Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工業工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86395
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周雍強(Yon-Chun Chou)
dc.contributor.authorWei-Hsin Liuen
dc.contributor.author劉惟昕zh_TW
dc.date.accessioned2023-03-19T23:53:19Z-
dc.date.copyright2022-08-24
dc.date.issued2022
dc.date.submitted2022-08-19
dc.identifier.citation[1] 張寬渝(2021),「王品、麥當勞、Toyota 都喊「漲」!供應鏈中斷如何打擊各產業?盤點2021年供應鏈 3 大麻煩」,經理人,https://www.managertoday.com.tw/articles/view/64397? [2] 周雍強(2020),發展中小製造企業因應製造鏈解構重組的兩個核心能力─稼動流報價策略與流程順應性監控 [3] 旺宏電子延長廠房及設備的耐用年限https://money.udn.com/money/story/5607/3971268#prettyPhoto [4] Abotaleb, I. S., & El-Adaway, I. H. (2017). Construction bidding markup estimation using a multistage decision theory approach. Journal of Construction Engineering and Management, 143(1), 04016079. [5] Balakrishnan, N., Patterson, J. W., & Sridharan, V. (1999). Robustness of capacity rationing policies. European Journal of Operational Research, 115(2), 328-338. [6] Balakrishnan, N., Sridharan, V., & Patterson, J. W. (1996). Rationing capacity between two product classes. Decision Sciences, 27(2), 185-214. [7] Barut, M., & Sridharan, V. (2004). Design and evaluation of a dynamic capacity apportionment procedure. European Journal of Operational Research, 155(1),112-133. [8] Benjamin, N. B., & Meador, R. C. (1979). Comparison of Friedman and Gates competitive bidding models. Journal of the Construction Division, 105(1), 25-40. [9] Boussofiane, A., Dyson, R. G., & Thanassoulis, E. (1991). Applied data envelopment analysis. European journal of operational research, 52(1), 1-15. [10] Capen, E. C., Clapp, R. V., & Campbell, W. M. (1971). Competitive bidding in high-risk situations. Journal of petroleum technology, 23(06), 641-653. [11] Crowley, L. G. (2000). Friedman and Gates—another look. Journal of Construction Engineering and Management, 126(4), 306-312. [12] Deif, A. M., & ElMaraghy, W. H. (2006). A control approach to explore the dynamics of capacity scalability in reconfigurable manufacturing systems. Journal of Manufacturing Systems, 25(1), 12-24. [13] Du, M., Sassioui, R., Varisteas, G., Brorsson, M., & Cherkaoui, O. (2017, November). Improving real-time bidding using a constrained markov decision process. In International conference on advanced data mining and applications (pp. 711-726). Springer, Cham. [14] Elbeltagi, E. E., Hosny, O. A., Elhakeem, A., Abdelrazek, M. E., & El-Abbasy, M. S. (2012). Fuzzy logic model for selection of vertical formwork systems. Journal of Construction Engineering and Management, 138(7), 832-840. [15] Fare, R., Grosskopf, S., & Kokkelenberg, E. C. (1989). Measuring plant capacity, utilization and technical change: a nonparametric approach. International economic review, 655-666. [16] Friedman, L. (1956). A competitive-bidding strategy. Operations research, 4(1), 104-112. [17] Gates, M. (1967). Bidding strategies and probabilities. Journal of the Construction Division, 93(1), 75-110. [18] Grando*, A., & Turco, F. (2005). Modelling plant capacity and productivity: conceptual framework in a single-machine case. Production Planning & Control, 16(3), 309-322. [19] Gupta, D., & Wang, L. (2007). Capacity management for contract manufacturing. Operations Research, 55(2), 367-377. [20] Hegazy, T., & Moselhi, O. (1994). Analogy-based solution to markup estimation problem. Journal of Computing in Civil Engineering, 8(1), 72-87. [21] Kennedy, J. E. (1998). An analysis of time-series estimates of capacity utilization. Journal of Macroeconomics, 20(1), 169-187. [22] Klein, S., & O’Keefe, M. (1999). The impact of the web on auctions: some empirical evidence and theoretical considerations. International Journal of Electronic Commerce, 3(3), 7-20. [23] Kumru, M. (2011). Determining the capacity and its level of utilization in make-to-order manufacturing: A simple deterministic model for single-machine multiple-product case. Journal of Manufacturing Systems, 30(2), 63-69. [24] Lee, J. K. (1995). Comparative performance of short-run capacity utilization measures. Economics Letters, 48(3-4), 293-300. [25] Lieberman, M. B. (1989). Capacity utilization: Theoretical models and empirical tests. European Journal of Operational Research, 40(2), 155-168. [26] Lüthi, H. J., & Polyméris, A. (1985). Scheduling to minimize maximum workload. Management science, 31(11), 1409-1415. [27] Sahoo, B. K., & Tone, K. (2009). Decomposing capacity utilization in data envelopment analysis: An application to banks in India. European Journal of Operational Research, 195(2), 575-594. [28] Sparks, J. D. (1999). A methodology for estimating the level of aggressiveness in competitive bidding markets (Doctoral dissertation, Virginia Tech). [29] Zhang, W., Yuan, S., & Wang, J. (2014, August). Optimal real-time bidding for display advertising. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 1077-1086).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86395-
dc.description.abstract在競爭激烈的市場環境中,我們希望中小機械加工廠經由詢價案後,能因接獲訂單使得工廠稼動率提升,製造費率下降,並在下期的詢價案獲得更高的得標機會形成一正向循環,因此如何建立模型描述此情況便為研究主題。我們依據探討期數的多寡分成單期與多期,並在多期時將期數區分為前期與後期,不論前後期對於標案皆有保守與積極兩種選擇,因此共有 4種策略組合。當只考慮單期標案的加價,未考慮得標後稼動率提升,製造費率下降對於後期標案的外溢效果時,數據顯示用外界加價分配的順序統計量最小值m_((1))參與投標,能獲得最多的利潤。在多期標案時,我們納入製造費率下降對於後期標案的效果。我們發現若涵括的期數較短時,前期積極以低價搶標建立低成本的優勢,在外界訂單的production quantity較小時不明顯,此時建議如單期一樣用m_((1))當作標案的加價。若將期數拉長,此時在前期採取積極策略搶標,製造費率低對後期標案的效果轉趨明顯,後期標案的加價可上調,積極獲取利潤彌補前期搶標的低利潤。而外界競爭對手數量,僅影響得標機率、製造費率與利潤的數值,不影響各策略的利潤排序。此外起始稼動率u_0對於策略選擇也有所影響,在u_0較小 production quantity數值也小時,建議在前期以低價搶標,後期上調加價彌補前期搶標的低利潤。當production quantity數值較大時,則建議前期改為保守不以低加價搶標的策略。然而隨著u_0變大,在production quantity數值較大時前期須改採積極搶標的策略。最後將稼動率消耗率α加入模型以貼近實際生產狀況,發現納入α時使稼動率上升的速率變慢,導致製造費率下降的速率隨之變慢。當α數值逐漸增加,後期的策略選擇須轉趨保守,不宜如同先前在後期採用積極策略以收獲利潤。zh_TW
dc.description.abstractIn the competitive market environment, we hope that small and medium enterprise machinery processing factories can increase the utilization rate of the factory and reduce the manufacturing rate due to the receipt of the order after the request for quotes(RFQ), and obtain a higher chance of winning the bid in the next RFQ. A positive cycle is formed, so how to model this situation is a research topic. We divide into single-period RFQ and multi-period RFQ according to the number of phases to be discussed, and divide the phase into early-stage and late-stage in multi-period RFQ. Regardless of the early and late stages, there are two options: conservative and active. Therefore, there are 4 strategies in total. Only the markup of the single-period RFQ is considered, and the increase in the utilization rate after the RFQ and that the reduction in the rate of manufacturing overhead has the spillover effect on the later RFQ is not considered, the data shows that the minimum value m_((1)) of the order statistics allocated by the external price markup is used to participate, which can get the most profit in the bidding. In multi-period RFQ, we include the effect of the rate of manufacturing overhead reduction on later RFQ. We found that if the number of periods covered is short, the advantage of low-cost bidding is actively established in the early stage, but it is not obvious when the RFQ production quantity is small. In this case, it is recommended to use m_((1)) as markup like single period RFQ. If the number of phases is lengthened, an active strategy is adopted in the early stage to grab bids, and the effect of low manufacturing overhead rates on later bids will become more obvious, and the price increase in later bids can be raised to actively obtain profits to make up for the low profits of early bid. The number of external competitors only affects the probability of winning the bid, the manufacturing overhead rate and the value of profit, and does not affect the profit ranking of each strategy. In addition, the initial utilization rate u_0 also has an impact on the strategy selection. When u_0 is small, the RFQ production quantity is also small. It is recommended to grab the bid at a low price in the early stage, and increase the markup in the later stage to make up for the low profit of the early bid. When the RFQ production quantity is large, it is recommended to change to a conservative strategy of not bidding at a low price in the early stage. However, as u_0 becomes larger, when the RFQ production quantity is large, the strategy of aggressive bidding must be adopted in the early stage. Finally, the utilization dissipation rate α is added to the model to be close to the actual production situation. It is found that when α is included, the rate of increase of utilization rate becomes slower, resulting in slower rate of decline of manufacturing overhead rate. When the α value gradually increases, the strategy selection in the later stage must be conservative, and it is not appropriate to adopt an active strategy in the later stage to reap profits.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:53:19Z (GMT). No. of bitstreams: 1
U0001-1708202223483300.pdf: 4241930 bytes, checksum: aacc35605218945076b0e8b29545f500 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontentsContents 誌謝 i 中文摘要 ii 英文摘要 iii Contents v List of figures vii List of table viii Chapter 1 Introduction 1 1.1研究背景 1 1.2問題描述 2 1.3研究目標 5 1.4 研究限制 5 Chapter 2 Literature review 7 2.1 拍賣定價模式 7 2.2 工廠稼動率模型 8 2.3 加價模型 12 2.4 得標機率 13 Chapter 3 Methodology 16 3.1 加價、得標機率與期望利潤之函數關係 16 3.2 加價與稼動率之函數關係 21 Chapter 4 Bidding strategies with different parameters 28 4.1 Bidding strategies with different period T 28 4.2 Bidding strategies with different competitors n 32 4.3 Bidding strategies with different initial utilization u_0 42 4.4 Bidding strategies with utilization dissipation rate α 45 Chapter 5 Conclusion 48 Reference 49  
dc.language.isoen
dc.subject得標機率zh_TW
dc.subject最低價拍賣得標模式zh_TW
dc.subject投標策略zh_TW
dc.subject機器稼動率zh_TW
dc.subject製造費用zh_TW
dc.subject最低價拍賣得標模式zh_TW
dc.subject投標策略zh_TW
dc.subject得標機率zh_TW
dc.subject機器稼動率zh_TW
dc.subject製造費用zh_TW
dc.subjectWinning probabilityen
dc.subjectutilization rateen
dc.subjectthe lowest responsible bid auctionsen
dc.subjectbidding strategyen
dc.subjectWinning probabilityen
dc.subjectutilization rateen
dc.subjectmanufacturing overhead (MOH) costen
dc.subjectbidding strategyen
dc.subjectthe lowest responsible bid auctionsen
dc.subjectmanufacturing overhead (MOH) costen
dc.title以機器稼動率為基礎的B2B報價策略zh_TW
dc.titleAn analysis of B2B bid strategies based on machine utilizationen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee紀佳芬(Chia-Fen Chi),歐陽超(Chao Ou-Yang)
dc.subject.keyword最低價拍賣得標模式,投標策略,得標機率,機器稼動率,製造費用,zh_TW
dc.subject.keywordthe lowest responsible bid auctions,bidding strategy,Winning probability,utilization rate,manufacturing overhead (MOH) cost,en
dc.relation.page51
dc.identifier.doi10.6342/NTU202202528
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-08-22
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工業工程學研究所zh_TW
dc.date.embargo-lift2022-08-24-
顯示於系所單位:工業工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-1708202223483300.pdf4.14 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved