請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86457
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王昱 | zh_TW |
dc.contributor.advisor | Yu Wang | en |
dc.contributor.author | 陳建銘 | zh_TW |
dc.contributor.author | Jian-Ming Chen | en |
dc.date.accessioned | 2023-03-19T23:56:57Z | - |
dc.date.available | 2023-11-10 | - |
dc.date.copyright | 2022-08-19 | - |
dc.date.issued | 2022 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | 林亞嫻,2020,1999年集集地震後濁水溪河道變遷。 [碩士論文: 國立臺灣大學] 廖昱茨,2014,利用持久散射體雷達干涉技術與ALOS影像探討台灣東部縱谷斷層北段的分段特性。[碩士論文: 國立台灣大學] 謝一銘,2017,台灣花東縱谷北段反射震測調查。[碩士論文: 國立中央大學] 謝孟龍、鄧屬予(1994)。米崙礫岩的岩相及沉積環境。地質,第14卷,第1期,第201-217頁。 鍾佩瑜,2019,利用密集地震網探討花東縱谷北段地下速度構造。[碩士論文: 國立中央大學] 簡立凱,2015,花東縱谷斷層之地電研究。[博士論文: 國立中央大學] 陳文山、林益正、顏一勤、楊志成、紀權窅、黃能偉、林啟文、林偉雄、侯進雄、劉彥求、林燕慧、石同生、盧詩丁(2008)從古地震研究與GPS資料探討縱谷斷層的分段意義。經濟部中央地質調查所特刊,第20號,第165-191頁。 陳文山、吳逸民、葉柏逸、賴奕修、柯明淳、柯孝勳、林義凱 (2018)。臺灣東部碰撞帶孕震構造。經濟部中央地質調查所特刊,第33號,123-155。 Avouac, J.-P., Ayoub, F., Leprince, S., Konca, O., & Helmberger, D. V. (2006). The 2005, Mw 7.6 Kashmir earthquake: Sub-pixel correlation of ASTER images and seismic waveforms analysis. Earth and Planetary Science Letters, 249(3-4), 514-528. Avouac, J.-P., Ayoub, F., Wei, S., Ampuero, J.-P., Meng, L., Leprince, S., Jolivet, R., Duputel, Z., & Helmberger, D. (2014). The 2013, Mw 7.7 Balochistan earthquake, energetic strike-slip reactivation of a thrust fault. Earth and Planetary Science Letters, 391, 128-134. Baird, T., Bristow, C. S., & Vermeesch, P. (2019). Measuring sand dune migration rates with COSI-Corr and landsat: Opportunities and challenges. Remote Sensing, 11(20), 2423. Barrier, E., & Angelier, J. (1986). Active collision in eastern Taiwan: the Coastal Range. Tectonophysics, 125(1-3), 39-72. Bemis, S. P., Micklethwaite, S., Turner, D., James, M. R., Akciz, S., Thiele, S. T., & Bangash, H. A. (2014). Ground-based and UAV-based photogrammetry: A multi-scale, high-resolution mapping tool for structural geology and paleoseismology. Journal of Structural Geology, 69, 163-178. Binet, R., & Bollinger, L. (2005). Horizontal coseismic deformation of the 2003 Bam (Iran) earthquake measured from SPOT‐5 THR satellite imagery. Geophysical Research Letters, 32(2). Chemenda, A. I., Yang, R. K., Hsieh, C. H., & Groholsky, A. L. (1997). Evolutionary model for the Taiwan collision based on physical modelling. Tectonophysics, 274(1-3), 253-274. Chen, C. Y., Lee, J. C., Chen, Y. G., & Chen, R. F. (2014). Campaigned GPS on present-day crustal deformation in northernmost Longitudinal Valley preliminary results, Hualien Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 25(3), 337-357. Chen, K. H., Toda, S., & Rau, R. J. (2008). A leaping, triggered sequence along a segmented fault: The 1951 ML 7.3 Hualien‐Taitung earthquake sequence in eastern Taiwan. Journal of Geophysical Research: Solid Earth, 113(B2). CGS (2018). Geological Report of 2018 Hualien Earthquake, Central Geological Survey report, Taipei, 131 pp. (in Chinese) De Michele, M., Raucoules, D., Lasserre, C., Pathier, E., Klinger, Y., Van Der Woerd, J., De Sigoyer, J., & Xu, X. (2010). The Mw 7.9, 12 May 2008 Sichuan earthquake rupture measured by sub-pixel correlation of ALOS PALSAR amplitude images. Earth, planets and space, 62(11), 875-879. DeMets, C., Gordon, R. G., & Argus, D. F. (2010). Geologically current plate motions. Geophysical Journal International, 181(1), 1-80. Dominguez, S., Avouac, J. P., & Michel, R. (2003). Horizontal coseismic deformation of the 1999 Chi‐Chi earthquake measured from SPOT satellite images: Implications for the seismic cycle along the western foothills of central Taiwan. Journal of Geophysical Research: Solid Earth, 108(B2). Gomez, C., Hayakawa, Y., & Obanawa, H. (2015). A study of Japanese landscapes using structure from motion derived DSMs and DEMs based on historical aerial photographs: New opportunities for vegetation monitoring and diachronic geomorphology. Geomorphology, 242, 11-20. Herman, F., Anderson, B., & Leprince, S. (2011). Mountain glacier velocity variation during a retreat/advance cycle quantified using sub-pixel analysis of ASTER images. Journal of Glaciology, 57(202), 197-207. Hermas, E., Leprince, S., & Abou El-Magd, I. (2012). Retrieving sand dune movements using sub-pixel correlation of multi-temporal optical remote sensing imagery, northwest Sinai Peninsula, Egypt. Remote Sensing of Environment, 121, 51-60. Hollingsworth, J., Ye, L., & Avouac, J. P. (2017). Dynamically triggered slip on a splay fault in the Mw 7.8, 2016 Kaikoura (New Zealand) earthquake. Geophysical Research Letters, 44(8), 3517-3525. Hsu, S. K. (2001). Subduction/collision complexities in the Taiwan-Ryukyu junction area: Tectonics of the northwestern corner of the Philippine Sea plate. Terrestrial, Atmospheric and Oceanic Sciences, 12(SUPP), 209-230. Hsu, Y. C., Chang, C. P., Yen, J. Y., Kuo-Chen, H., & Wang, C. C. (2019). Investigating the structure of the Milun Fault from surface ruptures of the 2018 Hualien Earthquake. Terrestrial, Atmospheric and Oceanic Sciences, 30(3), 337-350. Huang, H. H., Wu, Y. M., Song, X., Chang, C. H., Lee, S. J., Chang, T. M., & Hsieh, H. H. (2014). Joint Vp and Vs tomography of Taiwan: Implications for subduction-collision orogeny. Earth and Planetary Science Letters, 392, 177-191. Huang, M. H., Tung, H., Fielding, E. J., Huang, H. H., Liang, C., Huang, C., & Hu, J. C. (2016). Multiple fault slip triggered above the 2016 Mw 6.4 MeiNong earthquake in Taiwan. Geophysical Research Letters, 43(14), 7459-7467. Huang, M. H., & Huang, H. H. (2018). The complexity of the 2018 Mw 6.4 Hualien earthquake in east Taiwan. Geophysical Research Letters, 45(24), 13,249-13,257. Huang, S. Y., Yen, J. Y., Wu, B. L., Yen, I. C., & Chuang, R. Y. (2019). Investigating the Milun Fault: The coseismic surface rupture zone of the 2018/02/06 ML 6.2 Hualien earthquake, Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 30(3), 311-335. James, M. R., & Robson, S. (2012). Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application. Journal of Geophysical Research: Earth Surface, 117(F3). Jian, P. R., Hung, S. H., & Meng, L. (2018). Rupture Behavior and Interaction of the 2018 Hualien Earthquake Sequence and Its Tectonic Implication. Seismological Research Letters, 90(1), 68-77. Ko, Y. Y., Hsu, S. Y., Yang, H. C., Lu, C. C., Hwang, Y. W., Liu, C. H., & Hwang, J. H. (2018). Soil Liquefaction and Ground Settlements in 6 February 2018 Hualien, Taiwan, Earthquake. Seismological Research Letters, 90(1), 51-59. Kuochen, H., Wu, Y. M., Chang, C. H., Hu, J. C., & Chen, W. S. (2004). Relocation of eastern Taiwan earthquakes and tectonic implications. Terrestrial, Atmospheric and Oceanic Sciences, 15(4), 647-666. Kuo‐Chen, H., Guan, Z. K., Sun, W. F., Jhong, P. Y., & Brown, D. (2018). Aftershock Sequence of the 2018 Mw 6.4 Hualien Earthquake in Eastern Taiwan from a Dense Seismic Array Data Set. Seismological Research Letters, 90(1), 60-67. Kuo, Y. T., Ayoub, F., Leprince, S., Chen, Y. G., Avouac, J. P., Shyu, J. B. H., Lai, K. Y., & Kuo, Y. J. (2014). Coseismic thrusting and folding in the 1999 Mw 7.6 Chi‐Chi earthquake: A high‐resolution approach by aerial photos taken from Tsaotun, central Taiwan. Journal of Geophysical Research: Solid Earth, 119(1), 645-660. Kuo, Y. T., Wang, Y., Hollingsworth, J., Huang, S. Y., Chuang, R. Y., Lu, C. H., Hsu, Y. C., Tung, H., Yen, J. Y., & Chang, C. P. (2018). Shallow Fault Rupture of the Milun Fault in the 2018 Mw 6.4 Hualien Earthquake: A High‐Resolution Approach from Optical Correlation of Pléiades Satellite Imagery. Seismological Research Letters, 90(1), 97-107. Lee, S. J., Lin, T. C., Liu, T. Y., & Wong, T. P. (2018). Fault‐to‐Fault Jumping Rupture of the 2018 Mw 6.4 Hualien Earthquake in Eastern Taiwan. Seismological Research Letters, 90(1), 30-39. Leprince, S., Barbot, S., Ayoub, F., & Avouac, J.-P. (2007). Automatic and precise orthorectification, coregistration, and subpixel correlation of satellite images, application to ground deformation measurements. IEEE Transactions on Geoscience and Remote Sensing, 45(6), 1529-1558. Lin, Y. S., Chuang, R. Y., Yen, J. Y., Chen, Y. C., Kuo, Y. T., Wu, B. L., Huang, S. Y., & Yang, C. J. (2019). Mapping surface breakages of the 2018 Hualien earthquake by using UAS photogrammetry. Terrestrial, Atmospheric and Oceanic Sciences, 30(3), 351-366. Lo, Y. C., Yue, H., Sun, J., Zhao, L., & Li, M. (2019). The 2018 Mw6. 4 Hualien earthquake: dynamic slip partitioning reveals the spatial transition from mountain building to subduction. Earth and Planetary Science Letters, 524, 115729. Michel, R., Avouac, J. P., & Taboury, J. (1999). Measuring ground displacements from SAR amplitude images: Application to the Landers earthquake. Geophysical Research Letters, 26(7), 875-878. Michel, S., Avouac, J.-P., Ayoub, F., Ewing, R. C., Vriend, N., & Heggy, E. (2018). Comparing dune migration measured from remote sensing with sand flux prediction based on weather data and model, a test case in Qatar. Earth and Planetary Science Letters, 497, 12-21. Miles, B. W. J., Jordan, J. R., Stokes, C. R., Jamieson, S. S. R., Gudmundsson, G. H., & Jenkins, A. (2021). Recent acceleration of Denman Glacier (1972–2017), East Antarctica, driven by grounding line retreat and changes in ice tongue configuration. The Cryosphere, 15(2), 663-676. Milliner, C. W. D., Dolan, J. F., Hollingsworth, J., Leprince, S., Ayoub, F., & Sammis, C. G. (2015). Quantifying near‐field and off‐fault deformation patterns of the 1992 Mw 7.3 Landers earthquake. Geochemistry, Geophysics, Geosystems, 16(5), 1577-1598. Milliner, C. W. D., Dolan, J. F., Hollingsworth, J., Leprince, S., & Ayoub, F. (2016). Comparison of coseismic near‐field and off‐fault surface deformation patterns of the 1992 Mw 7.3 Landers and 1999 Mw 7.1 Hector Mine earthquakes: Implications for controls on the distribution of surface strain. Geophysical Research Letters, 43(19), 10,115-10,124. Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the seismological society of America, 75(4), 1135-1154. Peyret, M., Dominguez, S., Cattin, R., Champenois, J., Leroy, M., & Zajac, A. (2011). Present‐day interseismic surface deformation along the Longitudinal Valley, eastern Taiwan, from a PS‐InSAR analysis of the ERS satellite archives. Journal of Geophysical Research: Solid Earth, 116(B3). Piermattei, L., Carturan, L., de Blasi, F., Tarolli, P., Dalla Fontana, G., Vettore, A., & Pfeifer, N. (2016). Suitability of ground-based SfM–MVS for monitoring glacial and periglacial processes. Earth Surface Dynamics, 4(2), 425-443. Saito, H., Uchiyama, S., Hayakawa, Y. S., & Obanawa, H. (2018). Landslides triggered by an earthquake and heavy rainfalls at Aso volcano, Japan, detected by UAS and SfM-MVS photogrammetry. Progress in Earth and Planetary Science, 5(1), 1-10. Shyu, J. B. H., Sieh, K., & Chen, Y. G. (2005). Tandem suturing and disarticulation of the Taiwan orogen revealed by its neotectonic elements. Earth and Planetary Science Letters, 233(1-2), 167-177. Shyu, J. B. H., Sieh, K., Chen, Y. G., & Chung, L. H. (2006). Geomorphic analysis of the Central Range fault, the second major active structure of the Longitudinal Valley suture, eastern Taiwan. Geological Society of America Bulletin, 118(11-12), 1447-1462. Shyu, J. B. H., Chung, L. H., Chen, Y. G., Lee, J. C., & Sieh, K. (2007). Re-evaluation of the surface ruptures of the November 1951 earthquake series in eastern Taiwan, and its neotectonic implications. Journal of Asian Earth Sciences, 31(3), 317-331. Shyu, J. B. H., Chuang, Y. R., Chen, Y. L., Lee, Y. R., & Cheng, C. T. (2016a). A New On-Land Seismogenic Structure Source Database from the Taiwan Earthquake Model (TEM) Project for Seismic Hazard Analysis of Taiwan. Terrestrial, Atmospheric & Oceanic Sciences, 27(3), 311-323. Shyu, J. B. H., Chen, C. F., & Wu, Y. M. (2016b). Seismotectonic characteristics of the northernmost Longitudinal Valley, eastern Taiwan: Structural development of a vanishing suture. Tectonophysics, 692, 295-308. Sibuet, J.-C., & Hsu, S. K. (2004). How was Taiwan created? Tectonophysics, 379(1-4), 159-181. Sieh, K. (1996). The repetition of large-earthquake ruptures. Proceedings of the National Academy of Sciences, 93(9), 3764-3771. Teng, L. S., Chen, W. S., Wang, Y., Song, S. R., & Lo, H. J. (1988). Toward a comprehensive stratigraphic system of the Coastal Range, eastern Taiwan. Acta Geologica Taiwanica, 26, 19-36. Teng, L. S. (1990). Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics, 183(1-4), 57-76. Tian, S., Gardoni, P., & Yuan, W. (2018). Coseismic Deformation of the 6 February 2018 Mw 6.2 Hualien Earthquake Based on Strong‐Motion Recordings. Seismological Research Letters, 90(1), 108-117. Toyokuni, G., Zhao, D., & Chen, K. H. (2021). Structural control on the 2018 and 2019 Hualien earthquakes in Taiwan. Physics of the Earth and Planetary Interiors, 312, 106673. Tung, H., Chen, H. Y., Hsu, Y. J., Hu, J. C., Chang, Y. H., & Kuo, Y. T. (2019). Triggered slip on multifaults after the 2018 Mw 6.4 Hualien earthquake by continuous GPS and InSAR measurements. Terrestrial, Atmospheric and Oceanic Sciences, 30(3), 285-300. Ward, S. N. (1997). Dogtails versus rainbows: Synthetic earthquake rupture models as an aid in interpreting geological data. Bulletin of the seismological society of America, 87(6), 1422-1441. Wen, S., Wen, Y. Y., Ching, K. E., Yeh, Y. L., & Lee, Y. H. (2019). Tectonic implications on the 2018 Hualien Earthquake. Terrestrial, Atmospheric and Oceanic Sciences, 30(3), 389-398. Wen, Y. Y., Wen, S., Lee, Y. H., & Ching, K. E. (2019). The kinematic source analysis for 2018 Mw 6.4 Hualien, Taiwan earthquake. Terrestrial, Atmospheric and Oceanic Sciences, 30(3), 377-387. Wu, B. L., Yen, J. Y., Huang, S. Y., Kuo, Y. T., & Chang, W. Y. (2019). Surface deformation of 0206 Hualien earthquake revealed by the integrated network of RTK GPS. Terrestrial, Atmospheric and Oceanic Sciences, 30(3), 301-310. Wu, F. T., Liang, W. T., Lee, J. C., Benz, H., & Villasenor, A. (2009). A model for the termination of the Ryukyu subduction zone against Taiwan: A junction of collision, subduction/separation, and subduction boundaries. Journal of Geophysical Research: Solid Earth, 114(B7). Wu, Y. M., Chang, C. H., Zhao, L., Teng, T. L., & Nakamura, M. (2008a). A comprehensive relocation of earthquakes in Taiwan from 1991 to 2005. Bulletin of the seismological society of America, 98(3), 1471-1481. Wu, Y. M., Zhao, L., Chang, C. H., & Hsu, Y. J. (2008b). Focal-mechanism determination in Taiwan by genetic algorithm. Bulletin of the seismological society of America, 98(2), 651-661. Xu, X., Tong, X., Sandwell, D. T., Milliner, C. W. D., Dolan, J. F., Hollingsworth, J., Leprince, S., & Ayoub, F. (2016). Refining the shallow slip deficit. Geophysical Journal International, 204(3), 1867-1886. Yang, Y. H., Hu, J. C., Tung, H., Tsai, M. C., Chen, Q., Xu, Q., Zhang, Y. J., Zhao, J. J., Liu, G. X., Xiong, J. N., Wang, J. Y., Yu, B., Chiu, C. Y., & Su, Z. (2018). Co-seismic and postseismic fault models of the 2018 Mw 6.4 Hualien earthquake occurred in the junction of collision and subduction boundaries offshore eastern Taiwan. Remote Sensing, 10(9), 1372. Yen, J. Y., Lu, C. H., Dorsey, R. J., Kuo‐Chen, H., Chang, C. P., Wang, C. C., Chuang, R. Y., Kuo, Y. T., Chiu, C. Y., Chang, Y. H., Bovenga, F., & Chang, W. Y. (2018). Insights into Seismogenic Deformation during the 2018 Hualien, Taiwan, Earthquake Sequence from InSAR, GPS, and Modeling. Seismological Research Letters, 90(1), 78-87. Yu, S. B., Chen, H. Y., & Kuo, L. C. (1997). Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274(1-3), 41-59. Yu, S. B., & Kuo, L. C. (2001). Present-day crustal motion along the Longitudinal Valley Fault, eastern Taiwan. Tectonophysics, 333(1-2), 199-217. Zhao, D., Qu, C., Shan, X., Bürgmann, R., Gong, W., Tung, H., Zhang, G., Song, X., & Qiao, X. (2020). Multifault complex rupture and afterslip associated with the 2018 M w 6.4 Hualien earthquake in northeastern Taiwan. Geophysical Journal International, 224(1), 416-434. Zielke, O., Klinger, Y., & Arrowsmith, J. R. (2015). Fault slip and earthquake recurrence along strike-slip faults—Contributions of high-resolution geomorphic data. Tectonophysics, 638, 43-62. Zinke, R., Hollingsworth, J., & Dolan, J. F. (2014). Surface slip and off‐fault deformation patterns in the 2013 Mw 7.7 Balochistan, Pakistan earthquake: Implications for controls on the distribution of near‐surface coseismic slip. Geochemistry, Geophysics, Geosystems, 15(12), 5034-5050. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86457 | - |
dc.description.abstract | 2018年2月6日時,一場規模6.4的地震發生在花蓮外海,並伴隨兩條陸上活動斷層(米崙斷層和嶺頂斷層)的同震地表變形與破裂。在地震後對於此一地震事件的地表變形相關調查和研究主要集中在米崙斷層上,而嶺頂斷層則較少被提及和討論,歸咎其部分原因可能與嶺頂斷層主要位在較偏僻的花蓮溪中,致使相關的調查和研究不易有關。為了瞭解嶺頂斷層在本次地震事件中的破裂行為與分佈,本研究使用震前、震後的航空照片與光學衛星影像探討該斷層在本次地震中的同震地表破裂行為。本研究除了透過影像判識來描繪花蓮溪床上相關的地表破裂外,次像素匹配的方法也用來計算地表位移量和空間上的變化。這兩種方法都揭示斷層破裂主要位在花蓮溪中,並在本次地震中呈現左移的走向滑移運動型態。透過次像素匹配所測得的近斷層地表位移以南北向的位移分量為主,從北邊的花蓮溪口附近(>1.0公尺)往南邊的木瓜溪(<0.4公尺)遞減,其量值與GNSS RTK以及花蓮大橋上量測的位移量相近。本研究將所得到的地表變形進行一系列的半空間斷層滑移模型測試,結果顯示嶺頂斷層可能為一條高角度的斷層,且在本次的花蓮地震中,破裂集中在較淺部的位置(<5公里深)。從本區域過去三十年的地震分布推論,本研究認為此地區存在兩條主要的斷層系統,斷層面分別向西和東傾,而結合2018花蓮地震的主震和餘震位置,我們認為這次的地震主要和向西傾的斷層活動有關,並導致位在較淺部的嶺頂斷層錯動。綜上所述,在2018花蓮地震中,嶺頂斷層北端有發生淺部的破裂,地表的變形以左移的走向滑移為主,並在花蓮溪中上形成一些地表破裂。 | zh_TW |
dc.description.abstract | On 6th February 2018, the Mw 6.4 Hualien earthquake occurred near Hualien City, accompanied with ground deformations along the Milun and the Lingding Faults. While the post-event field survey provided a detailed description and data of deformation along the Milun Fault, there were not many reports about the ground deformations along the Lingding Fault since the main trace of the Lingding Fault passed through the Hualien River bed. In order to investigate the rupture behavior of the Lingding Fault during the 2018 earthquake, the pre- and post-earthquake aerial photos are used in this study. We not only map the plausible coseismic surface rupture on the Hualien River bed by visual inspection of the images, but also obtain the surface displacements to determine the spatial pattern and magnitude of offset across the Lingding Fault by Co-Registration of Optically Sensed Images and Correlation (COSI-Corr). Both approaches reveal clear deformations along the Hualien River bed, suggesting the 2018 coseismic rupture along the Lingding Fault is dominated by the left-lateral slip, where the displacement decreased from north to south, from >1.0m near the Hualien River mouth to <0.4 m south of the Mugua River. Such a pattern agrees well with the GNSS RTK field survey result. After that, we conduct a series of half-space fault slip models to fit the sub-pixel correlation result and GNSS RTK survey data. The result indicates the slip on the Lingding Fault concentrated in the shallow depth (<5 km depth) and the fault plane dips at a high angle. The largest fault slip happened at the northernmost tip of the Lingding Fault. The thirty-year seismicity reveals two major fault system in this area, with their fault planes dipping to the east and west, respectively. From the distribution of the mainshock and aftershocks of the 2018 Hualien earthquake, we suggest the motion of the west-dipping fault caused this event, and triggered the movement of the Lingding Fault. To sum up, the shallow portion of the northernmost Lingding Fault did rupture during the 2018 Hualien earthquake, forming a series of left-lateral surface ruptures with limited fault-normal movement. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T23:56:57Z (GMT). No. of bitstreams: 1 U0001-1208202218385200.pdf: 16599904 bytes, checksum: 0bade5095bbe3cd139f9f9efbfe5acee (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 口試委員審定書 I 誌謝 II 摘要 III Abstract IV Table of Contents VI Figure Contents VIII Table Contents XII 1. Introduction 1 2. Geological Background 6 3. Review of Previous Studies 12 3.1 The geophysical studies about the Lingding Fault geometry 12 3.2 The 2018 Hualien earthquake-related studies 19 4. Materials and Methods 31 4.1 Materials 33 4.2 The orthorectification of aerial photos 36 4.3 The mapping of earthquake-related structures 42 4.4 Sub-pixel correlation 42 4.5 Numerical processing 45 4.6 Elastic half-space dislocation model 47 5. Results 49 5.1 The orthorectification of aerial photos 49 5.2 The mapping of earthquake-related structures 51 5.3 Sub-pixel correlation 57 5.4 Elastic half-space dislocation model 61 6. Discussion 67 6.1 Internal validation of the ground displacement results 67 6.1.1 The different methods for aerial photo orthorectification 67 6.1.2 Comparison of the result from aerial photos with the result from satellite images 72 6.2 External validation for the displacement result 76 6.2.1 Comparison with the field survey 76 6.2.2 Comparison with GNSS data 77 6.3 The shallow fault slip 81 6.3.1 The effect of the sub-pixel correlation result 81 6.3.2 Comparison of the fault slip with published studies 84 6.3.3 The behavior of the Lingding Fault in the 2018 Hualien earthquake 86 6.4 The regional geological model of the Lingding Fault 89 6.5 The relation between the Lingding Fault and the Milun Fault 97 7. Conclusion 100 References 102 Supplementary 112 | - |
dc.language.iso | en | - |
dc.title | 2018年花蓮地震中嶺頂斷層北段之淺部破裂 | zh_TW |
dc.title | Shallow rupture of the northernmost Lingding Fault during the 2018 Hualien earthquake | en |
dc.type | Thesis | - |
dc.date.schoolyear | 110-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 盧志恆;郭昱廷;張中白 | zh_TW |
dc.contributor.oralexamcommittee | Chih-Heng Lu;Yu-Ting Kuo;Chung-Pai Chang | en |
dc.subject.keyword | 航空照片,嶺頂斷層,地表變形,次像素匹配,2018年花蓮地震, | zh_TW |
dc.subject.keyword | aerial photos,surface deformation,the Lingding Fault,sub-pixel correlation,2018 Hualien earthquake, | en |
dc.relation.page | 134 | - |
dc.identifier.doi | 10.6342/NTU202202354 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2022-08-17 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 地質科學系 | - |
dc.date.embargo-lift | 2023-06-30 | - |
顯示於系所單位: | 地質科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-110-2.pdf | 16.21 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。