Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86432
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor侯嘉洪(Chia-Hung Hou)
dc.contributor.authorYu-Ting Hsiehen
dc.contributor.author謝雨婷zh_TW
dc.date.accessioned2023-03-19T23:55:29Z-
dc.date.copyright2022-08-24
dc.date.issued2022
dc.date.submitted2022-08-19
dc.identifier.citationAl-Amshawee, S., Yunus, M. Y. B. M., Azoddein, A. A. M., Hassell, D. G., Dakhil, I. H., & Hasan, H. A. (2020). Electrodialysis desalination for water and wastewater: A review. Chemical Engineering Journal, 380, 122231. AlMarzooqi, F. A., Al Ghaferi, A. A., Saadat, I., & Hilal, N. (2014). Application of capacitive deionisation in water desalination: a review. Desalination, 342, 3-15. Bahar, M.M., Reza, M.S. (2010). Hydrochemical characteristics and quality assessment of shallow groundwater in a coastal area of Southwest Bangladesh. Environ Earth Sci 61, 1065-1073. Bales, C., Kovalsky, P., Fletcher, J., & Waite, T. D. (2019). Low cost desalination of brackish groundwaters by Capacitive Deionization (CDI)–Implications for irrigated agriculture. Desalination, 453, 37-53. Basu, S. R., & Main, H. A. C. (2001). Calcutta's water supply: demand, governance and environmental change. Applied Geography, 21, 23-44. Bettahar, A., Nezli, I. E., & Kechiched, R. (2017). Evolution and Mineralization of Water Chemistry in the Aquifer systems of the Terminal Complex of the Wadi Righ Valley. Energy Procedia, 119, 318-324. Biira, S., & Kilama, G. (2014). Analysis of solar radiation in Uganda. International Journal of Current Research, 6(8), 8110-8115. Blair, J. W., & Murphy, G. W. (1960). Electrochemical demineralization of water with porous electrodes of large surface area. Advances in Chemistry, 27, 206-223. Bundschuh, J., Kaczmarczyk, M., Ghaffour, N., & Tomaszewska, B. (2021). State-of-the-art of renewable energy sources used in water desalination: Present and future prospects. Desalination, 508, 115035. Chaplin B. P. (2019). The prospect of electrochemical technologies advancing worldwide water treatment. Accounts of Chemical Research, 52, 596-604. Chen, T. H., Yeh, K. H., Lin, C. F., Lee, M., & Hou, C. H. (2022). Technological and economic perspectives of membrane capacitive deionization (MCDI) systems in high-tech industries: From tap water purification to wastewater reclamation for water sustainability. Resources, Conservation and Recycling, 177, 106012. Choi, J., Dorji, P., Shon, H. K., & Hong, S. (2019). Applications of capacitive deionization: Desalination, softening, selective removal, and energy efficiency. Desalination, 449, 118-130. Comte, J. C., Cassidy, R., Obando, J., Robins, N., Ibrahim, K., Melchioly, S. & Davies, J. (2016). Challenges in groundwater resource management in coastal aquifers of East Africa: Investigations and lessons learnt in the Comoros Islands, Kenya and Tanzania. Journal of Hydrology: Regional Studies, 5, 179-199. Damania, R., Desbureaux, S., Hyland, M., Islam, A., Moor,e S., Rodella, A. S., Russ, J., & Zaveri E. (2017). The new economics of water scarcity and variability. The World Bank, Washington. Eissa, M. A., Mahmoud, H. H., Shouakar-Stash, O., El-Shiekh, A., & Parker, B. (2016). Geophysical and geochemical studies to delineate seawater intrusion in Bagoush area, Northwestern coast, Egypt. Journal of African Earth Sciences, 121, 365-381. Elasaad, H., Bilton, A., Kelley, L., Duayhe, O., & Dubowsky, S. (2015). Field evaluation of a community scale solar powered water purification technology: A case study of a remote Mexican community application. Desalination, 375, 71-80. Energy, U. R. (2012). Water desalination using renewable energy. IRENA, Abu Dhabi. Essa, F. A. (2022). Thermal desalination systems: from traditionality to modernity and development. Fan, C. S., Liou, S. Y. H., & Hou, C. H. (2017). Capacitive deionization of arsenic-contaminated groundwater in a single-pass mode. Chemosphere, 184, 924-931 Faneca Sanchez, M., Bashar, K., Janssen, G. M. C. M., Vogels, M., Snel, J., Zhou, Y., Stuurman, R., Oude Essink, G. H. P. (2015). Swibangla: managing salt water intrusion impacts in coastal groundwater systems of Bangladesh, Unpublished doctoral dissertation, Utrecht University, Utrecht, Netherlands. Feng, C., Tsai, C. C., Ma, C. Y., Yu, C. P., & Hou, C. H. (2017). Integrating cost-effective microbial fuel cells and energy-efficient capacitive deionization for advanced domestic wastewater treatment. Chemical Engineering Journal, 330, 1-10. Gurmessa, S. K., MacAllister, D. J., White, D., Ouedraogo, I., Lapworth, D., & MacDonald, A. (2022). Assessing groundwater salinity across Africa. Science of The Total Environment, 828, 154283. He, W., Wright, N. C., Amrose, S., Buonassisi, T., Peters, I. M., & Winter, A. G. (2018). Preliminary field test results from a photovoltaic electrodialysis brackish water desalination system in rural India. ASME International. Herrera, C., Custodio, E., Chong, G., Lamban, L. J., Riquelme, R., Wilke, H., Jodar, J., Urrutia, J., Urqueta, H., Sarmiento, A., Gamboa, C., & Lictevout, E. (2016). Groundwater flow in a closed basin with a saline shallow lake in a volcanic area: Laguna Tuyajto, northern Chilean Altiplano of the Andes. Sci Total Environ, 541, 303-318. Howard, G., Bartram, J., Water, S., & World Health Organization. (2003). Domestic water quantity, service level and health. Idowu, T. E., & Lasisi, K. H. (2020). Seawater intrusion in the coastal aquifers of East and Horn of Africa: a review from a regional perspective. Scientific African, 8, e00402. Jones, E., Qadir, M., van Vliet, M. T., Smakhtin, V., & Kang, S. M. (2019). The state of desalination and brine production: A global outlook. Science of the Total Environment, 657, 1343-1356. Kebede, S., Taye, M. T. (2021). Groundwater scarcity and management in the arid areas in East Africa, in: Mukherjee, A., Scanlon, B. R., Aureli, A., Langan, S., Guo, H., & McKenzie, A. A. (Eds.), Global Groundwater: Source, Scarcity, Sustainability, Security, and Solutions. Elsevier Inc., Amsterdam, pp. 177-186. Khan, A. E., Scheelbeek, P. F. D., Shilpi, A. B., Chan, Q., Mojumder, S. K., Rahman, A., & Vineis, P. (2014). Salinity in drinking water and the risk of (pre) eclampsia and gestational hypertension in coastal Bangladesh: a case-control study. PLoS One, 9, e108715. Kim, T., & Yoon, J. (2015). CDI ragone plot as a functional tool to evaluate desalination performance in capacitive deionization. RSC advances, 5, 1456-1461. Lakeh, B. R., Andrade, D., Miller, K. J., Du, B., Pham, J., Modabernia, M. M. & Sharbatmaleki, M. (2017). A case study of decentralized off-grid water treatment using reverse osmosis. ASME International Mechanical Engineering. Lee, M., Fan, C. S., Chen, Y. W., Chang, K. C., Chiueh, P. T., & Hou, C. H. (2019). Membrane capacitive deionization for low-salinity desalination in the reclamation of domestic wastewater effluents. Chemosphere, 235, 413-422. Li, C., Gao, X., Li, S., & Bundschuh, J. (2020). A review of the distribution, sources, genesis, and environmental concerns of salinity in groundwater. Environmental Science and Pollution Research, 27, 41157-41174. Lian, B., Zhu, Y., Branchaud, D., Wang, Y., Bales, C., Bednarz, T., & Waite, T. D. (2022). Application of digital twins for remote operation of membrane capacitive deionization (mCDI) systems. Desalination, 525, 115482. Merchán, D., Auqué, L. F., Acero, P., Gimeno, M. J., & Causapé, J. (2015) Geochemical processes controlling water salinization in an irrigated basin in Spain: identification of natural and anthropogenic influence. Sci Total Environ, 502, 330-343. Mito, M. T., Ma, X., Albuflasa, H., & Davies, P. A. (2019). Reverse osmosis (RO) membrane desalination driven by wind and solar photovoltaic (PV) energy: State of the art and challenges for large-scale implementation. Renewable and Sustainable Energy Reviews, 112, 669-685. Momba, M. N. B., Makala, N., Zani, B., & Brouckaert, B. M. (2005). Key Causes of Drinking Water Quality Failure in a Rural Small Water Supply of S outh A frica. Water Encyclopedia, 1, 221-227. Mossad, M., & Zou, L. (2013). Study of fouling and scaling in capacitive deionisation by using dissolved organic and inorganic salts. Journal of hazardous materials, 244, 387-393. Nayebare, S. R., Wilson, L. R., Carpenter, D. O., Dziewulski, D. M., & Kannan, K. (2014). A review of potable water accessibility and sustainability issues in developing countries–case study of Uganda. Reviews on environmental health, 29, 363-378. Owor M., Muwanga A., Tindimugaya C., & Taylor R. G. (2021). Hydrogeochemical processes in groundwater in Uganda: a national-scale analysis. Journal of African Earth Sciences, 175, 1464-343X. Pandit A. B., & Kumar J. K. (2015). Clean water for developing countries. Annual Review of Chemical and Biomolecular Engineering, 6, 217-246. Park, K., Kim, J., Yang, D. R., & Hong, S. (2020). Towards a low-energy seawater reverse osmosis desalination plant: A review and theoretical analysis for future directions. Journal of Membrane Science, 595, 117607. Pavelic, P., Giordano, M., Keraita, B. N., Ramesh, V., & Rao, T. (2012). Groundwater availability and use in Sub-Saharan Africa: a review of 15 countries. International Water Management Institute. Pooi, C. K., & Ng, H. Y. (2018). Review of low-cost point-of-use water treatment systems for developing communities. NPJ Clean Water, 1, 1-8. Porada, S., Zhao, R., Van Der Wal, A., Presser, V., & Biesheuvel, P. M. (2013). Review on the science and technology of water desalination by capacitive deionization. Progress in materials science, 58, 1388-1442. Pugsley, A., Zacharopoulos, A., Mondol, J. D., & Smyth, M. (2016). Global applicability of solar desalination. Renewable energy, 88, 200-219. Qiblawey, H., Banat, F., & Al-Nasser, Q. (2009). Laboratory setup for water purification using household PV-driven reverse osmosis unit. Desalination and Water Treatment, 7, 53-59. Qiblawey, H., Banat, F., & Al-Nasser, Q. (2011). Performance of reverse osmosis pilot plant powered by Photovoltaic in Jordan. Renewable Energy, 36, 3452-3460. Rivett, M. O., Symon, S., Jacobs, L., Banda, L. C., Wanangwa, G. J., Robertson, D. J., & Kalin, R. M. (2020). Paleo-geohydrology of Lake Chilwa, Malawi is the source of localised groundwater salinity and rural water supply challenges. Applied Sciences, 10, 6909. Shen, Y. Y., Sun, S. H., Tsai, S. W., Chen, T. H., & Hou, C. H. (2021). Development of a membrane capacitive deionization stack for domestic wastewater reclamation: A pilot-scale feasibility study. Desalination, 500, 114851. Smith, M., Cross, K., Paden, M., & Laban P. (2016). Spring – Managing Groundwater Sustainably. IUCN, Gland, Switzerland. Talukder, M. R. R., Rutherford, S., Phung, D., Islam, M. Z., & Chu, C. (2016). The effect of drinking water salinity on blood pressure in young adults of coastal Bangladesh. Environmental pollution, 214, 248-254. Tan, C., He, C., Tang, W., Kovalsky, P., Fletcher, J., & Waite, T. D. (2018). Integration of photovoltaic energy supply with membrane capacitive deionization (MCDI) for salt removal from brackish waters. Water research, 147, 276-286. Uganda National Bureau of Standards. (2017). Statistics U. B. O. UNICEF. (2008). Impact evaluation of drinking water supply and sanitation interventions in rural Mozambique. Van Weert, F., Van der Gun, J., & Reckman, J. (2009). Global overview of saline groundwater occurrence and genesis. International Groundwater Resources Assessment Centre. WHO. (2011). Guidelines for drinking-water quality. World health organization, 216, 303-304. WHO/UNICEF Joint Water Supply, & Sanitation Monitoring Programme. (2020). Progress on drinking water and sanitation: 2020 Update. World Health Organization Yu T. H., Shiu H. Y., Lee M. S., Chiueh P. T. & Hou C. H. (2016). Life cycle assessment of environmental impacts and energy demand for capacitive deionization technology. Desalination, 399, 53-60. Yu, J., Jo, K., Kim, T., Lee, J., & Yoon, J. (2018). Temporal and spatial distribution of pH in flow-mode capacitive deionization and membrane capacitive deionization. Desalination, 439, 188-195.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86432-
dc.description.abstract地下水提供了全球半數以上人口的飲用水源及43%的灌溉用水,為重要的淡水資源。隨著人口增長過度抽取、氣候變遷海平面上升以及既有的自然風化作用,地下水鹽化成了普遍的污染議題。全球約有11億人生活在地下水鹽化地區水中過量鹽度將對人體健康和產業使用造成負面影響。在非洲,低電網覆蓋率以及低度都市發展,使其難以拓展淨水與衛生的基礎建設。面對地區發展程度不同,水處理系統應具有靈活設計和適宜的技術配置。本篇研究以烏干達偏鄉社區做為案例研究地點,根據其家戶需求和水質條件,建立離網太陽能驅動之電容去離子淨水系統。電容去離子(Capacitive deionization, CDI)裝置由十對多孔活性碳電極組成,透過施加1.6伏特低電壓以電吸附(electrosorption)移除水中離子,達到地下水脫鹽之目的。系統結合前處理過濾程序,並以直流電可驅動之電動幫浦進水,以便攜式的單元組合透過太陽能供電,實現能源獨立的移動式脫鹽系統。研究於烏干達進行一系列現場實驗,包括:(1)地下水脫鹽表現;(2)不同目標水質的系統能耗分析;以及(3)太陽能產量紀錄,以驗證此系統的可行性。結果表明,離網太陽能驅動之電容去離子系統具有良好的脫鹽效果(移除率> 50%)、高水回收率(> 60%),可將地下水處理至符合烏干達國家飲用水標準,如導電度降至1500 μS/cm以下。整體來說,CDI系統具小規模能源優勢(< 1.3 kWh/m3),靈活的程序設計和良好水質適應性等特性,適合用於電力和安全水源缺乏的烏干達偏鄉社區。zh_TW
dc.description.abstractGroundwater salinization is a worldwide issue, and approximately 1.1 billion people around the world live in saline groundwater-affected areas. The excessive amount of salt in groundwater can give rise to health problems or make the water unacceptable for use. To ensure water quality and availability, appropriate technology should be considered for areas with different development levels. This study aims to establish an off-grid solar-powered capacitive deionization (CDI) for groundwater purification in rural Uganda on an as-needed basis from field surveys, such as household size, water issues, and water quality. The system consisted of an ultrafiltration (UF) module for pretreatment, a CDI stack consisting of ten pairs of electrodes for desalination, and a solar photovoltaic system for power supply. By the application of an electrical potential of 1.6 V, ions or charged pollution in feed water are attracted to opposite-charged electrodes and adsorbed on the surface of nanostructure porous electrodes, and thus freshwater is produced. Further, a series of field tests, including groundwater desalination performance, system energy consumption at different desalination processes, and solar energy yield, were conducted to demonstrate the feasibility of the CDI system. Overall, CDI provides up to 50% removal rate, high water recovery (> 60%), and good energy performance (< 1.3 kWh/m3) for groundwater desalination. The solar-powered CDI system is a viable option in rural Uganda with electricity and water shortages due to its characteristics of small-scale, flexible design, and adaptability to water quality.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:55:29Z (GMT). No. of bitstreams: 1
U0001-1808202217241400.pdf: 2687992 bytes, checksum: b4e4a537292b09e7a3ba2c42cb8071c8 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontentsContents 致謝 ii 摘要 iii Abstract iv Contents v List of Figures vii List of Tables ix Chapter 1. Introduction 1 1.1. Background 1 1.2. Motivation and Objectives 3 Chapter 2. Literature Review 4 2.1. Groundwater Salinization 4 2.2. Challenges of Water System Development in Africa 6 2.3. Desalination technology 7 2.3.1. Conventional desalination technology 7 2.3.2. Capacitive Deionization Technology 9 2.4. Solar-powered Desalination System 11 Chapter 3. Experimental 13 3.1. Equipment and Instruments 13 3.2. Research Design 15 3.3. Analysis of Electrode Characteristics 16 3.4. CDI Lab experiment with NaCl solution 18 3.5. Study Area 20 3.6. Household Questionnaires 22 3.7. Groundwater Sampling and Analytical Procedure 22 3.8. Off-grid Solar Powered CDI System Setup 24 3.8.1. Solar Power Supply System 24 3.8.2. CDI-based Water Treatment System 24 3.9. CDI Field tests for Groundwater Deionization 27 3.10. Key Performance Indicators 28 3.10.1. Solar Energy Indicators 28 3.10.2. CDI Operation Indicators 28 Chapter 4. Results and Discussion 31 4.1. Electrode Characteristic 31 4.2. CDI Experiment with Different Concentrations of NaCl 33 4.3. Field Survey in the Study Area 38 4.3.1. Local Water Issues 38 4.3.2. Groundwater Quality 40 4.4. Solar-powered System 44 4.5. CDI for Groundwater Deionization with Different Conductivity of Influent 46 4.6. Consecutive Operation of CDI 50 4.7. Evaluation of Solar-powered CDI System 52 Chapter 5. Conclusions and Suggestions 55 Reference 56
dc.language.isoen
dc.title太陽光電驅動之電容去離子淨水裝置應用於偏遠社區:烏干達案例研究zh_TW
dc.titleOff-grid Solar Powered Capacitive Deionization for Water Purification in Remote Community: A Case Study in Rural Uganda.en
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee駱尚廉(Shang-Lien Lo),林逸彬(Yi-Pin Lin),林立虹(Li-Hung Lin)
dc.subject.keyword電容去離子,太陽能驅動,離網,分散型,地下水脫鹽,zh_TW
dc.subject.keywordcapacitive deionization,photovoltaic energy,off-grid,decentralized,groundwater desalination,en
dc.relation.page61
dc.identifier.doi10.6342/NTU202202556
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-08-19
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
dc.date.embargo-lift2025-08-25-
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-1808202217241400.pdf
  此日期後於網路公開 2025-08-25
2.62 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved