Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 文學院
  3. 語言學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86412
標題: 漢語構式語意自動分類研究
Semantic Classification of Mandarin Chinese Constructions
作者: Cing-Fang Shih
石晴方
指導教授: 謝舒凱(Shu-Kai Hsieh)
關鍵字: 構式語法,一詞多義,構式語義,詞嵌入,分類模型,
Construction Grammar,polysemy,construction sense,word embeddings,classification model,
出版年 : 2022
學位: 碩士
摘要: 由多義引起的語義歧義常阻礙機器對於人類語言的理解。因此,詞義消歧(WSD)一直是自然語言處理中重要的任務。除了字詞,作為形式-意義配對的構式同樣具有多義特徵。本論文旨在將詞義消歧任務從單詞層次擴展到構式層次,並利用語料庫與計算語言學方法研究構式的多義性。為了了解空槽和構式之間的相互作用,我們運用搭配分析(collostruction analysis)將兩者的吸引程度進行量化。隨後,本研究鎖定十二個多義構式,並標記構式中兩個空槽間的語義關係。透過標記資料,我們分析了空槽間語義關係與構式語義的配對。最後,本研究使用 3×2 因素之實驗設計,以探討各模型預測空槽間語義關係之能力。研究結果顯示,模型能夠區分空槽間的語義關係,代表其具有分類構式語義的能力。在本論文中,帶有弱監督線索的 BERT 模型可以達到 80% 的預測準確度,說明弱監督線索和上下文脈絡有助於提高預測構式語義的準確度。
Semantic ambiguity arising from polysemy has hindered the machine from thoroughly understanding human language. Thus, Word Sense Disambiguation (WSD) has always been a significant task in natural language processing. Similar to words, constructions, which are conventionalized form-meaning pairings, also possess the polysemous trait. Therefore, this thesis aims to extend the disambiguation task from word-level to construction-level. This thesis investigated the polysemy of constructions with corpus-based and computational approaches. To understand the interaction between slots and constructions, a collostruction analysis was conducted. Subsequently, examples of 12 potentially polysemous construction forms were annotated with the semantic relation between two open slots X and Y. Afterwards, the mapping between X/Y relations and construction senses was examined directly from the annotated data. Finally, a 3×2 experiment was employed to investigate the predictive abilities of X/Y relations of different models. The results showed that models could distinguish between X/Y relations, which implied that models could classify the construction senses. The best performance was achieved by BERT with weak supervision signals, reaching an accuracy of 0.8. It can be concluded that weak supervision signals and contextual information can help enhance prediction accuracy.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86412
DOI: 10.6342/NTU202202624
全文授權: 同意授權(全球公開)
電子全文公開日期: 2022-08-24
顯示於系所單位:語言學研究所

文件中的檔案:
檔案 大小格式 
U0001-2208202200052700.pdf3.14 MBAdobe PDF檢視/開啟
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved