Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資料科學學位學程
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86402
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor張智星(Jyh-Shing Jang)
dc.contributor.authorChia-Ying Tsaoen
dc.contributor.author曹佳穎zh_TW
dc.date.accessioned2023-03-19T23:53:43Z-
dc.date.copyright2022-08-31
dc.date.issued2022
dc.date.submitted2022-08-22
dc.identifier.citation[1] S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme, “Factorizing personalized markov chains for next-basket recommendation,” in Proceedings of the 19th International Conference on World Wide Web, 2010, pp. 811–820. [2] B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk, “Session-based recommendations with recurrent neural networks,” in Proceedings of the 4th International Conference on Learning Representations, 2016. [3] S. Wu, Y. Tang, Y. Zhu, L. Wang, X. Xie, and T. Tan, “Session-based recommendation with graph neural networks,” in Proceedings of the 33rd AAAI Conference on Artificial Intelligence, 2019, pp. 346–353. [4] B. Loni, R. Pagano, M. Larson, and A. Hanjalic, “Bayesian personalized ranking with multi-channel user feedback,” in Proceedings of the 10th ACM Conference on Recommender Systems, 2016, pp. 361–364. [5] C. Gao, X. He, D. Gan, X. Chen, F. Feng, Y. Li, T.-S. Chua, L. Yao, Y. Song, and D. Jin, “Learning to recommend with multiple cascading behaviors,” IEEE Transactions on Kowledge and Data Engineering, vol. 33, no. 6, pp. 2588–2601, 2021. [6] B. Jin, C. Gao, X. He, D. Jin, and Y. Li, “Multi-behavior recommendation with graph convolutional networks,” in Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2020, pp. 659–668. 46 [7] W. Meng, D. Yang, and Y. Xiao, “Incorporating user micro-behaviors and item knowledge into multi-task learning for session-based recommendation,” in Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2020, pp. 1091–1100. [8] S. Wu, W. Ren, C. Yu, G. Chen, D. Zhang, and J. Zhu, “Personal recommendation using deep recurrent neural networks in netease,” in Proceedings of the 32nd IEEE International Conference on Data Engineering, 2016, pp. 1218–1229. [9] X. Chen, S. Li, H. Li, S. Jiang, Y. Qi, and L. Song, “Generative adversarial user model for reinforcement learning based recommendation system,” in Proceedings of the 36th International Conference on Machine Learning, 2019, pp. 1052–1061. [10] G. Zhou, N. Mou, Y. Fan, Q. Pi, W. Bian, C. Zhou, X. Zhu, and K. Gai, “Deep interest evolution network for click-through rate prediction,” in Proceedings of the 33rd AAAI conference on artificial intelligence, 2019, pp. 5941–5948. [11] F. Wang, H. Zhu, G. Srivastava, S. Li, M. R. Khosravi, and L. Qi, “Robust collaborative filtering recommendation with user-item-trust records,” IEEE Transactions on Computational Social Systems, 2021. [12] G. Linden, B. Smith, and J. York, “Amazon.com recommendations: Item-to-item collaborative filtering,” IEEE Internet Computing, vol. 7, no. 1, pp. 76–80, 2003. [13] X. Wu, Q. Liu, E. Chen, L. He, J. Lv, C. Cao, and G. Hu, “Personalized next-song recommendation in online karaokes,” in Proceedings of the 7th ACM Conference on Recommender Systems, 2013, pp. 137–140. [14] J. Li, P. Ren, Z. Chen, Z. Ren, T. Lian, and J. Ma, “Neural attentive session-based recommendation,” in Proceedings of the 26th ACM on Conference on Information and Knowledge Management, 2017, pp. 1419–1428. [15] S. P. Chatzis, P. Christodoulou, and A. S. Andreou, “Recurrent latent variable networks for session-based recommendation,” in Proceedings of the 2nd Workshop on Deep Learning for Recommender Systems, 2017, pp. 38–45. [16] Q. Liu, Y. Zeng, R. Mokhosi, and H. Zhang, “Stamp: Short-term attention/memory priority model for session-based recommendation,” in Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018, pp. 1831–1839. [17] C. Xu, P. Zhao, Y. Liu, V. S. Sheng, J. Xu, F. Zhuang, J. Fang, and X. Zhou, “Graph contextualized self-attention network for session-based recommendation,” in Proceedings of the 28th International Joint Conference on Artificial Intelligence, vol. 19, 2019, pp. 3940–3946. [18] F. Yu, Y. Zhu, Q. Liu, S. Wu, L. Wang, and T. Tan, “Tagnn: Target attentive graph neural networks for session-based recommendation,” in Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2020, pp. 1921–1924. [19] Z. Wang, W. Wei, G. Cong, X.-L. Li, X.-L. Mao, and M. Qiu, “Global context enhanced graph neural networks for session-based recommendation,” in Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2020, pp. 169–178. [20] Y. Pang, L. Wu, Q. Shen, Y. Zhang, Z. Wei, F. Xu, E. Chang, B. Long, and J. Pei, “Heterogeneous global graph neural networks for personalized session-based recommendation,” in Proceedings of the 15th ACM International Conference on Web Search and Data Mining, 2022, pp. 775–783. [21] C. Chen, M. Zhang, Y. Zhang, W. Ma, Y. Liu, and S. Ma, “Efficient heterogeneous collaborative filtering without negative sampling for recommendation,” in Proceedings of the 34th AAAI Conference on Artificial Intelligence, 2020, pp. 19–26. [22] L. Tang, B. Long, B.-C. Chen, and D. Agarwal, “An empirical study on recommendation with multiple types of feedback,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, pp. 283–292. [23] W. Zhang, J. Mao, Y. Cao, and C. Xu, “Multiplex graph neural networks for multibehavior recommendation,” in Proceedings of the 29th ACM International Conference on Information & Knowledge Management, 2020, pp. 2313–2316. [24] C. Chen, W. Ma, M. Zhang, Z. Wang, X. He, C. Wang, Y. Liu, and S. Ma, “Graph heterogeneous multi-relational recommendation,” in Proceedings of the 35th AAAI Conference on Artificial Intelligence, no. 5, 2021, pp. 3958–3966. [25] J. Zhang, C. Gao, D. Jin, and Y. Li, “Group-buying recommendation for social ecommerce,” in Proceedings of the 37th IEEE International Conference on Data Engineering, 2021, pp. 1536–1547. [26] W. Wang, W. Zhang, S. Liu, Q. Liu, B. Zhang, L. Lin, and H. Zha, “Beyond clicks: Modeling multi-relational item graph for session-based target behavior prediction,” in Proceedings of the 29th International Conference on World Wide Web, 2020, pp. 3056–3062. [27] M. Quadrana, A. Karatzoglou, B. Hidasi, and P. Cremonesi, “Personalizing sessionbased recommendations with hierarchical recurrent neural networks,” in Proceedings of the 11th ACM Conference on Recommender Systems, 2017, pp. 130–137. [28] L. Guo, H. Yin, Q. Wang, T. Chen, A. Zhou, and N. Quoc Viet Hung, “Streaming session-based recommendation,” in Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019, pp. 1569–1577. [29] P. Ren, Z. Chen, J. Li, Z. Ren, J. Ma, and M. De Rijke, “Repeatnet: A repeat aware neural recommendation machine for session-based recommendation,” in Proceedings of the 33rd AAAI Conference on Artificial Intelligence, 2019, pp. 4806–4813. [30] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017. [31] W.-C. Kang and J. McAuley, “Self-attentive sequential recommendation,” in Proceedings of the 20th IEEE International Conference on Data Mining (ICDM), 2018, pp. 197–206. [32] M. Wang, P. Ren, L. Mei, Z. Chen, J. Ma, and M. de Rijke, “A collaborative session-based recommendation approach with parallel memory modules,” in Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2019, pp. 345–354. [33] R. Qiu, J. Li, Z. Huang, and H. Yin, “Rethinking the item order in session-based recommendation with graph neural networks,” in Proceedings of the 28th ACM international conference on information and knowledge management, 2019, pp. 579–588. [34] L. Xia, C. Huang, Y. Xu, P. Dai, X. Zhang, H. Yang, J. Pei, and L. Bo, “Knowledge enhanced hierarchical graph transformer network for multi-behavior recommendation,” in Proceedings of the 35th AAAI Conference on Artificial Intelligence, 2021, pp. 4486–4493. [35] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, “Bpr: Bayesian personalized ranking from implicit feedback,” in Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence, 2009, pp. 452–461. [36] J. Ding, G. Yu, X. He, Y. Quan, Y. Li, T.-S. Chua, D. Jin, and J. Yu, “Improving implicit recommender systems with view data.” in Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI), 2018, pp. 3343–3349. [37] Q. Shen, L. Wu, Y. Pang, Y. Zhang, Z. Wei, F. Xu, and B. Long, “Multi-behavior graph contextual aware network for session-based recommendation,” arXiv preprint arXiv:2109.11903, 2021. [38] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The graph neural network model,” IEEE Transactions on Neural Networks, vol. 20, no. 1, pp.61–80, 2009. [39] K. Cho, B. van Merriënboer, D. Bahdanau, and Y. Bengio, “On the properties of neural machine translation: Encoder–decoder approaches,” in Proceedings of SSST-8, 8th Workshop on Syntax, Semantics and Structure in Statistical Translation, 2014, pp. 103–111. [40] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel, and Y. Bengio, “Show, attend and tell: Neural image caption generation with visual attention,” in Proceedings of the 32nd International Conference on Machine Learning, 2015, pp. 2048–2057.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86402-
dc.description.abstract本研究提出了APANet 模型,一個使用動作模式感知網路的多行為推薦系統,利用多任務學習演算法將物品序列和動作序列的資訊同時加入推薦系統,以預測用戶的下一個互動物品和其對應動作。在過去 基於會話的多行為推薦算法中存在兩個主要的限制: 首先,現有方法將物品序列和動作序列分開考慮,因此無法有效且準確的描述動作序列和單一物品的依賴關係。其次,大多數現有的模型最終預測僅限於下一個物品,而忽略了預測物品的對應動作。為了克服這兩個限制,本研究設計了一個基於物品之動作模式序列,並使用條件神經網路學習給定物品種類之下的用戶行為意圖。因此,所提出的模型能夠對於一匿名的序列短期資料,預測用戶的下一個互動(包括物品和動作)。在三個公開資料集上的實驗結果證明了所提出的APANet 模型作為基於會話之多行為推薦模型的有效性。zh_TW
dc.description.abstractThis study proposes APANet, a novel session-based recommendation algorithm with Action Pattern-Aware Networks (APANet) to incorporate both historical item sequences and reformulated item-wise action patterns into the modeling process. Previous multi-behavior-based approaches for session-based recommendation have two major drawbacks: First, the final prediction for most existing multi-behavior-based approaches is limited to the next item, ignoring which action the predicted item is associated with. Second, existing approaches consider item sequences and action sequences individually and thus do not explicitly and accurately model the action dependencies for a single item. To overcome the two limitations, this study designs an itemwise action pattern, and model the action-level intent representation given the next item’s context through a conditional network. Therefore, the proposed model enables us to predict the next-best interaction (i.e., next-best item and its associated action) given a short-term anonymous multi-behavior sequence. Comprehensive experiments on three public benchmark datasets demonstrate the effectiveness of the proposed APANet for multi-behavior session-based recommendation.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:53:43Z (GMT). No. of bitstreams: 1
U0001-2008202208533200.pdf: 1809878 bytes, checksum: 9f2737fef3dec7b7943a66b5ac499ba9 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontentsContents 誌謝ii 摘要iii Abstract iv 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Related Work 6 2.1 Session-based Recommendation . . . . . . . . . . . . . . . . . . . . . . 6 2.1.1 Markov chain-based session-based recommendation . . . . . . . 6 2.1.2 RNN-based session-based recommendation . . . . . . . . . . . . 7 2.1.3 GNN-based session-based recommendation . . . . . . . . . . . . 8 2.2 Multi-behavior Recommendation . . . . . . . . . . . . . . . . . . . . . . 9 2.2.1 Negative sampling-based multi-behavior recommendation . . . . 9 2.2.2 Multi-task manner-based multi-behavior recommendation . . . . 9 2.2.3 GCN-based multi-behavior recommendation . . . . . . . . . . . 10 2.3 Multi-behavior-based Approaches for Session-based Recommendation . . 11 3 Methodology 13 3.1 Model Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2 Multi-behavior Session Encoding . . . . . . . . . . . . . . . . . . . . . . 14 3.2.1 Item Embedding Learning . . . . . . . . . . . . . . . . . . . . . 15 3.2.2 Action-related Embedding Learning . . . . . . . . . . . . . . . . 17 3.3 Action-aware Session Representation Learning for Next-item Prediction . 19 3.4 Conditional Multiplex Behavior Session Modeling for Next-action Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.5 Prediction Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.5.1 Next-item Predictor . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.5.2 Next-action Predictor . . . . . . . . . . . . . . . . . . . . . . . . 22 3.6 Multi-task Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4 Dataset 24 4.1 Benchmark Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.1.1 KKBOX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.1.2 RetailRocket . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.1.3 Yoochoose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.2 Data Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.2.1 Behavior patterns within session . . . . . . . . . . . . . . . . . . 25 4.2.2 Proportion of action types . . . . . . . . . . . . . . . . . . . . . 26 4.3 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5 Experiment Results 28 5.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.1.1 Parameters Settings . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.1.2 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.1.3 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.2 Experimental results and Analysis . . . . . . . . . . . . . . . . . . . . . 32 5.2.1 Exp 1: Comparison with baselines . . . . . . . . . . . . . . . . . 32 5.2.2 Exp 2: Ablation Study . . . . . . . . . . . . . . . . . . . . . . . 36 5.2.3 Exp 3: Parameter Sensitivity Analyses . . . . . . . . . . . . . . . 37 6 Conclusion and Future Work 44 6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Bibliography 46
dc.language.isoen
dc.subject多行為模式zh_TW
dc.subject圖神經網路zh_TW
dc.subject多任務學習zh_TW
dc.subject序列推薦zh_TW
dc.subject多行為模式zh_TW
dc.subject圖神經網路zh_TW
dc.subject序列推薦zh_TW
dc.subject多任務學習zh_TW
dc.subjectmulti-behavioren
dc.subjectsession-based recommendationen
dc.subjectmulti-behavioren
dc.subjectgraph neural networken
dc.subjectmulti-task learningen
dc.subjectsession-based recommendationen
dc.subjectgraph neural networken
dc.subjectmulti-task learningen
dc.title使用動作模式感知網路的多行為推薦系統zh_TW
dc.titleMulti-behavior Recommendation with Action Pattern-aware Networksen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.coadvisor王釧茹(Chuan-Ju Wang)
dc.contributor.oralexamcommittee蔡銘峰(Ming-Feng Tsai),陳永耀(Yung-Yaw Chen)
dc.subject.keyword序列推薦,多行為模式,圖神經網路,多任務學習,zh_TW
dc.subject.keywordsession-based recommendation,multi-behavior,graph neural network,multi-task learning,en
dc.relation.page51
dc.identifier.doi10.6342/NTU202202608
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-08-22
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資料科學學位學程zh_TW
dc.date.embargo-lift2024-12-31-
Appears in Collections:資料科學學位學程

Files in This Item:
File SizeFormat 
U0001-2008202208533200.pdf1.77 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved