Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86399
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林逸彬(Yi-Pin Lin)
dc.contributor.authorZih-Syuan Wangen
dc.contributor.author王子軒zh_TW
dc.date.accessioned2023-03-19T23:53:33Z-
dc.date.copyright2022-09-02
dc.date.issued2022
dc.date.submitted2022-08-22
dc.identifier.citationAdachi, A., Nojima, S., Hagiwaras, Y., Hamamoto, M. and Kobayashi, T. (1991) Studies on the oxidative decomposition of cyanide ion by potassium permanganate. Environmental Technology, 12, 93-96. Adams, M. D. (2013) Impact of recycling cyanide and its reaction products on upstream unit operations. Minerals Engineering, 53, 241-255. Anipsitakis, G. P. and Dionysiou, D. D. (2003) Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt. Environmental Science & Technology, 37, 4790-4797. Anipsitakis, G. P. and Dionysiou, D. D. (2004) Radical generation by the interaction of transition metals with common oxidants. Environmental Science & Technology, 38, 3705-3712. APHA, AWWA and WEF (2017) Standard methods for the examination of water and wastewater, 23rd. Behnami, A., Croué, J.-P., Aghayani, E. and Pourakbar, M. (2021) A catalytic ozonation process using MgO/persulfate for degradation of cyanide in industrial wastewater: mechanistic interpretation, kinetics and by-products. RSC Advances, 11, 36965-36977. Bernofsky, C., Bandara, B. M. R. and Hinojosa, O. (1990) Electron spin resonance studies of the reaction of hypochlorite with 5,5-dimethyl-1-pyrroline-N-oxide. Free Radical Biology and Medicine, 8, 231-239. Botz, M. M., Mudder, T. I. and Akcil, A. U. (2016) Chapter 35 - Cyanide Treatment: Physical, Chemical, and Biological Processes. In Gold Ore Processing (Second Edition), ed. M. D. Adams, 619-645. Elsevier. Branch, S. W. (1993) Cyanide detoxification: INCO sulfur dioxide/air process. Budaev, S. L., Batoeva, A. A. and Tsybikova, B. A. (2015) Degradation of thiocyanate in aqueous solution by persulfate activated ferric ion. Minerals Engineering, 81, 88-95. Buxton, G. V., Greenstock, C. L., Helman, W. P. and Ross, A. B. (1988) Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals in aqueous solution. J. Phys. Chem. Ref. Data, 17, 886. Castilla-Acevedo, S. F., Betancourt-Buitrago, L. A., Dionysiou, D. D. and Machuca-Martínez, F. (2020) Ultraviolet light-mediated activation of persulfate for the degradation of cobalt cyanocomplexes. Journal of Hazardous Materials, 392, 122389. Chegini, Z. G., Hassani, H., Torabian, A. and Borghei, S. M. (2020) Enhancement of PMS activation in an UV/ozone process for cyanide degradation: a comprehensive study. Pigment & Resin Technology, 6. Chen, F., Zhao, X., Liu, H. and Qu, J. (2014) Reaction of Cu (CN)32− with H2O2 in water under alkaline conditions: cyanide oxidation, Cu+/Cu2+ catalysis and H2O2 decomposition. Applied Catalysis B: Environmental, 158, 85-90. Chen, J., Zhou, X., Sun, P., Zhang, Y. and Huang, C.-H. (2019) Complexation enhances Cu(II)-activated peroxydisulfate: A novel activation mechanism and Cu(III) contribution. Environmental Science & Technology, 53, 11774-11782. Cheng, C.-F., Lin, H. H.-H., Tung, H.-H. and Lin, A. Y.-C. (2022) Enhanced solar photodegradation of a plasmid-encoded extracellular antibiotic resistance gene in the presence of free chlorine. Journal of Environmental Chemical Engineering, 10, 106984. Cui, M., Jang, M., Lee, S. and Khim, J. (2012) Sonochemical oxidation of cyanide using potassium peroxydisulfate as an oxidizing agent. Japanese Journal of Applied Physics, 51, 07GD13. Dash, R. R., Balomajumder, C. and Kumar, A. (2009) Removal of cyanide from water and wastewater using granular activated carbon. Chemical Engineering Journal, 146, 408-413. Devi, P., Das, U. and Dalai, A. K. (2016) In-situ chemical oxidation: Principle and applications of peroxide and persulfate treatments in wastewater systems. Science of The Total Environment, 571, 643-657. Devuyst, E., Conard, B., Vergunst, R. and Tandi, B. (1989) A cyanide removal process using sulfur dioxide and air. JOM, 41, 43-45. Ding, Y., Fu, L., Peng, X., Lei, M., Wang, C. and Jiang, J. (2022) Copper catalysts for radical and nonradical persulfate based advanced oxidation processes: Certainties and uncertainties. Chemical Engineering Journal, 427, 131776. EPA, U. S. (1979) Environmental pollution control alternatives economics of wastewater treatment alternatives for the electroplating industry. Furman, O. S., Teel, A. L. and Watts, R. J. (2010) Mechanism of base activation of persulfate. Environmental Science & Technology, 44, 6423-6428. Gokulakrishnan, S., Mohammed, A. and Prakash, H. (2016) Determination of persulphates using N, N-diethyl-p-phenylenediamine as colorimetric reagent: Oxidative coloration and degradation of the reagent without bactericidal effect in water. Chemical Engineering Journal, 286, 223-231. Guan, Y.-H., Ma, J., Li, X.-C., Fang, J.-Y. and Chen, L.-W. (2011) Influence of pH on the formation of sulfate and hydroxyl radicals in the UV/peroxymonosulfate system. Environmental Science & Technology, 45, 9308-9314. Guerra-Rodríguez, S., Rodríguez, E., Singh, D. N. and Rodríguez-Chueca, J. (2018) Assessment of sulfate radical-based advanced oxidation processes for water and wastewater treatment: a review. Water, 10, 1828. Gurbuz, F., Ciftci, H. and Akcil, A. (2009) Biodegradation of cyanide containing effluents by Scenedesmus obliquus. Journal of Hazardous Materials, 162, 74-79. Industrial Development Bureau, M. O. E. A. (2002) 電鍍業資源化應用技術手冊. Johnson, C. A. (2015) The fate of cyanide in leach wastes at gold mines: An environmental perspective. Applied Geochemistry, 57, 194-205. Kim, T.-K., Kim, T., Jo, A., Park, S., Choi, K. and Zoh, K.-D. (2018) Degradation mechanism of cyanide in water using a UV-LED/H2O2/Cu2+ system. Chemosphere, 208, 441-449. Kim, Y. J., Qureshi, T. and Min, K. S. (2003) Application of advanced oxidation processes for the treatment of cyanide containing effluent. Environmental technology, 24, 1269-1276. Lau, T. K., Chu, W. and Graham, N. J. D. (2007) The aqueous degradation of butylated hydroxyanisole by UV/S2O82-: Study of reaction mechanisms via dimerization and mineralization. Environmental Science & Technology, 41, 613-619. Lutze, H. V., Kerlin, N. and Schmidt, T. C. (2015) Sulfate radical-based water treatment in presence of chloride: formation of chlorate, inter-conversion of sulfate radicals into hydroxyl radicals and influence of bicarbonate. Water research, 72, 349-360. Matzek, L. W. and Carter, K. E. (2016) Activated persulfate for organic chemical degradation: A review. Chemosphere, 151, 178-188. Moussavi, G., Pourakbar, M., Aghayani, E. and Mahdavianpour, M. (2018) Investigating the aerated VUV/PS process simultaneously generating hydroxyl and sulfate radicals for the oxidation of cyanide in aqueous solution and industrial wastewater. Chemical Engineering Journal, 350, 673-680. Moussavi, G., Pourakbar, M., Aghayani, E., Mahdavianpour, M. and Shekoohyian, S. (2016) Comparing the efficacy of VUV and UVC/S2O82- advanced oxidation processes for degradation and mineralization of cyanide in wastewater. Chemical Engineering Journal, 294, 273-280. National Institute of Environmental Analysis, NIEA. (2011) 環境檢驗所廢水處理流程說明. Nava, F., Uribe, A. and Pérez, R. (2003) Use of ozone in the treatment of cyanide containing effluents. European Journal of Mineral Processing & Environmental Protection, 3. Ordiales, M., Fernandez, D., Verdeja, L. F. and Sancho, J. (2015) Potassium permanganate as an alternative for gold mining wastewater treatment. Jom, 67, 1975-1985. Pérez-Cid, B., Calvar, S., Moldes, A. B. and Manuel Cruz, J. (2020) Effective removal of cyanide and heavy metals from an industrial electroplating stream using calcium alginate hydrogels. Molecules, 25, 5183. Parga, J. R., Shukla, S. S. and Carrillo-Pedroza, F. R. (2003) Destruction of cyanide waste solutions using chlorine dioxide, ozone and titania sol. Waste Management, 23, 183-191. Pi, Y., Schumacher, J. and Jekel, M. (2005) The use of para-chlorobenzoic acid (pCBA) as an ozone/hydroxyl radical probe compound. Ozone: Science and Engineering, 27, 431-436. Popova, T. and Aksenova, N. (2003) Complexes of copper in unstable oxidation states. Russian Journal of Coordination Chemistry, 29, 743-765. Pueyo, N., Miguel, N., Ovelleiro, J. L. and Ormad, M. P. (2016) Limitations of the removal of cyanide from coking wastewater by ozonation and by the hydrogen peroxide-ozone process. Water Science and Technology, 74, 482-490. Sarla, M., Pandit, M., Tyagi, D. and Kapoor, J. (2004) Oxidation of cyanide in aqueous solution by chemical and photochemical process. Journal of Hazardous Materials, 116, 49-56. Satizabal-Gómez, V., Collazos-Botero, M. A., Serna-Galvis, E. A., Torres-Palma, R. A., Bravo-Suárez, J. J., Machuca-Martínez, F. and Castilla-Acevedo, S. F. (2021) Effect of the presence of inorganic ions and operational parameters on free cyanide degradation by ultraviolet C activation of persulfate in synthetic mining wastewater. Minerals Engineering, 170, 107031. Teixeira, L. A. C., Andia, J. P. M., Yokoyama, L., da Fonseca Araújo, F. V. and Sarmiento, C. M. (2013) Oxidation of cyanide in effluents by Caro’s Acid. Minerals Engineering, 45, 81-87. Walger, E., Marlin, N., Mortha, G., Molton, F. and Duboc, C. (2021) Hydroxyl radical generation by the H2O2/Cu2+/phenanthroline system under both neutral and alkaline conditions: an EPR/Spin-Trapping Investigation. Applied Sciences, 11, 687. Wang, J. and Wang, S. (2018) Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chemical Engineering Journal, 334, 1502-1517. Wei, Y., Chen, S., Ren, T., Chen, L., Liu, Y., Gao, J. and Li, Y. (2022) Effectiveness and mechanism of cyanide remediation from contaminated soils using thermally activated persulfate. Chemosphere, 292, 133463. Yang, W., Liu, G., Chen, Y., Miao, D., Wei, Q., Li, H., Ma, L., Zhou, K., Liu, L. and Yu, Z. (2020) Persulfate enhanced electrochemical oxidation of highly toxic cyanide-containing organic wastewater using boron-doped diamond anode. Chemosphere, 252, 126499. Zhang, J., Liu, L., Liang, Y., Zhou, J., Xu, Y., Ruan, X., Lu, Y., Xu, Z. and Qian, G. (2015) Enhanced precipitation of cyanide from electroplating wastewater via self-assembly of bimetal cyanide complex. Separation and Purification Technology, 150, 179-185. Zheng, X., Niu, X., Zhang, D., Lv, M., Ye, X., Ma, J., Lin, Z. and Fu, M. (2022) Metal-based catalysts for persulfate and peroxymonosulfate activation in heterogeneous ways: A review. Chemical Engineering Journal, 429, 132323. 李依釗 (2016) 廢水處理廠代操作策略暨功能評估.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86399-
dc.description.abstract由於添加氰化物有助於增加電鍍金屬表面的光澤與美觀,因此被廣泛應用於電鍍製程,若未經妥善處理直接排放至環境,將會對生態及人類健康造成極大的危害。鹼性氯化法是一般常見的處理方法,但其可能會產生有毒的中間產物、過量消耗試劑、對金屬錯合氰化物去除效率低等缺點。本研究利用電鍍廢水中普遍存在的銅離子活化過二硫酸鹽,以降解水中氰化物,並透過調整不同水質參數,包含過二硫酸鹽(peroxydisulfate, PDS)、氰化物、銅離子濃度、陰離子、重金屬,探討其對過二硫酸鹽及氰化物降解效率的影響。此外,藉由副產物分析、自由基捕捉劑以及電子順磁共振實驗,確立相關的反應途徑及反應機制,最後,採集實廠電鍍廢水添加特定濃度的過二硫酸鹽,觀察氰化物降解效率並評估此方法的應用可行性。不同水質參數下的實驗結果顯示,當總氰化物濃度為4 mM、過二硫酸鹽濃度為10 mM、銅離子濃度為1 mM時,具有較好的氰化物降解效率,於反應20分鐘後,氰化物濃度降至0.03 mM (相當於0.83 mg/L CN-);添加多重陰離子的組別對於氰化物降解沒有顯著影響,而添加電鍍廢水常見的其他重金屬對氰化物降解效率的影響發現以下趨勢:Cu2+ > Zn2+ > Fe2+ > Ni2+。在分析副產物的實驗結果,發現於PDS/CN-/Cu2+的系統中,隨著氰化物的降解,氰酸鹽(OCN-)濃度有逐漸上升的趨勢;自由基捕捉劑以及電子順磁共振實驗結果顯示,於此活化系統中,明顯偵測到氫氧自由基與硫酸根自由基的存在,代表銅離子能成功活化PDS產生自由基促進氰化物降解。最後,於處理實際電鍍廢水的部分,添加40 mM PDS可於反應20分鐘內完全降解廢水中的氰化物。zh_TW
dc.description.abstractCyanide is widely used in electroplating process to ensure the smooth metal plating on the finished product surfaces. Alkaline chlorination process is commonly used to remove cyanide from electroplating wastewater. However, several drawbacks exist, including the formation of toxic intermediates, high consumption of chemical reagents, and low removal efficiency of metal-cyanide complexes. In this study, persulfate advanced oxidation process was explored for cyanide removal from electroplating wastewater. Peroxydisulfate (PDS) was activated by copper ion that is commonly present in electroplating wastewater to generate free radicals for cyanide removal. The influences of PDS concentration, cyanide concentration, copper ion concentration, common anions and heavy metals present in electroplating wastewater on cyanide removal and PDS consumption were investigated using batch experiments. The mechanism of cyanide oxidation was studied via the analysis of by-products, radical scavenging experiments, and electron paramagnetic resonance (EPR). Finally, real electroplating wastewater was collected from a local electroplating factory to the applicability of this process. It was found that 99% removal of cyanide (4 mM) was achieved in the presence of 10 mM PDS and 1 mM Cu2+ within 20 min in the PDS activation process. The presence of anions had no significant effects on cyanide removal. The ability of heavy metals on the activation of PDS for cyanide removal showed the following trend: Cu2+ > Zn2+ > Fe2+ > Ni2+. For by-product analysis, cyanate was detected and its concentration gradually increased with cyanide concentration decreased as a function of time. The results of radical scavenging experiment and EPR showed that hydroxyl radical and sulfate radical were responsible for cyanide removal, indicating that copper ions can successfully activate PDS to generate free radicals to promote cyanide removal. For real electroplating wastewater, the addition of 40 mM PDS could completely remove cyanide in 20 min.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:53:33Z (GMT). No. of bitstreams: 1
U0001-1508202223421900.pdf: 1771507 bytes, checksum: 355718a770f8d9a4b3476548483947eb (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents摘要 I Abstract II List of Figures VI List of Tables IX Chapter 1 Introduction 1 1.1 Background 1 1.2 Research objectives 2 Chapter 2 Literature Reviews 3 2.1 Electroplating wastewater 3 2.2 Toxicity of cyanide 4 2.3 Cyanide treatment 6 2.4 Activation of peroxydisulfate 9 Chapter 3 Materials and Methods 13 3.1 Research framework 13 3.2 Chemical and reagents 14 3.3 Experimental procedures 15 3.4 Analytic methods 18 Chapter 4 Results & Discussions 23 4.1 Influences of metal ions, PDS concentration, cyanide concentration, Cu2+ concentration, and anions on PDS consumption and cyanide removal 23 4.2 Cyanide removal at near neutral pH 34 4.3 Radical scavenging and radical probe experiments 36 4.4 Characterization of by-products formed in cyanide oxidation by activated PDS 40 4.5 EPR experiments 44 4.6 Application of PDS oxidation process in the treatment of cyanide-containing electroplating wastewater 46 Chapter 5 Conclusions and Recommendations 52 5.1 Conclusions 52 5.2 Recommendations 53 Reference 54
dc.language.isoen
dc.title利用過硫酸鹽氧化法處理電鍍製程產生之氰化物廢水zh_TW
dc.titleRemoval of cyanide from electroplating wastewater by persulfate oxidation processen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林郁真(Yu-Chen Lin),童心欣(Hsin-Hsin Tung),黃鼎荃(Ding-Quan Huang)
dc.subject.keyword氰化物,高級氧化,銅離子,過二硫酸鹽,氫氧自由基,硫酸根自由基,zh_TW
dc.subject.keywordcyanide,advanced oxidation process,copper ion,peroxydisulfate,hydroxyl radical,sulfate radical,en
dc.relation.page62
dc.identifier.doi10.6342/NTU202202427
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-08-22
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
dc.date.embargo-lift2022-09-02-
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-1508202223421900.pdf1.73 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved