請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86426完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林致廷(Chih-Ting Lin) | |
| dc.contributor.author | Yu-Xin Lin | en |
| dc.contributor.author | 林煜鑫 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:55:07Z | - |
| dc.date.copyright | 2022-08-22 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-19 | |
| dc.identifier.citation | [1]W. M. Holt, '1.1 Moore's law: A path going forward,' in 2016 IEEE International Solid-State Circuits Conference (ISSCC), 2016: IEEE, pp. 8-13. [2]R. J. Toh, Z. Sofer, J. Luxa, D. Sedmidubský, and M. Pumera, '3R phase of MoS 2 and WS 2 outperforms the corresponding 2H phase for hydrogen evolution,' Chemical Communications, vol. 53, no. 21, pp. 3054-3057, 2017. [3]K. S. Novoselov et al., 'Electric field effect in atomically thin carbon films,' science, vol. 306, no. 5696, pp. 666-669, 2004. [4]S. Kamel, M. El-Sakhawy, B. Anis, and H.-A. S. Tohamy, 'Graphene’s Structure, Synthesis, and Characterization; a brief review,' Egyptian Journal of Chemistry, vol. 62, no. Special Issue (Part 2) Innovation in Chemistry, pp. 593-608, 2019. [5]张全勤 and 张继文, 纳米技术新进展. 国防工业出版社, 2005. [6]D. Wolf and S. Yip, Materials interfaces: atomic-level structure and properties. 1992. [7]G. W. Semenoff, 'Condensed-matter simulation of a three-dimensional anomaly,' Physical Review Letters, vol. 53, no. 26, p. 2449, 1984. [8]L. Meng, Y. Zhang, S. Ni, B. Li, and W. Wu, 'Unique Schrödinger semimetal state in ternary Be 2 P 3 N honeycomb lattice,' Journal of Materials Chemistry C, vol. 7, no. 14, pp. 4118-4123, 2019. [9]B. Guo, L. Fang, B. Zhang, and J. R. Gong, 'Graphene doping: a review,' Insciences J., vol. 1, no. 2, pp. 80-89, 2011. [10]G. Wang, B. Wang, J. Park, Y. Wang, B. Sun, and J. Yao, 'Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation,' Carbon, vol. 47, no. 14, pp. 3242-3246, 2009. [11]S. Saadi et al., 'On the role of metal step-edges in graphene growth,' The Journal of Physical Chemistry C, vol. 114, no. 25, pp. 11221-11227, 2010. [12]M. Wall, 'The Raman spectroscopy of graphene and the determination of layer thickness,' Thermo Sci, vol. 5, pp. 1-5, 2011. [13]M. Wall, 'The Raman spectroscopy of graphene and the determination of layer thickness. Thermo Scientific Application Note: 52252,' ed, 2011. [14]J. Hass, W. De Heer, and E. Conrad, 'The growth and morphology of epitaxial multilayer graphene,' Journal of Physics: Condensed Matter, vol. 20, no. 32, p. 323202, 2008. [15]Y.-W. Huan et al., 'Recent advances in β-Ga2O3–metal contacts,' Nanoscale research letters, vol. 13, no. 1, pp. 1-10, 2018. [16]C. Kim et al., 'Fermi level pinning at electrical metal contacts of monolayer molybdenum dichalcogenides,' ACS nano, vol. 11, no. 2, pp. 1588-1596, 2017. [17]Y. Zheng, J. Gao, C. Han, and W. Chen, 'Ohmic contact engineering for two-dimensional materials,' Cell Reports Physical Science, vol. 2, no. 1, p. 100298, 2021. [18]K. Ding et al., 'Surface charge transfer doping induced inversion layer for high-performance graphene/silicon heterojunction solar cells,' Journal of Materials Chemistry A, vol. 5, no. 1, pp. 285-291, 2017. [19]H. Y. Park et al., 'Extremely low contact resistance on graphene through n‐Type doping and edge contact design,' Advanced Materials, vol. 28, no. 5, pp. 864-870, 2016. [20]T. Enoki, Y. Kobayashi, and K.-I. Fukui, 'Electronic structures of graphene edges and nanographene,' International Reviews in Physical Chemistry, vol. 26, no. 4, pp. 609-645, 2007. [21]Q. Gao and J. Guo, 'Role of chemical termination in edge contact to graphene,' APL Materials, vol. 2, no. 5, p. 056105, 2014. [22]S. Lee et al., 'Contact Resistivity in Edge‐Contacted Graphene Field Effect Transistors,' Advanced Electronic Materials, p. 2101169, 2022. [23]F. Giubileo and A. Di Bartolomeo, 'The role of contact resistance in graphene field-effect devices,' Progress in Surface Science, vol. 92, no. 3, pp. 143-175, 2017. [24]T. Abbas and L. Slewa, 'Transmission line method (TLM) measurement of (metal/ZnS) contact resistance,' Int. J. Nanoelectronics and Materials, vol. 8, pp. 111-120, 2015. [25]A. Allain, J. Kang, K. Banerjee, and A. Kis, 'Electrical contacts to two-dimensional semiconductors,' Nature materials, vol. 14, no. 12, pp. 1195-1205, 2015. [26]T. Ko and K.-W. Sun, 'Optical and electrical properties of single Sb2Se3 nanorod,' Journal of Luminescence, vol. 129, no. 12, pp. 1747-1749, 2009. [27]D. Metten, 'Probing the opto-electronic and mechanical properties of suspended graphene membranes by Raman spectroscopy,' Strasbourg, 2016. [28]V. Palermo, M. Palma, and P. Samorì, 'Electronic characterization of organic thin films by Kelvin probe force microscopy,' Advanced materials, vol. 18, no. 2, pp. 145-164, 2006. [29]柯志忠, 林秀芬, and 蕭健男, '原子層沉積系統設計概念與應用,' 科儀新知, no. 159, pp. 14-25, 2007. [30]W. He, 'ALD: atomic layer deposition, precise and conformal coating for better performance,' Handbook of Manufacturing Engineering and Technology, Nee, AYC, Ed.; New York, NY: Springer, pp. 1-33, 2013. [31]H. C. Knoops, S. E. Potts, A. A. Bol, and W. Kessels, 'Atomic layer deposition,' in Handbook of Crystal Growth: Elsevier, 2015, pp. 1101-1134. [32]X. Zhang, L. Wang, J. Xin, B. I. Yakobson, and F. Ding, 'Role of hydrogen in graphene chemical vapor deposition growth on a copper surface,' Journal of the American Chemical Society, vol. 136, no. 8, pp. 3040-3047, 2014. [33]A. Nourbakhsh et al., 'Bandgap opening in oxygen plasma-treated graphene,' Nanotechnology, vol. 21, no. 43, p. 435203, 2010. [34]J. Wei, B. Liang, Q. Cao, H. Ren, Y. Zheng, and X. Ye, 'Understanding asymmetric transfer characteristics and hysteresis behaviors in graphene devices under different chemical atmospheres,' Carbon, vol. 156, pp. 67-76, 2020. [35]T. Ihn et al., 'Graphene single-electron transistors,' Materials today, vol. 13, no. 3, pp. 44-50, 2010. [36]A. Di Bartolomeo et al., 'Effect of back-gate on contact resistance and on channel conductance in graphene-based field-effect transistors,' Diamond and Related Materials, vol. 38, pp. 19-23, 2013. [37]K. Nagashio, T. Nishimura, K. Kita, and A. Toriumi, 'Contact resistivity and current flow path at metal/graphene contact,' Applied Physics Letters, vol. 97, no. 14, p. 143514, 2010. [38]S.-a. Peng et al., 'The sheet resistance of graphene under contact and its effect on the derived specific contact resistivity,' Carbon, vol. 82, pp. 500-505, 2015. [39]V. Trepalin et al., 'Evaluation of the effective work-function of monolayer graphene on silicon dioxide by internal photoemission spectroscopy,' Thin Solid Films, vol. 674, pp. 39-43, 2019. [40]G. Giovannetti, P. A. Khomyakov, G. Brocks, V. v. Karpan, J. van den Brink, and P. J. Kelly, 'Doping graphene with metal contacts,' Physical review letters, vol. 101, no. 2, p. 026803, 2008. [41]S. Achra et al., 'Metal induced charge transfer doping in graphene-ruthenium hybrid interconnects,' Carbon, vol. 183, pp. 999-1011, 2021. [42]F. A. Chaves, D. Jiménez, A. W. Cummings, and S. Roche, 'Model of the Electrostatics and Tunneling Current of Metal-Graphene Junctions and Metal-Insulator-Graphene Heterostructures,' arXiv preprint arXiv:1309.0390, 2013. [43]M. Yang, C. Zhang, S. Wang, and Y. Feng, 'Graphene on β-Si3N4: An ideal system for graphene-based electronics,' AIP Advances, vol. 1, no. 3, p. 032111, 2011. [44]K. Zhong, Y. Yang, J.-M. Zhang, G. Xu, and Z. Huang, 'Effects of graphene intercalation on dielectric reliability of HfO2 and modulation of effective work function for Ni/Gr/c-HfO2 interfaces: first-principles study,' Scientific Reports, vol. 8, no. 1, pp. 1-9, 2018. [45]S. Rakheja, V. Kumar, and A. Naeemi, 'Evaluation of the potential performance of graphene nanoribbons as on-chip interconnects,' Proceedings of the IEEE, vol. 101, no. 7, pp. 1740-1765, 2013. [46]K. Zhong, Y. Yang, J.-M. Zhang, G. Xu, and Z. Huang, 'Effects of graphene intercalation on dielectric reliability of HfO2 and modulation of effective work function for Ni/Gr/c-HfO2 interfaces: first-principles study,' Scientific Reports, vol. 8, no. 1, p. 1053, 2018/01/18 2018, doi: 10.1038/s41598-018-19411-0. [47]C. K. Huang. (2021). “Investigation of graphene on silicon hybrid photoconductor .”, Master Thesis, National Taiwan University , ROC [48]C. C. Wang. (2021). “ Study of CO/CO2 sensing with optical/electrochemical detection method .”, Master Thesis, National Taiwan University , ROC | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86426 | - |
| dc.description.abstract | 在現今的半導體發展中,一直遵循著摩爾定律的節奏發展,然而先進製程遇到的問題越來越嚴苛,因此各家大廠期望從各個面向解決問題,石墨烯由於優異的材料特性,便受到熱烈的研究,而在本文的研究中,主要是針對金屬/石墨烯接面的接觸電阻做探討。影響石墨烯接觸電阻的面向很多,然而最主要影響接面仔子傳輸的便是石墨烯的功函數,而本文主要觀察基板的置換對石墨烯的功函數的調變。 第一部分,本文利用最廣為使用量測接觸電阻的方法傳輸線法(TLM)進行量測,以300nm SiO2為基準基板,量測出的結果特徵接觸電阻率為〖10〗^3~〖10〗^4Ω*um附近,與參考文獻的數值吻合,另外並針對石墨烯的退化(Degradation)、背閘極偏壓(Back-Gate Bias)、以及量測時做造成的誤差進行探討。本文發現石墨烯會隨著時間的經過,材料內的碳原子與大氣中的分子產生鍵結,使得石墨烯的電阻率受到影響,造成接觸電阻值的上升。而石墨烯也會因給予不同的背閘極偏壓,費米能接的位置不同,有不同的電阻率,因此會得到不同的接觸電阻值,以及在量測時因下針的位置或角度,會有些微量測上的誤差。 第二部分是針對石墨烯轉印至不同基板時,由於石墨烯厚度非常薄,因此環境因素會容易影響到石墨烯的材料特性,我們也根據KPFM去量測石墨烯在不同基板上的表面電位,並推得功函數,得到在Si3N4、HfO2、TiO2上,皆有功函數被調變的結果,推測原因為石墨烯在與基板分子接觸時,會因為極性的關係,導致原子之間發生載子流動的現象,進而造成石墨烯功函數會有變化。而本文的最後,也探討出若欲以基板面向去改善石墨烯的接觸電阻,應選用對石墨烯產生散射較小的基板。 | zh_TW |
| dc.description.abstract | When the device scale down , short channel effect will more heavier because the weak gate control . Every foundry fab are try to slove the problem from many aspects . 2D material is popular because its well-performed material characteristic . In this study , we are focus on the contact resistance between graphene and metal contact . And graphene work function is the most affecttive factor of contact resistance . So this work, we observe the graphene work function on different substrate . First , we used the TLM measurement method to measure graphene/titanium contact resistance on 300nm SiO2 substrate . Specific contact resistance we measurement is about 〖10〗^3~〖10〗^4Ω*um . It’s matching to other reference . And we also discuss the degradation , back-gate , and the measurement error effect on the graphene contact resistance . We find that graphene will degrade as time goes on because the carbon atom is interact with hydrogen and oxygen atom . It will turn graphene into graphene oxide . And different back-gate bias will let graphene have different density of state(DOS) , it will cause variation conductivity . Measurement result also have error because the measurement angle and position . We also transfer graphen on different substrate , and used KPFM to measure the graphene work function . We find that graphene work function on Si3N4 , HfO2 and TiO2 substrate are get more n-type doping result . We assume that because the polarity will cause charge transfer between metal and graphene . And it will let graphene work function changing . Eventurally , if we want to improve the contact resistance form contact substrate . High mobility substrate is best choice. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:55:07Z (GMT). No. of bitstreams: 1 U0001-1708202216415300.pdf: 2836805 bytes, checksum: 43536e5fe05caf99681494a9ad764c18 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員審定書 …………………………………………………………I 誌 謝 …………………………………………………………………II 摘 要 …………………………………………………………………III Abstract ………………………………………………………………IV 目 錄 …………………………………………………………………V 圖目錄 ………………………………………………………………VII 表 目 錄 ……………………………………………………………….XI 第一章 緒論 ……………………………………………………………1 1.1 大綱 ………………………………………………………….1 1.2 二維材料簡介………………………………………………….2 1.3 研究動機 …………………………………………………….…4 1.4 論文架構 …………………………………………………….…5 第二章 文獻回顧 ………………………………………………7 2.1 章節介紹 …………………………………………………7 2.2 石墨烯的介紹…………………………………………………8 2.3金屬/半導體接面…………………………………………16 2.4費米能階釘札效應………………………………….…17 2.5改善金屬/二維材料接觸電阻的方法…18 2.6章節結論…………………………………………...…..24 第三章 實驗儀器介紹與方法………………………25 3.1 接觸電阻量測方法….…….……………………25 3.2 使用儀器與機台介紹……………………………29 第四章 實驗步驟與結果………………………………35 4.1 置備石墨烯步驟流程與材料分析……35 4.2 元件製程流程…………………………………………37 4.3 接觸電阻量測….…….……………………………40 4.4 結果討論……………………………………………………58 第五章 結論與未來展望…………………………….64 5.1結論…………….…….……………………………..………64 5.2未來展望………………………………………………………64 第六章 參考文獻……………………………………………65 | |
| dc.language.iso | zh-TW | |
| dc.subject | 功函數 | zh_TW |
| dc.subject | 功函數 | zh_TW |
| dc.subject | 載子遷移率 | zh_TW |
| dc.subject | 電阻率 | zh_TW |
| dc.subject | 接觸電阻 | zh_TW |
| dc.subject | 石墨烯 | zh_TW |
| dc.subject | 石墨烯 | zh_TW |
| dc.subject | 接觸電阻 | zh_TW |
| dc.subject | 電阻率 | zh_TW |
| dc.subject | 載子遷移率 | zh_TW |
| dc.subject | specific contact resistance | en |
| dc.subject | mobility | en |
| dc.subject | work function | en |
| dc.subject | Graphene | en |
| dc.subject | Graphene | en |
| dc.subject | contact resistance | en |
| dc.subject | specific contact resistance | en |
| dc.subject | mobility | en |
| dc.subject | work function | en |
| dc.subject | contact resistance | en |
| dc.title | 基板材質對於石墨烯/金屬接面電阻影響之探討 | zh_TW |
| dc.title | Study of contact resistance about graphene/metal with variable substrate | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張子璿(Tzu-Hsuan Chang),溫偉源(Wei-Yen Woon) | |
| dc.subject.keyword | 石墨烯,接觸電阻,電阻率,載子遷移率,功函數, | zh_TW |
| dc.subject.keyword | Graphene,contact resistance,specific contact resistance,mobility,work function, | en |
| dc.relation.page | 68 | |
| dc.identifier.doi | 10.6342/NTU202202517 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-08-19 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2024-08-01 | - |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1708202216415300.pdf | 2.77 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
