Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86427
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林致廷zh_TW
dc.contributor.advisorChih-Ting Linen
dc.contributor.author李大有zh_TW
dc.contributor.authorDa-Yo Leeen
dc.date.accessioned2023-03-19T23:55:11Z-
dc.date.available2024-08-19-
dc.date.copyright2022-08-22-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citation[1] 大島有美子, “聯合國報告:2050年老年人口比例將達1/6,” ed: 日本經濟新聞(中文版:日經中文網), 2019.[Online].Available:https://zh.cn.nikkei.com/politicsaeconomy/politicsasociety/35000-2019-04-03-08-59-28.html
[2] P. B. Luppa, C. Müller, A. Schlichtiger, and H. Schlebusch, “Point-of-care testing (POCT): Current techniques and future perspectives,” TrAC Trends in Analytical Chemistry, vol. 30, no. 6, pp. 887-898, 2011. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7125710/pdf/main.pdf.
[3] B. Srinivasan and S. Tung, “Development and applications of portable biosensors,” Journal of laboratory automation, vol. 20, no. 4, pp. 365-389, 2015.
[4] 國際中心/游舒婷報導, “不斷更新/全球確診逾5.2億!病歿630萬 十大疫區曝,” ,2022. [Online]. Available: https://www.setn.com/News.aspx?NewsID=1120714
[5] K. Stulík, C. Amatore, K. Holub, V. Marecek, and W. Kutner, “Microelectrodes. Definitions, characterization, and applications (Technical report),” Pure and Applied Chemistry, vol. 72, no. 8, pp. 1483-92, 2000.
[6] F. W. Scheller, U. Wollenberger, A. Warsinke, and F. Lisdat, “Research and development in biosensors,” Current Opinion in Biotechnology, vol. 12, no. 1, pp. 35-40, 2001.
[7] J. V. Rushworth and N. A. Hirst, “Impedimetric biosensors for medical applications: current progress and challenges,” 2013.
[8] D. Grieshaber, R. MacKenzie, J. Vörös, and E. Reimhult, “Electrochemical biosensors-sensor principles and architectures,” Sensors, vol. 8, no. 3, pp. 1400-1458, 2008. [Online]. Available:
https://mdpi-res.com/d_attachment/sensors/sensors-08-01400/article_deploy/sensors-08-01400.pdf?version=1403308044.
[9] J. H. Luong, K. B. Male, and J. D. Glennon, “Biosensor technology: technology push versus market pull,” Biotechnology advances, vol. 26, no. 5, pp. 492-500, 2008.
[10] L. C. Clark Jr and C. Lyons, “Electrode systems for continuous monitoring in cardiovascular surgery,” Annals of the New York Academy of sciences, vol. 102, no. 1, pp. 29-45, 1962.
[11] S. J. Updike and G. P. Hicks, “The enzyme electrode,” Nature, vol. 214, no. 5092, pp. 986-988, 1967. [Online]. Available: https://www.nature.com/articles/214986a0.
[12] M. Keyes, F. Semersky, and D. Gray, “Glucose analysis utilizing immobilized enzymes,” Enzyme and Microbial Technology, vol. 1, no. 2, pp. 91-94, 1979.
[13] U. Jönsson et al., “Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology,” Biotechniques, vol. 11, no. 5, pp. 620-627, 1991.
[14] W. Zhang and G. Li, “Third-generation biosensors based on the direct electron transfer of proteins,” Analytical sciences, vol. 20, no. 4, pp. 603-609, 2004. [Online].Available: https://www.jstage.jst.go.jp/article/analsci/20/4/20_4_603/_pdf.
[15] Y. Krishnan and F. C. Simmel, “Nucleic acid based molecular devices,” Angewandte Chemie International Edition, vol. 50, no. 14, pp. 3124-3156, 2011. [Online]. Available: https://onlinelibrary.wiley.com/doi/10.1002/anie.200907223.
[16] P. J. Conroy, S. Hearty, P. Leonard, and R. J. O’Kennedy, “Antibody production, design and use for biosensor-based applications,” in Seminars in cell & developmental biology, 2009, vol. 20, no. 1: Elsevier, pp. 10-26.
[17] M. Zourob, S. Elwary, and A. P. Turner, Principles of bacterial detection: biosensors, recognition receptors and microsystems. Springer Science & Business Media, 2008.
[18] J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors,” Sensors and actuators B: Chemical, vol. 54, no. 1-2, pp. 3-15, 1999.
[19] J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chemical reviews, vol. 108, no. 2, pp. 462-493, 2008. [Online]. Available: https://pubs.acs.org/doi/10.1021/cr068107d.
[20] E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Advanced materials, vol. 16, no. 19, pp. 1685-1706, 2004.
[21] K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chemical reviews, vol. 111, no. 6, pp. 3828-3857, 2011. [Online]. Available: https://pubs.acs.org/doi/10.1021/cr100313v.
[22] X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” analytica chimica acta, vol. 620, no. 1-2, pp. 8-26, 2008.
[23] A. Janshoff, H. J. Galla, and C. Steinem, “Piezoelectric mass‐sensing devices as biosensors—an alternative to optical biosensors?,” Angewandte Chemie International Edition, vol. 39, no. 22, pp. 4004-4032, 2000. [Online]. Available: https://onlinelibrary.wiley.com/doi/10.1002/1521-3773(20001117)39:22%3C4004::AID-ANIE4004%3E3.0.CO;2-2.
[24] K. A. Marx, “Quartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution− surface interface,” Biomacromolecules, vol. 4, no. 5, pp. 1099-1120, 2003. [Online]. Available: https://pubs.acs.org/doi/10.1021/bm020116i.
[25] M. Voinova, M. Jonson, and B. Kasemo, “‘Missing mass’ effect in biosensor’s QCM applications,” Biosensors and Bioelectronics, vol. 17, no. 10, pp. 835-841, 2002.
[26] R. Raiteri, M. Grattarola, H.-J. Butt, and P. Skládal, “Micromechanical cantilever-based biosensors,” Sensors and Actuators B: Chemical, vol. 79, no. 2-3, pp. 115-126, 2001.
[27] C. Ziegler, “Cantilever-based biosensors,” Analytical and bioanalytical chemistry, vol. 379, no. 7, pp. 946-959, 2004.
[28] P. S. Waggoner and H. G. Craighead, “Micro-and nanomechanical sensors for environmental, chemical, and biological detection,” Lab on a Chip, vol. 7, no. 10, pp. 1238-1255, 2007. [Online]. Available: https://pubs.rsc.org/en/content/articlelanding/2007/LC/b707401h.
[29] F. Patolsky, G. Zheng, and C. M. Lieber, “Nanowire-based biosensors,” ed: ACS Publications, 2006.
[30] Y. Cui, Q. Wei, H. Park, and C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” science, vol. 293, no. 5533, pp. 1289-1292, 2001.
[31] T. G. Drummond, M. G. Hill, and J. K. Barton, “Electrochemical DNA sensors,” Nature biotechnology, vol. 21, no. 10, pp. 1192-1199, 2003. [Online]. Available: https://www.nature.com/articles/nbt873.
[32] J. Wang, “Electrochemical glucose biosensors,” Chemical reviews, vol. 108, no. 2, pp. 814-825, 2008. [Online]. Available: https://pubs.acs.org/doi/10.1021/cr068123a.
[33] Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay, and Y. Lin, “Graphene based electrochemical sensors and biosensors: a review,” Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, vol. 22, no. 10, pp. 1027-1036, 2010.
[34] C.-S. Chen, K.-N. Chang, Y.-H. Chen, C.-K. Lee, B. Y.-J. Lee, and A. S.-Y. Lee, “Development of a label-free impedance biosensor for detection of antibody–antigen interactions based on a novel conductive linker,” Biosensors and Bioelectronics, vol. 26, no. 6, pp. 3072-3076, 2011.
[35] M. A. Cooper, “Optical biosensors in drug discovery,” Nature reviews Drug discovery, vol. 1, no. 7, pp. 515-528, 2002. [Online]. Available: https://www.nature.com/articles/nrd838.
[36] G. Gauglitz, “Direct optical detection in bioanalysis: an update,” Analytical and bioanalytical chemistry, vol. 398, no. 6, pp. 2363-2372, 2010. [Online]. Available: https://link.springer.com/article/10.1007/s00216-010-3904-4.
[37] H. Muramatsu, J. M. Dicks, E. Tamiya, and I. Karube, “Piezoelectric crystal biosensor modified with protein A for determination of immunoglobulins,” Analytical Chemistry, vol. 59, no. 23, pp. 2760-2763, 1987.
[38] N. V. Lavrik, M. J. Sepaniak, and P. G. Datskos, “Cantilever transducers as a platform for chemical and biological sensors,” Review of scientific instruments, vol. 75, no. 7, pp. 2229-2253, 2004.
[39] P. Singh, S. K. Pandey, J. Singh, S. Srivastava, S. Sachan, and S. K. Singh, “Biomedical perspective of electrochemical nanobiosensor,” Nano-micro letters, vol. 8, no. 3, pp. 193-203, 2016. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6223677/pdf/40820_2015_Article_77.pdf.
[40] M. Gerard, A. Chaubey, and B. Malhotra, “Application of conducting polymers to biosensors,” Biosensors and bioelectronics, vol. 17, no. 5, pp. 345-359, 2002.
[41] C. Berggren, B. Bjarnason, and G. Johansson, “Capacitive biosensors,” Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, vol. 13, no. 3, pp. 173-180, 2001.
[42] 5417LAB儀器, “pH酸鹼度計原理,”,2019. [Online]. Available: https://lab5417.pixnet.net/blog/post/279480304-ph%E9%85%B8%E9%B9%BC%E5%BA%A6%E8%A8%88%E5%8E%9F%E7%90%86.
[43] A. Newman, K. Hunter, and W. Stanbro, “The capacitive affinity sensor: a new biosensor,” in Proc. 2nd Int. Meeting Chem. Sensors, 1986, pp. 596-598.
[44] 百科知識, ed. https://www.easyatm.com.tw/wiki/%E5%8F%89%E6%8C%87%E9%9B%BB%E6%A5%B5
[45] R. F. Taylor, I. G. Marenchic, and E. J. Cook, “An acetylcholine receptor-based biosensor for the detection of cholinergic agents,” Analytica Chimica Acta, vol. 213, pp. 131-138, 1988.
[46] J. S. Daniels and N. Pourmand, “Label‐free impedance biosensors: Opportunities and challenges,” Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, vol. 19, no. 12, pp. 1239-1257, 2007. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2174792/pdf/nihms29444.pdf.
[47] L. Yang and R. Bashir, “Electrical/electrochemical impedance for rapid detection of foodborne pathogenic bacteria,” Biotechnology advances, vol. 26, no. 2, pp. 135-150, 2008.
[48] A. Bardea, F. Patolsky, A. Dagan, and I. Willner, “Sensing and amplification of oligonucleotide-DNA interactions by means of impedance spectroscopy: a route to a Tay–Sachs sensor,” Chemical Communications, no. 1, pp. 21-22, 1999.
[49] M. Jie, C. Y. Ming, D. Jing, L. S. Cheng, F. Jun, and C. Y. Xiang, “An electrochemical impedance immunoanalytical method for detecting immunological interaction of human mammary tumor associated glycoprotein and its monoclonal antibody,” Electrochemistry communications, vol. 1, no. 9, pp. 425-428, 1999.
[50] L. Yang, Y. Li, and G. F. Erf, “Interdigitated array microelectrode-based electrochemical impedance immunosensor for detection of Escherichia c oli O157: H7,” Analytical chemistry, vol. 76, no. 4, pp. 1107-1113, 2004. [Online]. Available: https://pubs.acs.org/doi/10.1021/ac0352575.
[51] C. G. Zoski, “Ultramicroelectrodes: design, fabrication, and characterization,” Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, vol. 14, no. 15‐16, pp. 1041-1051, 2002.
[52] K. Fu, D. Han, C. Ma, and P. W. Bohn, “Electrochemistry at single molecule occupancy in nanopore-confined recessed ring-disk electrode arrays,” Faraday discussions, vol. 193, pp. 51-64, 2016. [Online]. Available: https://pubs.rsc.org/en/content/articlelanding/2016/FD/C6FD00062B.
[53] G. Torrie and J. Valleau, “Electrical double layers. 4. Limitations of the Gouy-Chapman theory,” The Journal of Physical Chemistry, vol. 86, no. 16, pp. 3251-3257, 1982.
[54] 微文庫-研之成理, “電化學基礎知識分享(四):電化學中的三電極體系及選擇標準,” 2018. https://www.gushiciku.cn/dc_tw/105943599
[55] “ZENSOR R&D 1.1電化學系統,” 2016. https://www.zensor.com.tw/Article09.html
[56] C. Chen, “三电极体系工作原理,” 2021. https://blog.csdn.net/chenhuanqiangnihao/article/details/115939675
[57] 魏淑宜, “以電化學方法研究Co/Cu(111)薄膜結構與磁特性,” in物理學系vol. 碩士, ed. 台北市: 國立臺灣師範大學, 2007, p. 163.
[58] 想学电化学阻抗谱(EIS)?这篇可能是目前最好的干货, 2018. [Online]. Available: https://zhuanlan.zhihu.com/p/29092156.
[59] G. INSTRUMENTS. “Basics of Electrochemical Impedance Spectroscopy.” https://www.gamry.com/application-notes/EIS/basics-of-electrochemical-impedance-spectroscopy/ (accessed.
[60] 吳慧屏, “奈米管染料敏化太陽能電池的製備與鑑識及其交流阻抗圖譜的研究,” in應用化學研究所vol. 碩士, ed. 新竹市: 國立交通大學, 2010, p. 38.
[61] E. Bidóia, L. Bulhoes, and R. Rocha-Filho, “Pt/HClO4 interface CPE: influence of surface roughness and electrolyte concentration,” Electrochimica acta, vol. 39, no. 5, pp. 763-769, 1994.
[62] U. Rammelt and G. Reinhard, “On the applicability of a constant phase element (CPE) to the estimation of roughness of solid metal electrodes,” Electrochimica Acta, vol. 35, no. 6, pp. 1045-1049, 1990.
[63] B. Hirschorn, M. E. Orazem, B. Tribollet, V. Vivier, I. Frateur, and M. Musiani, “Constant-phase-element behavior caused by resistivity distributions in films: II. Applications,” Journal of The Electrochemical Society, vol. 157, no. 12, p. C458, 2010.
[64] M. Musiani, M. E. Orazem, N. Pébère, B. Tribollet, and V. Vivier, “Constant-phase-element behavior caused by coupled resistivity and permittivity distributions in films,” Journal of The Electrochemical Society, vol. 158, no. 12, p. C424, 2011.
[65] 超微电极Ultramicroelectrode, 2020. [Online]. Available: https://zhuanlan.zhihu.com/p/137105428.
[66] Polyplastics, “工程樹脂之表面改質技術,” ed, 2012.
[67] H. H. Tawfik, M. Y. Elsayed, F. Nabki, and M. N. El-Gamal, “Hard-baked photoresist as a sacrificial layer for sub-180 C surface micromachining processes,” Micromachines, vol. 9, no. 5, p. 231, 2018.
[68] SINTI, “F20单点膜厚测量仪,” 2020. http://www.shnti.com/index/product/info?id=11
[69] KEYENCE, “接觸式表面粗糙度、輪廓測量儀,” 2018. https://www.keyence.com.tw/ss/products/microscope/roughness/equipment/surface_01.jsp
[70] 電漿表面改質技術, 2018. [Online]. Available: https://foundation.nmns.edu.tw/writing/hotnews2_detail.php?gid=11&id=1371.
[71] L. M. M. Ferro, A. de Barros, L. O. Z. Falsetti, C. C. Corrêa, L. Merces, and C. C. B. Bufon, “Highly efficient electrochemical energy conversion in a 3D hollow microenvironment: towards on-a-chip sensor applications,” Journal of Materials Chemistry A, vol. 8, no. 38, pp. 19855-19865, 2020.
[72] D. W. Arrigan, “Nanoelectrodes, nanoelectrode arrays and their applications,” Analyst, vol. 129, no. 12, pp. 1157-1165, 2004. [Online].Available:https://pubs.rsc.org/en/content/articlelanding/2004/AN/b415395m.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86427-
dc.description.abstract電化學阻抗式生物感測器具有體積小、成本低、操作簡易及訊號放大的優點,透過電學與化學的轉換,可以讓我們掌握生物分子的資訊,應用在生物感測器上。配合著元件製作技術的尺寸微縮,眾多研究指出微電極結構能加快質傳效應、擁有較高的信噪比以及較低的電壓降,透過設計成微米或奈米尺寸電極陣列,每個獨立電極會並行運行從而放大電流,同時也保留著微小電極的良好特性。這些特性促使我們利用無塵室機台,在成本較低的載玻片基板上製作3D垂直堆疊的金屬-絕緣體-金屬高密度環盤狀微電極陣列,不僅利用3D結構將電極之間的距離縮減到400奈米,並且在感應區域內做不同的結構設計來觀察元件性能。在本論文中,我們使用循環伏安法與電化學阻抗分析法來測量這些元件,我們發現出現穩態趨勢的循環伏安法具有電流放大的效應,電流和電荷轉移率隨著赤黃血鹽的濃度上升而上升,電流甚至與赤黃血鹽的濃度呈線性關係。在出現峰值的循環伏安法趨勢下,電流與掃描速率也呈線性正比。而當我們選擇臨界尺寸為奈米等級的環電極作為工作電極時,可以發現即便與本來的工作電極面積相差100倍,電流的大小卻僅僅小三倍,代表著奈米尺度的元件也具有不乏的電流放大特性。透過縮小電極尺寸至微米與奈米等級時,可以執行更加快速的電化學與化學反應,這是因為電極表面的反應物在高速的質傳下不會限制到電荷轉移的過程。zh_TW
dc.description.abstractElectrochemical impedance biosensors have the advantages of small size, low cost, easy operation and signal amplification. We can get the information of biomolecular from the transfer of electricity and chemical. A lot of experiments proved that electrochemical responses at microelectrode structure have special qualities, for example quick mass exchange, have high sign to-commotion proportion, and inconsequential ohmic misfortunes. By designing an array of micrometer- or nanometer-sized electrodes, each individual electrode operates in parallel to amplify the current, while retaining the good properties of tiny electrodes. These properties propel the manufacture of high thickness, horizontally requested varieties of microholes, installing upward stacked metal-cover metal cathode structures and controlled size and thickness of openings. In this thesis, we use cyclic voltammetry(CV) and electrochemical impedance spectroscopy(EIS) to measure the characteristics of these microscale recessed ring-disk electrode (RRDE) arrays with nanoscale interpore spacing. We found that steady-state cyclic voltammetry measurement exhibits current amplification. Current and charge transfer rate increases as the concentration of Fe(CN)63-/4-. Current increasing linearly with scan rates in peak current cyclic voltammetry measurement. As we exchange the ring-disk electrode’s connection, although working electrode’s critical dimension is nanoscale which is a hundred times smaller than before, the current is only three times smaller than another. It represents that nanoscale electrode can also enhance the current. By decreasing the size of electrode to submicro scale, faster electrochemical and chemical reactions should be possible. It is because of that the mass transport will not limit the electron transfer at high rates of it.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:55:11Z (GMT). No. of bitstreams: 1
U0001-1708202215132500.pdf: 4478089 bytes, checksum: e8218a1832e31ed03c549ba414208b3f (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES x
LIST OF TABLES xv
Chapter 1 Introduction 1
1.1 研究背景 1
1.2 生物感測器 3
1.3 生物感測器架構 4
1.3.1 生物受體 4
1.3.2 傳感器 5
1.4 電化學阻抗型生物感測器 7
1.4.1 非法拉第生物感測器 7
1.4.2 法拉第生物感測器 10
1.5 動機 11
1.6 論文架構 12
Chapter 2 導論 13
2.1 電化學基本原理 13
2.1.1 法拉第與非法拉第過程 14
2.1.2 電化學反應的過程 17
2.1.3 雙電極與三電極系統 20
2.1.4 電化學半反應 23
2.1.5 伏安法 24
2.1.6 電化學阻抗譜(Electrochemical impedance spectroscopy, EIS) 30
2.1.7 影響阻抗變化之因素 37
2.2 微電極的定義、特性與應用 39
2.2.1 微電極的介紹 39
2.2.2 單電極(single electrode) 40
2.2.3 微電極陣列(Microelectrode arrays) 45
2.2.4 微電極特性總結 46
Chapter 3 元件的製程與檢驗方式 47
3.1 元件製程步驟 47
3.1.1 清洗基板 47
3.1.2 下電極的製作 48
3.1.3 氧化層與上電極 50
3.1.4 環盤狀電極結構 51
3.2 元件結構的確認 55
3.2.1 F20單點膜厚測量儀 56
3.2.2 探針式表面分析儀 58
3.3 實驗事前作業與溶液配置 63
3.3.1 元件事前處理 63
3.3.2 溶液的配置 64
3.4 量測方法 65
3.4.1 量測系統的設置 66
Chapter 4 實驗結果分析與討論 67
4.1 等效電路元件 67
4.2 元件特性分析 68
4.2.1 循環伏安法 68
4.2.2 電化學阻抗分析 69
4.3 元件穩定度及可靠性測試 71
4.3.1 循環伏安法 71
4.3.2 電化學阻抗分析 72
4.4 改變氧化還原物質濃度 73
4.4.1 循環伏安法 73
4.4.2 電化學阻抗分析 74
4.5 不同結構下的比較 77
4.5.1 循環伏安法 77
4.5.2 電化學阻抗分析法 78
4.6 不同掃描速率下的CV 79
4.7 交換工作電極與輔助電極的選擇 80
4.7.1 循環伏安法 80
4.7.2 電化學阻抗分析法 81
Chapter 5 結論與未來展望 83
5.1 結論 83
5.2 未來展望 84
5.2.1 製程優化 84
5.2.2 量測部分 85
參考文獻 87
-
dc.language.isozh_TW-
dc.title嵌入式環盤電極微結構進行次微米電化學反應之研究zh_TW
dc.titleRecessed Ring-Disk Microstructure for Sub-Micron Electrochemical Measurementen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張子璿;吳靖宙zh_TW
dc.contributor.oralexamcommitteeTzu-Hsuan Chang;Ching-Chou Wuen
dc.subject.keyword電化學,循環伏安法,電化學阻抗分析譜,微電極,環盤狀電極陣列,zh_TW
dc.subject.keywordelectrochemical,cyclic voltammetry,electrochemical impedance spectroscopy,microelectrode,ring-disk electrode array,en
dc.relation.page91-
dc.identifier.doi10.6342/NTU202202510-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2022-08-19-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
dc.date.embargo-lift2024-08-19-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf4.37 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved