Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86448
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor余家富(Chia-Fu Yu)
dc.contributor.authorChun-Yi Linen
dc.contributor.author林浚沂zh_TW
dc.date.accessioned2023-03-19T23:56:26Z-
dc.date.copyright2022-08-19
dc.date.issued2022
dc.date.submitted2022-08-17
dc.identifier.citation[1] Semyon Alesker, Non-commutative linear algebra and plurisubharmonic functions of quaternionic variables. Bull. Sci. Math. 127 (2003), no. 1, 1–-35. [2] Semyon Alesker, Non-commutative determinants and quaternionic Monge-Ampere equations. Advances in analysis and geometry, 289–300, Trends Math., Birkhauser, Basel, 2004. [3] E. Artin, Geometric algebra. Interscience Publishers, Inc., New York-London, 1957. [4] J. L. Brenner, Applications of the Dieudonné determinant. Linear Algebra Appl. 1 (1968), 511–536. [5] Peter J. Cameron, Notes on Classical Groups. Available in https://webspace.maths.qmul.ac.uk/p.j.cameron/class_gps/cg.pdf [6] Alina Carmen Cojocaru and Mihran Papikian, Drinfeld modules, Frobenius endomorphisms, and CM-liftings. Int. Math. Res. Not. IMRN 2015, no. 17, 7787–7825. [7] P. M. Cohn, Skew fields. Theory of general division rings. Encyclopedia of Mathematics and its Applications, 57. Cambridge University Press, Cambridge, 1995, 500 pp. [8] L.E. Dickson, Linear groups. Leipzig (Teubner), 1901. 93 [9] Jean Dieudonné, La géométrie des groupes classiques. Springer-Verlag, Berlin-Göttingen-Heidelberg 1963 viii+125 pp. [10] Jean Dieudonné, Les déterminants sur un corps non commutatif. Bull. Soc. Math. France 71, (1943). 27–45. [11] Jean Dieudonné, On the structure of unitary groups. Trans. Amer. Math. Soc. 72 (1952), 367-385. [12] Jean Dieudonné, On the structure of unitary groups. II. Amer. J. Math. 75 (1953), 665–-678. [13] Jean Dieudonné, Sur les groupes classiques. Actualités Scientifiques et Industrielles, No. 1040 Hermann and Cie, Paris, 1948. iii+82 pp. [14] Larry C. Grove, Classical groups and geometric algebra. Graduate Studies in Mathematics 39. American Mathematical Society, Providence, RI, 2002. x+169 pp. [15] Alexander J. Hahn, and O. Timothy O’Meara, The classical groups and K-theory. Grundlehren der Mathematischen Wissenschaften, 291. Springer-Verlag, Berlin, 1989. xvi+576 pp. [16] Kenkichi Iwasawa, Uber die Einfachheit der speziellen projektiven Gruppen. Proc. Imp. Acad. Tokyo 17, (1941). 57–59. [17] Nathan Jacobson, Basic algebra. I. Second edition. W. H. Freeman and Company, New York, 1985. xviii+499 pp. [18] O. Litoff, On the commutator subgroup of the general linear group. Proc. Amer. Math. Soc. 6 (1955), 465–470. [19] I. Reiner. Maximal orders, volume 28 of London Mathematical Society Monographs. New Series. The Clarendon Press Oxford University Press, Oxford, 2003. 94 [20] Lenny Taelman, Dieudonné determinants for skew polynomial rings. J. Algebra Appl. 5 (2006), no. 1, 89–93. [21] Tsuneo Tamagawa, On the structure of orthogonal groups. Amer. J. Math. 80 (1958), 191–-197. [22] Donald E. Taylor, The geometry of the classical groups. Sigma Series in Pure Mathematics 9. Heldermann Verlag, Berlin, 1992. xii+229 pp. [23] Paul Van Praag, Sur la norme réduite du déterminant de Dieudonné des matrices quaternioniennes. J. Algebra 136 (1991), no. 2, 265–-274. [24] Shianghaw Wang, On the commutator group of a simple algebra. Amer. J. Math. 72 (1950), 323–-334. [25] C.-F. Yu, Notes on locally free class groups. Bull. Inst. Math. Acad. Sin. (N.S.) 12, (2017), No. 2, 125–139.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86448-
dc.description.abstract在這篇說明文中,我們重訪除環上一般線性群及么正群的結構,尤其特別關注這兩類群中某些子群的商群的單純性。 在第2章中,我們解釋了迪厄多內行列式的構造過程及除環上一般線性群的結構。我們主要的動機是去了解其中隱含的理論背景,及如何證明除環上射影特殊線性群的單純性。而後者也形成了一類重要的李型單純群。在這裡我們證明單純性的方式,是基於用來證明體上射影特殊線性群的單純性的岩澤理論。這樣的證明方式比埃米爾·阿廷在1957年出版的《幾何代數》一書中的證明容易。另外,我們也修正了在一些文章中,轉置矩陣在行列式上的關係。 在第3章中,我們的目標是闡明除環上么正群的結構。在他先前的著作中,讓·迪厄多內建立了除環上么正群的結構定理。本章的目的是對於迪厄多內的單純性定理,利用岩澤判據給出一個更有系統性的證明。為了達到這個目標,我們引進了艾克勒變換,他可以被視為是么正錯切的一個概念延伸。除此之外,為了解決某些特例,我們也解釋了么正錯切及特殊么正群的關係。zh_TW
dc.description.abstractIn this expository article, we revisit the structure of general linear and unitary groups over division rings, especially some subgroup quotient of these two types of groups. In chapter 2, we explain the construction of the Dieudonné determinant and the structure of general linear groups over division rings. Our main motivation is to understand the underlying theoretic background and the proof of the simplicity of the projective special linear groups PSLn(K) over a division ring K. The latter gives an important family of simple groups of Lie type. The method of proving simplicity here is based on Iwasawa’s argument which proves the simplicity of PSLn(F), where F is a field. This is simpler than the proof given in E. Artin’s exposition [Geometric Algebra, Interscience Publishers, 1957]. Moreover, we also fix the relation on the determinants of the transposes of matrices in some literature. In chapter 3, we aim to clarify the structure of unitary groups over division rings. In his pioneering works, Dieudonné established the structural theorems for unitary groups over division rings. The purpose of this chapter is to give a more systematic proof of Dieudonné’s structural theorem using Iwasawa’s criterion. To achieve this goal, the Eichler transformations, which can be viewed as a promoted concept of unitary transvections, are introduced. In addition, we also explain the relation between unitary transvections and the special uniatry groups to solve some special cases.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:56:26Z (GMT). No. of bitstreams: 1
U0001-1608202217201800.pdf: 893769 bytes, checksum: b3b1adbb634dc572e1aadcd518b5e18e (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審定書 i 致謝 iii 摘要 v Abstract vii Lists of Figures xi Lists of Tables xiii 1 Introduction 1 2 Structure of general linear groups 3 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Construction of Dieudonné determinants and their properties . . . . . . . 8 2.3 Structure of general linear groups . . . . . . . . . . . . . . . . . . . . . . 16 2.4 Transposes of matrices and their Dieudonné determinants . . . . . . . . . 23 3 Structure of unitary groups 33 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2 Unitary groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.3 Reflexive algebras and quaternion algebras . . . . . . . . . . . . . . . . . 43 ix 3.4 The structure of Zn and Wn . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.5 Simplicity of Tn/Wn for n = 2 and ν = 1 . . . . . . . . . . . . . . . . . . 55 3.6 Extension of simplicity to n ≥ 3 . . . . . . . . . . . . . . . . . . . . . . . 62 3.7 Eichler transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.8 Simplicity of Tn/Wn: end of the proof . . . . . . . . . . . . . . . . . . . . 77 Bibliography 93
dc.language.isoen
dc.subject么正群zh_TW
dc.subject迪厄多內行列式zh_TW
dc.subject一般線性群zh_TW
dc.subject迷向向量zh_TW
dc.subject迪厄多內行列式zh_TW
dc.subject么正群zh_TW
dc.subject一般線性群zh_TW
dc.subject岩澤判據zh_TW
dc.subject么正錯切zh_TW
dc.subject迷向向量zh_TW
dc.subject么正錯切zh_TW
dc.subject岩澤判據zh_TW
dc.subjectDieudonné determinanten
dc.subjectgeneral linear groupen
dc.subjectunitary groupen
dc.subjectIwasawa's criterionen
dc.subjectisotropic vectoren
dc.subjectunitary transvectionen
dc.subjectgeneral linear groupen
dc.subjectDieudonné determinanten
dc.subjectunitary groupen
dc.subjectIwasawa's criterionen
dc.subjectisotropic vectoren
dc.subjectunitary transvectionen
dc.title除環上一般線性群及么正群的結構重訪zh_TW
dc.titleThe Structure of General Linear and Unitary Groups over Division Rings Revisiteden
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林惠雯(Hui-Wen Lin),楊一帆(Yi-Fan Yang)
dc.subject.keyword一般線性群,迪厄多內行列式,么正群,岩澤判據,迷向向量,么正錯切,zh_TW
dc.subject.keywordgeneral linear group,Dieudonné determinant,unitary group,Iwasawa's criterion,isotropic vector,unitary transvection,en
dc.relation.page95
dc.identifier.doi10.6342/NTU202202464
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-08-18
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
dc.date.embargo-lift2022-08-19-
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
U0001-1608202217201800.pdf872.82 kBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved