Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86409
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李志中zh_TW
dc.contributor.advisorJyh-Jone Leeen
dc.contributor.author何旻致zh_TW
dc.contributor.authorMin-Zh Hoen
dc.date.accessioned2023-03-19T23:54:08Z-
dc.date.available2023-12-26-
dc.date.copyright2022-08-26-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citation[1] F. Ilievski, A. D. Mazzeo, R. F. Shepherd, X. Chen, and G. M. Whitesides, "Soft robotics for chemists, "Angewandte Chemie International Edition, vol. 50, no. 8, pp. 1890-1895, 2011.
[2] E. Brown, N. Rodenberga, J. Amendb, A. Mozeikac, E. Steltzc, M. R. Zakind, H. Lipsonb, and H. M. Jaeger., "Universal robotic gripper based on the jamming of granular material," Proceedings of the National Academy of Sciences, vol. 107, no. 44, pp. 18809-18814, 2010.
[3] S. C. Jacobsen, J. E. Wood, D. Knutti, and K. B. Biggers, "The UTAH/MIT dextrous hand: Work in progress," The International Journal of Robotics Research, vol. 3, no. 4, pp. 21-50, 1984.
[4] T. Mouri, H. Kawasaki, K. Yoshikawa, J. Takai, and S. Ito, "Anthropomorphic robot hand: Gifu hand III, " in 2002 2nd International Conference on Control, Automation and systems, 2002: IEEE, pp. 1288-1293.
[5] S. R. Company. Shadow Dexterous Hand. Available: https://www.shadowrobot.com/dexterous-hand-series/ (accessed on 27 March 2022).
[6] J. Butterfass, M. Grebenstein, H. Liu and G. Hirzinger, "DLR-Hand II: next generation of a dextrous robot hand," in 2001 International Conference on Robotics and Automation, 2001: IEEE, vol.1, pp. 109-114,
[7] T. Laliberte, L. Birglen, and C. Gosselin, "Underactuation in robotic grasping hands," Machine Intelligence & Robotic Control, vol. 4, no. 3, pp. 1-11, 2002.
[8] D. Zhao and W. Zhang, "Topology and analysis of three-phalanx COSA finger based on linkages for humanoid robot hands," in International Conference on Intelligent Robotics and Applications, 2010: Springer, pp. 465-476.
[9] 許文杰,"不足驅動被動適應手指機構之設計",碩士論文,國立臺灣大學機械工程學研究所,台北市,2010。
[10] 莊景崴,"新型不足驅動被動適應手指機構之設計",碩士論文,國立臺灣大學機械工程學研究所,台北市,2012。
[11] L.-A. A. Demers, S. Lefrançois, and J.-P. Jobin, "Gripper having a two degree of freedom underactuated mechanical finger for encompassing and pinch grasping," United States Patent 8973958, 2015.
[12] 洪揚,"具兩夾持模式與三種姿態之不足驅動被動適應夾爪之設計",碩士論文,國立臺灣大學機械工程學研究所,台北市,2016。
[13] Robotiq Homepage. Available: https://robotiq.com (accessed on 27 March 2022).
[14] O Pfaff, S Simeonov, I Cirovic and P. Stano, "Application of Finray effect approach for production process automation", Annals of DAAAM & Proceedings, pp. 1247-1248, 2011.
[15] Adaptive Gripper Fingers DHAS. Available: https://www.festo.com/cat/en-gb_gb/data/doc_ENGB/PDF/EN/DHAS_EN.PDF (accessed on 27 March 2022).
[16] D. Petković, N. D. Pavlović, S. Shamshirband, and N. B. Anuar, "Development of a new type of passively adaptive compliant gripper," Industrial Robot: An International Journal, 2013.
[17] M. P. Bendsoe and O. Sigmund, Topology optimization: theory, methods, and applications. Springer Science & Business Media, 2013.
[18] B.-S. Kim and J.-B. Song, "Hybrid dual actuator unit: A design of a variable stiffness actuator based on an adjustable moment arm mechanism," in 2010 IEEE International Conference on Robotics and Automation, 2010: IEEE, pp. 1655-1660.
[19] B.-S. Kim and J.-B. Song, " Object grasping using a 1 DOF variable stiffness gripper actuated by a hybrid variable stiffness actuator," in 2011 IEEE International Conference on Robotics and Automation, 2010: IEEE, pp. 4620-4625.
[20] A. H. Memar, N. Mastronarde, and E. T. Esfahani, "Design of a novel variable stiffness gripper using permanent magnets," in 2017 IEEE International Conference on Robotics and Automation (ICRA), 2017: IEEE, pp. 2818-2823.
[21] C.-C. Chen and C.-C. Lan, "An accurate force regulation mechanism for high-speed handling of fragile objects using pneumatic grippers," IEEE Transactions on Automation Science and Engineering, vol. 15, no. 4, pp. 1600-1608, 2017.
[22] G. A. Pratt and M. M. Williamson, "Series elastic actuators," in Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots, vol. 1: IEEE, pp. 399-406, 1995.
[23] R. v. Ham, T. Sugar, B. Vanderborght, K. Hollander, and D. Lefeber, "Compliant actuator designs," IEEE Robotics & Automation Magazine, vol. 3, no. 16, pp. 81-94, 2009.
[24] M. S. Lavate and R. Todkar, "Variable stiffness actuators: A general review," International Journal of Engineering and Technical Research, vol. 4, no. 7, pp. 201-205, 2015.
[25] R. v. Ham, B. Vanderborght, M. V. Damme, B. Verrelst, and D. Lefeber, " MACCEPA: the mechanically adjustable compliance and controllable equilibrium position actuator for controlled passive walking," in 2006 IEEE International Conference on Robotics and Automation (ICRA), 2006: IEEE, pp. 2195-2200.
[26] S. S. Groothuis, G. Rusticelli, A. Zucchelli, S. Stramigioli, and R. Carloni, "The vsaUT-II: A novel rotational variable stiffness actuator," in 2012 IEEE International Conference on Robotics and Automation (ICRA), 2012: IEEE, pp. 3355-3360.
[27] X. Li, W. Chen, W. Lin, and K. H. Low, "A variable stiffness robotic gripper based on structure-controlled principle," IEEE Transactions on Automation Science and Engineering, vol. 15, no. 3, pp. 1104-1113, 2017.
[28] P. Wang and Q. Xu, "Design and modeling of constant-force mechanisms: A survey," Mechanism and Machine Theory, vol. 119, pp. 1-21, 2018.
[29] J. López-Martínez, D. García-Vallejo, F. M. Arrabal-Campos, and J. M. Garcia-Manrique, "Design of Three New Cam-Based Constant-Force Mechanisms." ASME Journal of Mechanical Design, vol. 140, 082302, 2018.
[30] G. Hao, J. Mullins, and K. Cronin, "Simplified modelling and development of a bi-directionally adjustable constant-force compliant gripper," Proceedings of the Institution of Mechanical Engineers Part C, Journal of Mechanical Engineering Science, vol. 231, no.11, pp.2110-2123, 2017.
[31] P. Lambert and J. L. Herder, "An Adjustable Constant Force Mechanism Using Pin Joints and Spring," Mechanisms and Machine Science, vol. 43, pp. 453-461, 2017.
[32] Y. Liu, D.-P. Yu , and J. Yao, "Design of an adjustable cam based constant force mechanism, "Mechanism and Machine Theory, vol. 103, pp. 85-97, 2016.
[33] J.-Y. Wang and C.-C. Lan, " Design of adjustable constant-force forceps for robot-assisted surgical manipulation," in 2011 IEEE International Conference on Robotics and Automation (ICRA), 2011: IEEE, pp. 386–391.
[34] W. D. v. Dorsser, R. Barents, B. M. Wisse, and J. L. Herder, "Gravity-balanced arm support with energy-free adjustment," ASME Journal of Medical Devices, vol. 1, pp. 151–158, 2007.
[35] G. Keung and C. Chen, "Novel Design of An Adjustable Constant Force Mechanism based on Cam and Spring, "Advances in Mechanism and Machine Science, vol. 73, pp. 1481-1490, 2019.
[36] Continuously variable transmission. Available: https://en.wikipedia.org/wiki/Continuously_variable_transmission (accessed on 28 June 2022).
[37] 無段自動變速器. Available: https://zh.wikipedia.org/zh-cn/%E7%84%A1%E6%AE%B5%E8%87%AA%E5%8B%95%E8%AE%8A%E9%80%9F%E5%99%A8 (accessed on 28 June 2022).
[38] 第九章摩擦輪. Available: https://prospect-bearing.com.tw/mechanical%20-principle/pdf/%e7%ac%ac%e4%b9%9d%e7%ab%a0-%e6%91%a9%e6%93%a6%ef%a7%97-%e6%a9%9f%e4%bb%b6%e5%8e%9f%e7%90%86.pdf (accessed on 28 June 2022).
[39] E. Saerens, R. Furnémont, J. Legrand, K. Langlois, P. L. García, S. Crispel, M. Rossini, T. Verstraten, B. Vanderborght, and D. Lefeber, " Constant Torque Mechanisms: A Survey." ASME Applied Mechanics Reviews, vol. 74, no.1, 010802, 2022.
[40] Ming-Tai-Industrial-Co. Constant torque spring. Available: http://www.powerspring.com.tw/allproduct.php?id=2 (accessed on 28 June 2022).
[41] R. C. Hibbler, Mechanics of Materials. Pearson, 2013.
[42] Ming-Tai-Industrial-Co. Power spring & Prestressed power spring. Available: http://www.powerspring.com.tw/allproduct.php?id=4 (accessed on 28 June 2022).
[43] J. M. Muñoz-Guijosa, D. Fernández Caballero, V. Rodríguez de la Cruz, J. L. Muñoz Sanz, J. Echávarri, "Generalized spiral torsion spring model," Mechanism and Machine Theory, vol. 51, pp. 110-130, 2012.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86409-
dc.description.abstract可調定力機構(Adjustable Constant Force Mechanism, ACFM)可以在有效輸入位移範圍內,產生幾乎不變的恆定輸出力,並且可調整恆定輸出力的大小。本研究將可調定力機構應用於氣動夾爪上,使夾爪能夠調整夾力夾取各類型物件,並且所產生的恆定夾持力不受物體大小的影響,讓夾持力調整更簡單。首先,本研究提出由無段變速器和動力發條組合而成的可調定力機構,此組合具有恆定力範圍長及可調力範圍廣的優點。另外,本研究為動力發條設計預負載機構,讓發條可以預先轉動到恆定扭矩區間。接著根據設計需求設計傳動機構,然後和可調定力機構整合成夾持力調整機構,緊接著建立夾持力調整機構的理論模型,最後製造原型進行測試實驗。zh_TW
dc.description.abstractAn adjustable constant force mechanism (ACFM) is a mechanism that can generate a near-constant output force over the effective input displacement range as well as adjust the value of the constant output force. In this study, an adjustable constant force mechanism is developed to apply to a pneumatic gripper, so that the gripper can adjust the gripping force to grip various types of objects. Moreover, the adjustable constant gripping force is independent of object size, which makes the adjustment of the gripping force easier. For the development, we first propose an adjustable constant force mechanism which combines a continuously variable transmission and a power spring. This combination has a long constant force region and a wide adjustable force range. We also design a preload mechanism for the power spring, making the power spring can be preloaded to the constant torque region. Then, the transmission mechanism is added according to the design requirements and then integrated with the adjustable constant force mechanism to form an adjustable gripping force mechanism. Next, establish the theoretical model of the adjustable gripping force mechanism. Finally, a prototype is built up to validate the function of the proposed mechanism.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:54:08Z (GMT). No. of bitstreams: 1
U0001-2208202213231900.pdf: 4458903 bytes, checksum: a39e27cd3fc174f0dca3307d673224c8 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents論文口試委員審定書 ii
誌謝 iii
摘要 iv
Abstract v
目錄 vi
圖目錄 x
表目錄 xiii
第一章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 2
1.2.1 形狀適應夾爪 2
1.2.2 調整夾爪夾持力 6
1.3 研究動機與目的 8
1.4 本文架構 9
第二章 力調整機構之類型與原理 10
2.1 前言 10
2.2 力調整機構介紹 10
2.2.1 串聯彈性致動器 10
2.2.2 可變剛性致動器 12
2.2.3 可調定力機構 13
2.2.4 小結 14
2.3 可調定力機構原理和比較 15
第三章 機構設計 17
3.1 前言 17
3.2 可變傳動比機構 18
3.3 定扭力機構 23
3.3.1 定扭力發條 24
3.3.2 動力發條 27
3.3.3 定扭力發條和動力發條比較 29
3.3.4 預負載機構 30
3.4 夾持動作的傳動-傳動機構 32
3.5 機構示意圖與工作原理 34
3.6 夾持力與傳動比分析 37
3.6.1 夾持力分析 37
3.6.2 滑塊傳動比 41
3.6.3 最大發條旋轉角度 43
3.7 機構構造說明 44
第四章 測試與驗證 48
4.1 前言 48
4.2 定扭力機構扭矩實驗 48
4.2.1 實驗平台 48
4.2.2 實驗步驟 50
4.2.3 實驗結果 51
4.3 夾爪夾持力實驗 52
4.3.1 實驗平台 52
4.3.2 實驗步驟 54
4.3.3 實驗結果 54
4.3.4 夾持力調整機構問題 57
第五章 結論與未來展望 59
5.1 結論 59
5.2 未來展望 60
參考文獻 61
附錄A 工程圖 67
附錄B 可調定力機構實驗 69
B.1. 實驗平台 69
B.2. 實驗步驟 71
B.3. 理論輸出力計算 71
B.4. 實驗結果 72
-
dc.language.isozh_TW-
dc.subject可調定力機構zh_TW
dc.subject夾持力控制zh_TW
dc.subject可調定力機構zh_TW
dc.subject機械夾爪zh_TW
dc.subject機械夾爪zh_TW
dc.subject夾持力控制zh_TW
dc.subject無段變速器zh_TW
dc.subject無段變速器zh_TW
dc.subjectGripping force controlen
dc.subjectAdjustable constant force mechanismen
dc.subjectContinuously variable transmissionen
dc.subjectRobotic gripperen
dc.subjectRobotic gripperen
dc.subjectGripping force controlen
dc.subjectContinuously variable transmissionen
dc.subjectAdjustable constant force mechanismen
dc.title一種用於平行氣動夾爪可調定夾持力機構之設計zh_TW
dc.titleDesign of an Adjustable Constant Grasping Force Device for Parallel Pneumatic Grippersen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林正平;徐冠倫zh_TW
dc.contributor.oralexamcommitteeChang-Pin Lin;Kuan-Lun Hsuen
dc.subject.keyword可調定力機構,無段變速器,夾持力控制,機械夾爪,zh_TW
dc.subject.keywordAdjustable constant force mechanism,Continuously variable transmission,Gripping force control,Robotic gripper,en
dc.relation.page75-
dc.identifier.doi10.6342/NTU202202642-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2022-08-22-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-lift2024-08-22-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf4.35 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved