請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86387完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 許文馨(Audrey Hsu),潘雪(Shweta Pandey) | |
| dc.contributor.author | Neeraj | en |
| dc.contributor.author | 潘 聶 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:52:52Z | - |
| dc.date.copyright | 2022-08-30 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-23 | |
| dc.identifier.citation | References Ahani, A., Nilashi, M., Ibrahim, O., Sanzogni, L., & Weaven, S. (2019). Market segmentation and travel choice prediction in Spa hotels through TripAdvisor’s online reviews. International Journal of Hospitality Management, 80(March 2018), 52–77. https://doi.org/10.1016/j.ijhm.2019.01.003 Alaparthi, S., & Mishra, M. (2021). BERT: a sentiment analysis odyssey. Journal of Marketing Analytics, 9(2), 118–126. https://doi.org/10.1057/s41270-021-00109-8 Almohaimmeed, B. M. A. (2017). Restaurant Quality and Customer Satisfaction. International Review of Management and Marketing, 7(3), 42–49. http:www.econjournals.com Annisa, R., Surjandari, I., & Zulkarnain. (2019). Opinion mining on mandalika hotel reviews using latent dirichlet allocation. Procedia Computer Science, 161, 739– 746. https://doi.org/10.1016/j.procs.2019.11.178 Asghar, N. (2016). Yelp Dataset Challenge: Review Rating Prediction. http://arxiv.org/abs/1605.05362 Bala, I. B., & Saringat, M. Z. (2020). Poisson-Gamma Latent Dirichlet Allocation Model for Topics with Word Dependencies. Journal of Computer Science, 16(12), 1684–1696. https://doi.org/10.3844/jcssp.2020.1684.1696 Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet Allocation. Journal of Machine Learning Research, 3, 993–1022. Brodie, R. J., Ilic, A., Juric, B., & Hollebeek, L. (2013). Consumer engagement in a virtual brand community : An exploratory analysis. Journal of Business Research, 66(1), 105–114. https://doi.org/10.1016/j.jbusres.2011.07.029 Cheng, J. M. S., Lin, J. Y. C., & Wang, E. S. T. (2010). Value Creation Through Service Cues: The Case of the Restaurant Industry in Taiwan. Services Marketing Quarterly, 31(2), 133–150. https://doi.org/10.1080/15332961003604303 Chittiprolu, V., Samala, N., & Bellamkonda, R. S. (2021). Heritage hotels and customer experience: a text mining analysis of online reviews. International Journal of Culture, Tourism, and Hospitality Research, 15(2), 131–156. https://doi.org/10.1108/IJCTHR-02-2020-0050 Euromonitor. (2013). Consumer Health in Taiwan | Market Research Report | Euromonitor. In 2013. https://www.euromonitor.com/consumer-health-in- taiwan/report Ganesh, J., Reynolds, K. E., Luckett, M., & Pomirleanu, N. (2010). Online Shopper Motivations, and e-Store Attributes: An Examination of Online Patronage Behavior and Shopper Typologies. Journal of Retailing, 86(1), 106–115. https://doi.org/10.1016/j.jretai.2010.01.003 Guo, Y., Barnes, S. J., & Jia, Q. (2017). Mining meaning from online ratings and reviews: Tourist satisfaction analysis using latent dirichlet allocation. Tourism Management, 59, 467–483. https://doi.org/10.1016/j.tourman.2016.09.009 Gupta, S. (2021). Segmentation and targeting. Harvard Business Review, Imi. Hair, J. J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2013). Multi-Variate Data Analysis. Dolrling Kindersley, New Delhi. Hausmann, A., Toivonen, T., Slotow, R., Tenkanen, H., Moilanen, A., Heikinheimo, V., & di Minin, E. (2018). Social Media Data Can Be Used to Understand Tourists’ Preferences for Nature-Based Experiences in Protected Areas. Conservation Letters, 11(1), 1–10. https://doi.org/10.1111/conl.12343 Hollebeek, L. D., Mark S Glynn, & Brodie, R. J. (2014). Consumer Brand Engagement in Social Media: Conceptualization, Scale Development & Validation. Journal of Interactive Marketing, 28(2), 149–165. Jia, S. (2018). Behind the ratings: Text mining of restaurant customers’ online reviews [Article]. International Journal of Market Research, 60(6), 561–572. https://doi.org/10.1177/1470785317752048 Jia, S. (Sixue). (2019). Toward a better fitness club: Evidence from exerciser online rating and review using latent Dirichlet allocation and support vector machine. International Journal of Market Research, 61(1), 64–76. https://doi.org/10.1177/1470785318770571 Keller, D., & Kostromitina, M. (2020). Characterizing non-chain restaurants’ Yelp star- ratings: Generalizable findings from a representative sample of Yelp reviews. International Journal of Hospitality Management, 86(May 2019), 102440. https://doi.org/10.1016/j.ijhm.2019.102440 Kotler, P., & Keller, K. (2006). Marketing management 12e. Pearson. Liao, S. H., Widowati, R., & Lin, T. H. (2021). Data mining approach investigates Western-style restaurant hospitality management in Taiwan. Journal of Hospitality and Tourism Technology, 12(4), 712–729. https://doi.org/10.1108/JHTT-06-2020- 0137 Litvin, S. W. (2019). Hofstede, cultural differences, and TripAdvisor hotel reviews. International Journal of Tourism Research, 21(5), 712–717. https://doi.org/10.1002/jtr.2298 Lu, W., & Stepchenkova, S. (2015). User-generated content as a research mode in tourism and hospitality applications: Topics, methods, and software. Journal of Hospitality Marketing & Management, 24(2), 119–154. Luca, M. (2012). Reviews, Reputation, and Revenue: The Case of Yelp.Com. In Harvard Business School NOM Unit Working Paper. https://doi.org/10.2139/ssrn.1928601 Mathayomchan, B., & Taecharungroj, V. (2020). “How was your meal?” Examining customer experience using Google maps reviews. International Journal of Hospitality Management, 90(July), 102641. https://doi.org/10.1016/j.ijhm.2020.102641 Moon, S., Jalali, N., & Erevelles, S. (2021). Segmentation of both reviewers and businesses on social media. Journal of Retailing and Consumer Services, 61(February), 102524. https://doi.org/10.1016/j.jretconser.2021.102524 Nilashi, M., Ahmadi, H., Arji, G., Alsalem, K. O., Samad, S., Ghabban, F., Alzahrani, A. O., Ahani, A., & Alarood, A. A. (2021). Big social data and customer decision making in vegetarian restaurants: A combined machine learning method. Journal of Retailing and Consumer Services, 62(November 2019), 102630. https://doi.org/10.1016/j.jretconser.2021.102630 Pandey, S., & Chawla, D. (2018). Evolving segments of online clothing buyers: an emerging market study. Journal of Advances in Management Research, 15(4), 536–557. https://doi.org/10.1108/JAMR-12-2017-0121 Pfau, C. A. (2017). Cultural Identity and Cuisine in Taiwan [Portland State University]. https://pdxscholar.library.pdx.edu/cgi/viewcontent.cgi?article=1454&context=hon orstheses Ponnam, A., Sahoo, D., & Balaji, M. (2011). Satisfaction-based segmentation : Application of Kano model in Indian. Journal of Targeting, Measurement and Analysis for Marketing, 19(3/4), 195–205. https://doi.org/10.1057/jt.2011.20 Reisenbichler, M., & Reutterer, T. (2019). Topic modeling in marketing: recent advances and research opportunities. Journal of Business Economics, 89(3), 327– 356. https://doi.org/10.1007/s11573-018-0915-7 Robertson, J., Ferreira, C., & Paschen, J. (2021). Reading Between the Lines: Understanding Customer Experience With Disruptive Technology Through Online Reviews. Australasian Marketing Journal, 29(3), 215–224. https://doi.org/10.1177/1839334921999487 Song, B., Lee, C., Yoon, B., & Park, Y. (2016). Diagnosing service quality using customer reviews: an index approach based on sentiment and gap analyses. Service Business, 10(4), 775–798. https://doi.org/10.1007/s11628-015-0290-1 Tan, A. Y. F., & Lo, A. S. Y. (2008). A Benefit-Based Approach To Market Segmentation: A Case Study of an American Specialty Coffeehouse Chain in Hong Kong. Journal of Hospitality and Tourism Research, 32(3), 342–362. https://doi.org/10.1177/1096348008317388 Tirunillai, S., & Tellis, G. J. (2014). Mining Marketing Meaning from Online Chatter : Strategic Brand Analysis of Big Data Using Latent Dirichlet Allocation. Journal of Marketing Research, LI(August), 463–479. Tong, Z., & Zhang, H. (2016). A Text Mining Research Based on LDA Topic Modelling. Computer Science and Information Technology, 201–210. https://doi.org/10.5121/csit.2016.60616 Toubia, O., Iyengar, G., Bunnell, R., & Lemaire, A. (2019). Extracting Features of Entertainment Products: A Guided Latent Dirichlet Allocation Approach Informed by the Psychology of Media Consumption. Journal of Marketing Research, 56(1), 18–36. https://doi.org/10.1177/0022243718820559 Tsiptsis, K., & Chorianopoulos, A. (2009). Data Mining Techniques in CRM: Inside Customer Segmentation. John Wiley and Sons Ltd. Verhoef, P. C., Lemon, K. N., Parasuraman, A., Roggeveen, A., Tsiros, M., & Schlesinger, L. A. (2009). Customer Experience Creation: Determinants, Dynamics and Management Strategies. Journal of Retailing, 85(1), 31–41. https://doi.org/10.1016/j.jretai.2008.11.001 Yin, D., Mitra, S., & Zhang, H. (2016). When Do Consumers Value Positive vs. Negative Reviews? An Empirical Investigation of Confirmation Bias in Online Word of Mouth. Information Systems Research, 27(1), 131–144. https://doi.org/10.1287/ISRE.2015.0617 Yüksel, A., & Yüksel, F. (2002). Market segmentation based on tourists’ dining preferences. Journal of Hospitality and Tourism Research, 26(4), 315–331. https://doi.org/10.1177/109634802237482 Zhang, J. (2019). What’s yours is mine: exploring customer voice on Airbnb using text- mining approaches. Journal of Consumer Marketing, 36(5), 655–665. https://doi.org/10.1108/JCM-02-2018-2581 Zhao, Y., Xu, X., & Wang, M. (2019). Predicting overall customer satisfaction: Big data evidence from hotel online textual reviews. International Journal of Hospitality Management, 76(March 2018), 111–121. https://doi.org/10.1016/j.ijhm.2018.03.017 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86387 | - |
| dc.description.abstract | 食品消費的無形和體驗性使顧客尋求在線評論來評估餐廳質量。然而,大多數市場細分過程涉及使用成本和時間密集型消費者調查來確定細分基礎,很少有研究探索使用社交媒體和其他平台上現有的在線評論。該研究提供了一種新穎的方法,用於根據真正代表客戶聲音的實際評論來細分市場,而不是試圖根據先前研究論文中預先設想的客戶滿意度維度來細分客戶,並幫助克服設計和設計的挑戰和努力託管傳統流程,同時有效減少當前客戶研究方法的偏差、不確定性和成本。 本研究利用稱為潛在狄利克雷分配 (LDA) 過程的無監督機器學習算法從台灣 Yelp 平台上的 6541 條在線客戶評論中識別九個客戶體驗維度。本次台灣餐飲業研究發現的顧客體驗維度是“等待時間”、“氛圍”、“響應和禮貌”、“物有所值”、“傳統食物”、“菜單選擇”、“餐廳佈局” , “烹飪風格”, “食物味道和風味”。接下來,我們使用這九個客戶體驗維度,使用 K-means 聚類將餐飲市場客戶分為四個客戶群,然後使用評論情緒得分、星級評分、門店類型和美食等數據對這些客戶群進行分析。發現的客戶群被命名為“美食愛好者”、“傳統”、“不參與”和“有意識的消費者”。該研究在基於已發現客戶體驗維度的已發現客戶細分分析的基礎上,進一步做出了重要的理論、方法和實踐貢獻。此外,所提出的細分方法可以幫助解決根據客戶偏好細分市場的需求,並且可以自動化,與調查不同,定期進行時,可以捕捉新興的消費者偏好並儘早為營銷人員揭示有價值的見解,證明元素在設計適當的分割目標定位。 | zh_TW |
| dc.description.abstract | Food consumption's intangible and experiential nature makes customers seek online reviews to evaluate the restaurant quality. However, most market segmentation processes involve identifying the segmentation bases using cost and time-intensive consumer surveys, with few studies exploring the use of online reviews existing on social media and other platforms. The study provides a novel methodology for segmenting a market based on actual reviews that genuinely represent the voice of the customer rather than trying to segment customers based on preconceived customer satisfaction dimensions done in previous research papers and helping to overcome the challenges and effort of designing and hosting conventional processes while effectively reducing current customer research methods' bias, uncertainty, and cost. This study utilizes an unsupervised machine learning algorithm called as Latent Dirichlet allocation ( LDA) process to identify nine customer experience dimensions from 6541 online customer reviews on the Yelp platform for Taiwan. The found customer experience dimensions in this study of the restaurant industry in Taiwan were “Waiting time”, “Atmosphere”, “Responsiveness and courtesy”, “Value for money”, “Traditional food”, “Menu selection”, “Restaurant layout”, “Cooking style”, “Food taste and flavor”. Next, we used these nine customer experience dimensions to segment the food-outlets market customers into four customer segments using K-means clustering, who later were profiled using data of review sentiment scores, star ratings, type of outlets, and cuisines. The discovered customer segments were titled as “Food lovers”, “Traditional”, “Uninvolved”, and “Conscious consumer”. The study further makes significant theoretical, methodological, and practical contributions based on profiling of discovered customer segments based on found customer experience dimensions. Furthermore, the proposed segmentation method can help address the need to segment a market based on customer preferences and can be automated which when conducted periodically, unlike surveys, can capture emerging consumer preferences and reveal valuable insights for marketers early on, proving elemental to be in designing appropriate segmentation targeting positioning. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:52:52Z (GMT). No. of bitstreams: 1 U0001-1607202216022300.pdf: 1543837 bytes, checksum: 791fdd50de1dde4cad819ea155ced6b8 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | ABSTRACT III TABLE OF CONTENTS V LIST OF FIGURES AND TABLES VI 1 INTRODUCTION, BACKGROUND, RESEARCH GAP AND SIGNIFICANCE 1 2 LITERATURE REVIEW 3 3 COMMUNICATION, INTERNET, BIG DATA, AND TEXT MINING 6 4 RESEARCH DESIGN AND METHOD 8 4.1 STAGE 1 DATA AND DATA COLLECTION 9 4.1.1 YELP 9 4.1.2 DATA SOURCING 11 4.2 STAGE 2: DATA PROCESSING 13 4.2.1 DATA PREPROCESSING 14 4.2.2 DATA MODELING 15 4.3 STAGE 2: SENTIMENT ANALYSIS 19 4.4 STAGE 3: ANALYSIS 22 4.4.1 GAMMA MATRIX AND LIKERT SCALE 22 4.4.2 CLUSTERING AND CLUSTER ANALYSIS 24 5 LIMITATIONS AND FUTURE RESEARCH 36 6 CONCLUSION 38 7 REFERENCE 41 | |
| dc.language.iso | en | |
| dc.subject | 客戶細分 | zh_TW |
| dc.subject | 情感分析 | zh_TW |
| dc.subject | 自然語言處理 | zh_TW |
| dc.subject | 主題建模 | zh_TW |
| dc.subject | 情感分析 | zh_TW |
| dc.subject | 用戶生成內容 (UGC) | zh_TW |
| dc.subject | 客戶細分 | zh_TW |
| dc.subject | 服務/產品發現 | zh_TW |
| dc.subject | 主題建模 | zh_TW |
| dc.subject | 服務/產品增強 | zh_TW |
| dc.subject | 用戶生成內容 (UGC) | zh_TW |
| dc.subject | 自然語言處理 | zh_TW |
| dc.subject | 服務/產品增強 | zh_TW |
| dc.subject | 服務/產品發現 | zh_TW |
| dc.subject | Sentiment Analysis | en |
| dc.subject | User-Generated Content(UGC) | en |
| dc.subject | Topic modeling | en |
| dc.subject | Natural Language Processing | en |
| dc.subject | Customer Segmentation | en |
| dc.subject | Service/Product Discovery | en |
| dc.subject | Service/Product Enhancement | en |
| dc.subject | User-Generated Content(UGC) | en |
| dc.subject | Topic modeling | en |
| dc.subject | Natural Language Processing | en |
| dc.subject | Sentiment Analysis | en |
| dc.subject | Customer Segmentation | en |
| dc.subject | Service/Product Discovery | en |
| dc.subject | Service/Product Enhancement | en |
| dc.title | 在臺灣餐飲業以無人監督機器學習進行顧客分類 | zh_TW |
| dc.title | Unsupervised Customer Segmentation Using Machine Learning in the Taiwanese Restaurant Industry | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | Leon van Jaarsveldt(Leon van Jaarsveldt),陳彥豪(Kevin Chen) | |
| dc.subject.keyword | 用戶生成內容 (UGC),主題建模,自然語言處理,情感分析,客戶細分,服務/產品發現,服務/產品增強, | zh_TW |
| dc.subject.keyword | User-Generated Content(UGC),Topic modeling,Natural Language Processing,Sentiment Analysis,Customer Segmentation,Service/Product Discovery,Service/Product Enhancement, | en |
| dc.relation.page | 46 | |
| dc.identifier.doi | 10.6342/NTU202201501 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-08-23 | |
| dc.contributor.author-college | 管理學院 | zh_TW |
| dc.contributor.author-dept | 企業管理碩士專班 | zh_TW |
| dc.date.embargo-lift | 2022-08-30 | - |
| 顯示於系所單位: | 管理學院企業管理專班(Global MBA) | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1607202216022300.pdf | 1.51 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
