P. S. & Francis, G. A. Contribution of monocyte-derived macrophages and smooth muscle cells to arterial foam cell formation. Cardiovasc Res 95, 165-172, doi:10.1093/cvr/cvs094 (2012). 6 Jebari-Benslaiman, S. et al. Pathophysiology of Atherosclerosis. Int J Mol Sci 23, doi:10.3390/ijms23063346 (2022). 7 Libby, P. The changing landscape of atherosclerosis. Nature 592, 524-533, doi:10.1038/s41586-021-03392-8 (2021). 8 Stevens, J. R., Zamani, A., Osborne, J. I. A., Zamani, R. & Akrami, M. Critical evaluation of stents in coronary angioplasty: a systematic review. BioMedical Engineering OnLine 20, 46, doi:10.1186/s12938-021-00883-7 (2021). 9 Carrozza, J. P., Jr. et al. Angiographic and clinical outcome of intracoronary stenting: immediate and long-term results from a large single-center experience. J Am Coll Cardiol 20, 328-337, doi:10.1016/0735-1097(92)90098-8 (1992). 10 Akiyama, T. et al. Angiographic and clinical outcome following coronary stenting of small vessels: a comparison with coronary stenting of large vessels. J Am Coll Cardiol 32, 1610-1618, doi:10.1016/s0735-1097(98)00444-6 (1998). 11 Peppel, K. et al. Activation of vascular smooth muscle cells by TNF and PDGF: overlapping and complementary signal transduction mechanisms. Cardiovasc Res 65, 674-682, doi:10.1016/j.cardiores.2004.10.031 (2005). 12 Thyberg, J. Phenotypic modulation of smooth muscle cells during formation of neointimal thickenings following vascular injury. Histol Histopathol 13, 871-891, doi:10.14670/HH-13.871 (1998). 13 Ferns, G. A. et al. Inhibition of neointimal smooth muscle accumulation after angioplasty by an antibody to PDGF. Science 253, 1129-1132, doi:10.1126/science.1653454 (1991). 14 Jang, Y., Lincoff, A. M., Plow, E. F. & Topol, E. J. Cell adhesion molecules in coronary artery disease. J Am Coll Cardiol 24, 1591-1601, doi:10.1016/0735-1097(94)90162-7 (1994). 15 Danenberg, H. D. et al. Macrophage depletion by clodronate-containing liposomes reduces neointimal formation after balloon injury in rats and rabbits. Circulation 106, 599-605, doi:10.1161/01.cir.0000023532.98469.48 (2002). 16 Beamish, J. A., He, P., Kottke-Marchant, K. & Marchant, R. E. Molecular regulation of contractile smooth muscle cell phenotype: implications for vascular tissue engineering. Tissue Eng Part B Rev 16, 467-491, doi:10.1089/ten.TEB.2009.0630 (2010). 17 Kansakar, U., Jankauskas, S. S., Gambardella, J. & Santulli, G. Targeting the phenotypic switch of vascular smooth muscle cells to tackle atherosclerosis. Atherosclerosis 324, 117-120, doi:10.1016/j.atherosclerosis.2021.03.034 (2021). 18 Rensen, S. S., Doevendans, P. A. & van Eys, G. J. Regulation and characteristics of vascular smooth muscle cell phenotypic diversity. Neth Heart J 15, 100-108, doi:10.1007/BF03085963 (2007). 19 Rennick, R. E. et al. Expression of connexin43 gap junctions between cultured vascular smooth muscle cells is dependent upon phenotype. Cell Tissue Res 271, 323-332, doi:10.1007/BF00318619 (1993). 20 Seidl, S. E. et al. Toll-like receptor 2 activation and serum amyloid A regulate smooth muscle cell extracellular matrix. PLoS One 12, e0171711, doi:10.1371/journal.pone.0171711 (2017). 21 Saltis, J. et al. Expression of growth factor receptors in arterial smooth muscle cells. Dependency on cell phenotype and serum factors. Atherosclerosis 118, 77-87, doi:10.1016/0021-9150(95)05595-n (1995). 22 Coll-Bonfill, N., de la Cruz, B., Pisano, M. & Musri, M. Noncoding RNAs in smooth muscle cell homeostasis: implications in phenotypic switch and vascular disorders. Pflügers Archiv - European Journal of Physiology 468, doi:10.1007/s00424-016-1821-x (2016). 23 Boehm, M. & Nabel, E. G. Cell cycle and cell migration: new pieces to the puzzle. Circulation 103, 2879-2881, doi:10.1161/01.cir.103.24.2879 (2001). 24 Nabel, E. G. CDKs and CKIs: molecular targets for tissue remodelling. Nat Rev Drug Discov 1, 587-598, doi:10.1038/nrd869 (2002). 25 Sherr, C. J. & Roberts, J. M. Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev 9, 1149-1163, doi:10.1101/gad.9.10.1149 (1995). 26 Innocenti, M. New insights into the formation and the function of lamellipodia and ruffles in mesenchymal cell migration. Cell Adh Migr 12, 401-416, doi:10.1080/19336918.2018.1448352 (2018). 27 Dmitrieff, S. & Nedelec, F. Amplification of actin polymerization forces. J Cell Biol 212, 763-766, doi:10.1083/jcb.201512019 (2016). 28 Gerthoffer, W. T. Mechanisms of Vascular Smooth Muscle Cell Migration. Circulation Research 100, 607-621, doi:doi:10.1161/01.RES.0000258492.96097.47 (2007). 29 Belch, J. J. et al. The white blood cell adhesion molecule E-selectin predicts restenosis in patients with intermittent claudication undergoing percutaneous transluminal angioplasty. Circulation 95, 2027-2031, doi:10.1161/01.cir.95.8.2027 (1997). 30 Kamijikkoku, S. et al. Acute myocardial infarction and increased soluble intercellular adhesion molecule-1: a marker of vascular inflammation and a risk of early restenosis? Am Heart J 136, 231-236, doi:10.1053/hj.1998.v136.89407 (1998). 31 Serrano, C. V., Jr. et al. Coronary angioplasty results in leukocyte and platelet activation with adhesion molecule expression. Evidence of inflammatory responses in coronary angioplasty. J Am Coll Cardiol 29, 1276-1283, doi:10.1016/s0735-1097(97)00070-3 (1997). 32 Sorokin, V. et al. Role of Vascular Smooth Muscle Cell Plasticity and Interactions in Vessel Wall Inflammation. Frontiers in Immunology 11, doi:10.3389/fimmu.2020.599415 (2020). 33 Osaki, M., Oshimura, M. & Ito, H. PI3K-Akt pathway: its functions and alterations in human cancer. Apoptosis 9, 667-676, doi:10.1023/B:APPT.0000045801.15585.dd (2004). 34 Hemmings, B. A. & Restuccia, D. F. PI3K-PKB/Akt pathway. Cold Spring Harb Perspect Biol 4, a011189, doi:10.1101/cshperspect.a011189 (2012). 35 Kim, J. Y. et al. Apamin inhibits PDGF-BB-induced vascular smooth muscle cell proliferation and migration through suppressions of activated Akt and Erk signaling pathway. Vascul Pharmacol 70, 8-14, doi:10.1016/j.vph.2014.12.004 (2015). 36 Faurschou, A. & Gniadecki, R. TNF-alpha stimulates Akt by a distinct aPKC-dependent pathway in premalignant keratinocytes. Exp Dermatol 17, 992-997, doi:10.1111/j.1600-0625.2008.00740.x (2008). 37 Yan, L. J. et al. Cordycepin inhibits vascular adhesion molecule expression in TNF-alpha-stimulated vascular muscle cells. Exp Ther Med 14, 2335-2340, doi:10.3892/etm.2017.4746 (2017). 38 Li, N., Liu, J. H., Zhang, J. & Yu, B. Y. Comparative evaluation of cytotoxicity and antioxidative activity of 20 flavonoids. J Agric Food Chem 56, 3876-3883, doi:10.1021/jf073520n (2008). 39 Du, W. J. et al. Antitumor Activity of Total Flavonoids from Daphne genkwa in Colorectal Cancer. Phytother Res 30, 323-330, doi:10.1002/ptr.5540 (2016). 40 Miranda, C. L. et al. Antiproliferative and cytotoxic effects of prenylated flavonoids from hops (Humulus lupulus) in human cancer cell lines. Food Chem Toxicol 37, 271-285, doi:10.1016/s0278-6915(99)00019-8 (1999). 41 Krajnovic, T. et al. The hop-derived prenylflavonoid isoxanthohumol inhibits the formation of lung metastasis in B16-F10 murine melanoma model. Food Chem Toxicol 129, 257-268, doi:10.1016/j.fct.2019.04.046 (2019). 42 Negrao, R., Duarte, D., Costa, R. & Soares, R. Isoxanthohumol modulates angiogenesis and inflammation via vascular endothelial growth factor receptor, tumor necrosis factor alpha and nuclear factor kappa B pathways. Biofactors 39, 608-622, doi:10.1002/biof.1122 (2013). 43 Sata, M. et al. A mouse model of vascular injury that induces rapid onset of medial cell apoptosis followed by reproducible neointimal hyperplasia. J Mol Cell Cardiol 32, 2097-2104, doi:10.1006/jmcc.2000.1238 (2000). 44 Chakraborty, R. et al. Targeting smooth muscle cell phenotypic switching in vascular disease. JVS Vasc Sci 2, 79-94, doi:10.1016/j.jvssci.2021.04.001 (2021). 45 Liu, M. W., Roubin, G. S. & King, S. B., 3rd. Restenosis after coronary angioplasty. Potential biologic determinants and role of intimal hyperplasia. Circulation 79, 1374-1387, doi:10.1161/01.cir.79.6.1374 (1989). 46 Marx, S. O., Totary-Jain, H. & Marks, A. R. Vascular smooth muscle cell proliferation in restenosis. Circ Cardiovasc Interv 4, 104-111, doi:10.1161/CIRCINTERVENTIONS.110.957332 (2011). 47 Friedl, P. & Wolf, K. Plasticity of cell migration: a multiscale tuning model. J Cell Biol 188, 11-19, doi:10.1083/jcb.200909003 (2010). 48 Yang, D. et al. Proliferation of vascular smooth muscle cells under inflammation is regulated by NF-kappaB p65/microRNA-17/RB pathway activation. Int J Mol Med 41, 43-50, doi:10.3892/ijmm.2017.3212 (2018). 49 Zeiffer, U. et al. Neointimal smooth muscle cells display a proinflammatory phenotype resulting in increased leukocyte recruitment mediated by P-selectin and chemokines. Circ Res 94, 776-784, doi:10.1161/01.RES.0000121105.72718.5C (2004). 50 Testa, J. R. & Tsichlis, P. N. AKT signaling in normal and malignant cells. Oncogene 24, 7391-7393, doi:10.1038/sj.onc.1209100 (2005). 51 Lavoie, H., Gagnon, J. & Therrien, M. ERK signalling: a master regulator of cell behaviour, life and fate. Nat Rev Mol Cell Biol 21, 607-632, doi:10.1038/s41580-020-0255-7 (2020). 52 Gao, S. et al. Salusin-alpha Inhibits Proliferation and Migration of Vascular Smooth Muscle Cell via Akt/mTOR Signaling. Cell Physiol Biochem 50, 1740-1753, doi:10.1159/000494792 (2018). 53 Kesavan, R. et al. Inhibition of vascular smooth muscle cell proliferation by Gentiana lutea root extracts. PLoS One 8, e61393, doi:10.1371/journal.pone.0061393 (2013). 54 Zhao, Y. et al. PDGF-induced vascular smooth muscle cell proliferation is associated with dysregulation of insulin receptor substrates. Am J Physiol Cell Physiol 300, C1375-1385, doi:10.1152/ajpcell.00670.2008 (2011). 55 Cheng, C. et al. PDGF-induced migration of vascular smooth muscle cells is inhibited by heme oxygenase-1 via VEGFR2 upregulation and subsequent assembly of inactive VEGFR2/PDGFRbeta heterodimers. Arterioscler Thromb Vasc Biol 32, 1289-1298, doi:10.1161/ATVBAHA.112.245530 (2012). 56 Owens, G. K., Kumar, M. S. & Wamhoff, B. R. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84, 767-801, doi:10.1152/physrev.00041.2003 (2004). 57 Hao, H., Gabbiani, G. & Bochaton-Piallat, M. L. Arterial smooth muscle cell heterogeneity: implications for atherosclerosis and restenosis development. Arterioscler Thromb Vasc Biol 23, 1510-1520, doi:10.1161/01.ATV.0000090130.85752.ED (2003). 58 Blackburn, J. P. et al. Upregulation of connexin43 gap junctions during early stages of human coronary atherosclerosis. Arterioscler Thromb Vasc Biol 15, 1219-1228, doi:10.1161/01.atv.15.8.1219 (1995). 59 Yeh, H. I., Lupu, F., Dupont, E. & Severs, N. J. Upregulation of connexin43 gap junctions between smooth muscle cells after balloon catheter injury in the rat carotid artery. Arterioscler Thromb Vasc Biol 17, 3174-3184, doi:10.1161/01.atv.17.11.3174 (1997). 60 Kim, H. P. et al. Caveolin-1 expression by means of p38beta mitogen-activated protein kinase mediates the antiproliferative effect of carbon monoxide. Proc Natl Acad Sci U S A 102, 11319-11324, doi:10.1073/pnas.0501345102 (2005). 61 Zhan, Y. et al. Effects of dominant-negative c-Jun on platelet-derived growth factor-induced vascular smooth muscle cell proliferation. Arterioscler Thromb Vasc Biol 22, 82-88, doi:10.1161/hq0102.101821 (2002). 62 Lee, J. H. et al. Evening Primrose Extracts Inhibit PDGF-BB-Induced Vascular Smooth Muscle Cell Proliferation and Migration by Regulating Cell-Cycle-Related Proteins. Curr Issues Mol Biol 44, 1928-1940, doi:10.3390/cimb44050131 (2022). 63 Pauly, R. R. et al. Migration of cultured vascular smooth muscle cells through a basement membrane barrier requires type IV collagenase activity and is inhibited by cellular differentiation. Circ Res 75, 41-54, doi:10.1161/01.res.75.1.41 (1994). 64 Liu, P., Sun, M. & Sader, S. Matrix metalloproteinases in cardiovascular disease. Can J Cardiol 22 Suppl B, 25B-30B, doi:10.1016/s0828-282x(06)70983-7 (2006). 65 Mason, D. P. et al. Matrix metalloproteinase-9 overexpression enhances vascular smooth muscle cell migration and alters remodeling in the injured rat carotid artery. Circ Res 85, 1179-1185, doi:10.1161/01.res.85.12.1179 (1999). 66 Pollard, T. D. & Borisy, G. G. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453-465, doi:10.1016/s0092-8674(03)00120-x (2003). 67 Ridley, A. J. et al. Cell migration: integrating signals from front to back. Science 302, 1704-1709, doi:10.1126/science.1092053 (2003). 68 Afewerki, T., Ahmed, S. & Warren, D. Emerging regulators of vascular smooth muscle cell migration. J Muscle Res Cell Motil 40, 185-196, doi:10.1007/s10974-019-09531-z (2019). 69 Jalvy, S. et al. Autocrine expression of osteopontin contributes to PDGF-mediated arterial smooth muscle cell migration. Cardiovasc Res 75, 738-747, doi:10.1016/j.cardiores.2007.05.019 (2007). 70 Bornfeldt, K. E. et al. Platelet-derived growth factor. Distinct signal transduction pathways associated with migration versus proliferation. Ann N Y Acad Sci 766, 416-430, doi:10.1111/j.1749-6632.1995.tb26691.x (1995). 71 Bostrom, K. Osteopontin, a missing link in PDGF-induced smooth muscle cell migration. Cardiovasc Res 75, 634-635, doi:10.1016/j.cardiores.2007.06.031 (2007). 72 Couffinhal, T. et al. Tumor necrosis factor-alpha stimulates ICAM-1 expression in human vascular smooth muscle cells. Arterioscler Thromb 13, 407-414, doi:10.1161/01.atv.13.3.407 (1993). 73 Lee, K., Yim, J. H., Lee, H. K. & Pyo, S. Inhibition of VCAM-1 expression on mouse vascular smooth muscle cells by lobastin via downregulation of p38, ERK 1/2 and NF-kappaB signaling pathways. Arch Pharm Res 39, 83-93, doi:10.1007/s12272-015-0687-3 (2016). 74 Ambroz, M., Lnenickova, K., Matouskova, P., Skalova, L. & Bousova, I. Antiproliferative Effects of Hop-derived Prenylflavonoids and Their Influence on the Efficacy of Oxaliplatine, 5-fluorouracil and Irinotecan in Human ColorectalC Cells. Nutrients 11, doi:10.3390/nu11040879 (2019). 75 Krajnovic, T., Kaluderovic, G. N., Wessjohann, L. A., Mijatovic, S. & Maksimovic-Ivanic, D. Versatile antitumor potential of isoxanthohumol: Enhancement of paclitaxel activity in vivo. Pharmacol Res 105, 62-73, doi:10.1016/j.phrs.2016.01.011 (2016). 76 Liu, M. et al. Prenylflavonoid Isoxanthohumol Sensitizes MCF-7/ADR Cells to Doxorubicin Cytotoxicity via Acting as a Substrate of ABCB1. Toxins (Basel) 9, doi:10.3390/toxins9070208 (2017).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86459-
dc.description.abstract血管支架再狹窄(In-stent restenosis)普遍被視為血管支架植入所導致的後遺症。支架的裝設易導致血管內膜損傷,使血管平滑肌細胞直接接觸到血流中的生長因子及促發炎物質,誘導平滑肌細胞的表型轉換,從收縮型往合成型轉變。越來越多證據顯示,合成型平滑肌細胞會有異常增生、移行的表現,導致血管新生內膜的過度增厚(neointimal hyperplasia)。因此,抑制異常的血管平滑肌細胞增生及移行,是血管再狹窄治療上的重要方針。 本篇選擇的研究藥物異黃腐酚(Isoxanthohumol, IXN)是一種從啤酒花及苦參中萃取出的天然黃酮類化合物,在眾多癌症研究中已證實其具有抑制細胞增生、移行及抗發炎的能力,然而IXN對於血管再狹窄的影響仍舊未知,因此本篇主旨在探討IXN是否對血管再狹窄具有治療作用。 實驗分為細胞及動物實驗進行,細胞實驗以大鼠主動脈平滑肌細胞及U937細胞,觀察IXN是否能抑制經血小板衍生生長因子(PDGF)和腫瘤壞死因子(TNF-α)誘導之平滑肌細胞增生、移行,及發炎反應;動物實驗使用C57BL/6小鼠建立股動脈去內皮創傷模型,研究IXN對於抑制血管內膜過度增厚的效果。研究結果表明,在體外試驗中IXN能透過抑制AKT磷酸化降低細胞週期調控蛋白(CDK4、Cyclin D1、CDK2和p21)和平滑肌細胞移行前緣的F-actin表現,抑制PDGF誘導之平滑肌細胞增生及移行。另外,IXN通過抑制AKT磷酸化來降低經TNF-α誘導之黏附因子(VCAM-1、ICAM-1)的表現,並減少單核球黏附平滑肌細胞。在動物實驗的結果表明,IXN顯著降低因血管內膜受損所導致的新生內膜過度增厚。根據目前研究結果顯示,IXN具有預防及治療血管相關之增生性疾病的潛力。zh_TW
dc.description.abstractIn-stent restenosis (ISR) is widely recognized as an sequelae of vascular stent implantation. Stent implantation causes the tunica intima layer damage, which causes vascular smooth muscle cells (VSMCs) directly exposing to growth factors and inflammatory mediators and bring to phenotypic switching of VSMCs from contractile to synthetic phenotype. Growing evidence showed that synthetic type of VSMCs possesses abnormal proliferation, and migration in the tunica intima layer, resulting in neointimal hyperplasia (NIH). Inhibition of abnormal VSMC proliferation and migration has become the most important strategy on therapy and treatment of restenosis. Isoxanthohumol (IXN), a nature flavonoid extracted from Humulus lupulus and Sophora flavescens, has been reported to have various effects, including anti-proliferative, anti-migratory and anti-inflammatory in numerous cancer research. Even though it is very effective against cancer cells, the effects of IXN in restenosis is still unclear. The aim of this study is to investigate whether IXN has therapeutic effects on vascular restenosis. In cell experiments, Rat aortic smooth muscle cells (RASMCs) and U937 cells were used to examine the anti-proliferation, anti-migration and anti-inflammation of IXN on platelet-derived growth factor (PDGF)- and tumor necrosis factor-alpha (TNF-α)-treated RASMCs. In animal experiments, we used C57BL/6 mice to establish a vascular endothelial damage model to study the therapeutic effect of IXN on neointimal hyperplasia. In the in vitro assay, the present study showed that IXN has the ability to inhibit PDGF induced proliferation and migration of RASMCs through downregulating the expression of cell cycle regulatory protein (CDK4, Cyclin D1, CDK2, and p21) and F-actin. In addition, IXN significantly decreased the expression of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and monocyte adhesion induced by TNF-α by AKT phosphorylation. In the in vivo study, IXN reduced the neointimal hyperplasia induced by endothelial-denudation. Based on the above results, IXN represent a therapeutic candidate for the prevention and treatment of vascular proliferative diseases.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:57:04Z (GMT). No. of bitstreams: 1
U0001-1008202214420800.pdf: 5118143 bytes, checksum: 806b5a19873dda32cec36c7cc2dc6a72 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審定書 I 誌謝 II 摘要 III Abstract IV 目錄 VI 壹、 緒論 1 前言 1 動脈粥樣硬化(Atherosclerosis)之形成 1 血管支架再狹窄化(In-stent restenosis)的成因 2 平滑肌細胞與血管支架再狹窄化的關係 3 細胞週期與平滑肌細胞增生之關聯 3 細胞骨架與平滑肌細胞移行之關聯 3 單核球細胞與平滑肌細胞發炎之關聯 4 平滑肌細胞受PDGF、TNF-α誘導之分子機制 4 異黃腐酚(Isoxanthohumol)和心血管疾病之關聯 4 研究動機和實驗設計 5 貳、 實驗材料 7 儀器設備 7 實驗材料 7 藥品 7 細胞培養 7 結晶紫染色 8 乳酸脫氫酶細胞毒性試驗 8 西方墨點法 8 免疫細胞螢光染色 9 流式細胞儀 10 動物實驗 10 免疫組織化學染色 10 免疫組織螢光染色 10 溶液配置 11 參、 實驗方法 13 細胞實驗(In vitro) 13 細胞株之培養 13 結晶紫染色 13 乳酸脫氫酶細胞毒性試驗 13 BrdU細胞增殖試驗 14 流式細胞儀分析 14 西方墨點法 15 細胞傷口癒合試驗&細胞移行能力試驗 16 Phalloidin染色 17 單核球黏附試驗 18 動物實驗(In vivo) 18 小鼠股動脈去內皮傷害模式 18 Weigert’s resorcin fuchsin染色 19 免疫螢光染色 19 數據統計分析 20 肆、 實驗結果 21 IXN對於平滑肌細胞的毒性測試 21 IXN降低PDGF誘導轉型成合成型平滑肌細胞的標誌蛋白表現 21 IXN具有抑制經PDGF誘導之平滑肌細胞增生的功能 21 IXN經調控細胞週期及相關蛋白表現來抑制平滑肌細胞增生 22 IXN具有抑制經PDGF誘導之平滑肌細胞移行的功能 22 IXN具有抑制經TNF-α誘導之平滑肌細胞發炎的功能 23 IXN具有抑制血管受損後內膜異常增厚的效果 24 IXN能降低血管平滑肌細胞之合成型平滑肌細胞標誌蛋白表現 24 IXN能抑制血管內膜之平滑肌細胞增生 24 IXN能降低血管內膜增生之平滑肌細胞發炎反應 25 IXN藉由AKT路徑調控平滑肌細胞反應 25 IXN藉由抑制AKT磷酸化降低PDGF誘導之平滑肌細胞表型轉換 26 IXN藉由抑制AKT磷酸化降低PDGF誘導之平滑肌細胞增生 26 IXN藉由抑制AKT磷酸化降低PDGF誘導之平滑肌細胞移行 27 IXN藉由抑制AKT磷酸化降低TNF-α誘導之平滑肌細胞發炎反應 28 伍、 討論 29 陸、 附圖 34 圖一、 IXN對平滑肌細胞的毒性測試 34 圖二、 IXN降低PDGF誘導轉型成合成型平滑肌細胞的標誌蛋白表現 35 圖三、 IXN能抑制經PDGF誘導之平滑肌細胞增生 36 圖四、 IXN經調控細胞週期及相關蛋白抑制平滑肌細胞增生 37 圖五、 IXN具有抑制經PDGF誘導之平滑肌細胞移行的功能 38 圖六、 IXN降低平滑肌細胞移行前緣之F-actin堆積 39 圖七、 IXN抑制平滑肌細胞經TNF-α誘導之黏附因子表現 40 圖八、 IXN能抑制TNF-α誘導之平滑肌細胞發炎反應 41 圖九、 IXN具有抑制血管受損後內膜異常增厚的效果 42 圖十、 IXN能降低血管平滑肌細胞之合成型平滑肌細胞標誌蛋白表現 43 圖十一、 IXN能抑制血管內膜之平滑肌細胞增生 44 圖十二、 IXN能降低血管內膜增生之平滑肌細胞黏附因子表現 45 圖十三、 IXN能降低血管內膜增生之平滑肌細胞發炎反應 46 圖十四、 IXN藉由AKT路徑調控平滑肌細胞 47 圖十五、 IXN能降低血管內膜增生之平滑肌細胞內p-AKT表現 48 圖十六、 IXN藉由抑制AKT磷酸化降低PDGF誘導之細胞表型轉換 49 圖十七、 IXN藉由抑制AKT磷酸化降低PDGF誘導之平滑肌細胞增生 50 圖十八、 IXN藉由AKT路徑調控細胞週期調控蛋白表現 51 圖十九、 IXN藉由抑制AKT磷酸化降低PDGF誘導之平滑肌細胞移行 52 圖二十、 IXN藉由抑制AKT磷酸化降低F-actin於細胞移行前緣聚集 53 圖二十一、 IXN藉由抑制AKT磷酸化降低TNF-α誘導之黏附因子表現 54 圖二十二、 IXN藉由抑制AKT磷酸化降低TNF-α誘導之細胞發炎反應 55 圖二十三、 IXN調控AKT路徑降低平滑肌細胞之增生、移行和發炎反應 56 柒、 參考文獻 57
dc.language.isozh-TW
dc.subject血管支架再狹窄zh_TW
dc.subject異黃腐酚zh_TW
dc.subject平滑肌細胞zh_TW
dc.subject增生zh_TW
dc.subject移行zh_TW
dc.subject發炎zh_TW
dc.subject異黃腐酚zh_TW
dc.subject血管支架再狹窄zh_TW
dc.subject平滑肌細胞zh_TW
dc.subject增生zh_TW
dc.subject移行zh_TW
dc.subject發炎zh_TW
dc.subjectin-stent restenosisen
dc.subjectmigrationen
dc.subjectinflammationen
dc.subjectIsoxanthohumolen
dc.subjectsmooth muscle cellsen
dc.subjectIsoxanthohumolen
dc.subjectinflammationen
dc.subjectmigrationen
dc.subjectproliferationen
dc.subjectin-stent restenosisen
dc.subjectsmooth muscle cellsen
dc.subjectproliferationen
dc.titleIsoxanthohumol在血管支架再狹窄化的治療效果及相關機制zh_TW
dc.titleThe therapeutic effects and the relative mechanisms of Isoxanthohumol on Restenosisen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王仰高(Yang-Kao Wang),龔秀妮(Hsiu-Ni Kung)
dc.subject.keyword異黃腐酚,血管支架再狹窄,平滑肌細胞,增生,移行,發炎,zh_TW
dc.subject.keywordIsoxanthohumol,in-stent restenosis,smooth muscle cells,proliferation,migration,inflammation,en
dc.relation.page63
dc.identifier.doi10.6342/NTU202202258
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-08-17
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept解剖學暨細胞生物學研究所zh_TW
dc.date.embargo-lift2027-08-16-
顯示於系所單位:解剖學暨細胞生物學科所

文件中的檔案:
檔案 大小格式 
U0001-1008202214420800.pdf
  此日期後於網路公開 2027-08-16
5 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved