Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86385
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李金美zh_TW
dc.contributor.advisorChin-Mei Leeen
dc.contributor.author王昱森zh_TW
dc.contributor.authorYu-Sen Wangen
dc.date.accessioned2023-03-19T23:52:45Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-15-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citationAchard, P., Herr, A., Baulcombe, D.C., and Harberd, N.P. (2004). Modulation of floral development by a gibberellin-regulated microRNA. Development 131, 3357-3365.
Andrés, F., and Coupland, G. (2012). The genetic basis of flowering responses to seasonal cues. Nat. Rev. Genet. 13, 627-639.
Antoniou-Kourounioti, R.L., Zhao, Y., Dean, C., and Howard, M. (2021). Feeling every bit of winter - distributed temperature sensitivity in vernalization. Front Plant Sci 12, 628726.
Araujo, P.R., Yoon, K., Ko, D., Smith, A.D., Qiao, M., Suresh, U., Burns, S.C., and Penalva, L.O. (2012). Before it gets Started: Regulating translation at the 5' UTR. Comp Funct Genomics 2012, 475731.
Balasubramanian, S., Sureshkumar, S., Lempe, J., and Weigel, D. (2006). Potent induction of Arabidopsis thaliana flowering by elevated growth temperature. PLoS Genet 2, e106.
Barak, S., Tobin, E.M., Andronis, C., Sugano, S., and Green, R.M. (2000). All in good time: the Arabidopsis circadian clock. Trends Plant Sci 5, 517-522.
Bowler, E., and Oltean, S. (2019). Alternative splicing in angiogenesis. Int J Mol Sci 20, 2067.
Capovilla, G., Symeonidi, E., Wu, R., and Schmid, M. (2017). Contribution of major FLM isoforms to temperature-dependent flowering in Arabidopsis thaliana. J. Exp. Bot. 68, 5117-5127.
Chanarat, S., and Sträßer, K. (2013). Splicing and beyond: the many faces of the Prp19 complex. Biochim Biophys Acta 1833, 2126-2134.
Chang, P., Hsieh, H.Y., and Tu, S.L. (2022). The U1 snRNP component RBP45d regulates temperature-responsive flowering in Arabidopsis. Plant Cell 34, 834-851.
Chen, K., Guo, T., Li, X.M., Zhang, Y.M., Yang, Y.B., Ye, W.W., Dong, N.Q., Shi, C.L., Kan, Y., Xiang, Y.H., Zhang, H., Li, Y.C., Gao, J.P., Huang, X., Zhao, Q., Han, B., Shan, J.X., and Lin, H.X. (2019). Translational regulation of plant response to high temperature by a dual-function tRNA(His) Guanylyltransferase in Rice. Mol Plant 12, 1123-1142.
Chen, M., and Manley, J.L. (2009). Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches. Nat Rev Mol Cell Biol 10, 741-754.
Cheng, J.Z., Zhou, Y.P., Lv, T.X., Xie, C.P., and Tian, C.E. (2017). Research progress on the autonomous flowering time pathway in Arabidopsis. Physiol Mol Biol Plants 23, 477-485.
Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16, 735-743.
De Lucia, F., Crevillen, P., Jones, A.M., Greb, T., and Dean, C. (2008). A PHD-polycomb repressive complex 2 triggers the epigenetic silencing of FLC during vernalization. Proc Natl Acad Sci U S A 105, 16831-16836.
de Moura, T.R., Mozaffari-Jovin, S., Szabó, C.Z.K., Schmitzová, J., Dybkov, O., Cretu, C., Kachala, M., Svergun, D., Urlaub, H., Lührmann, R., and Pena, V. (2018). Prp19/Pso4 Is an Autoinhibited Ubiquitin Ligase Activated by Stepwise Assembly of Three Splicing Factors. Mol Cell 69, 979-992.e976.
Debieu, M., Tang, C., Stich, B., Sikosek, T., Effgen, S., Josephs, E., Schmitt, J., Nordborg, M., Koornneef, M., and de Meaux, J. (2013). Co-variation between seed dormancy, growth rate and flowering time changes with latitude in Arabidopsis thaliana. PLoS One 8, e61075.
Dong, J., Chen, H., Deng, X.W., Irish, V.F., and Wei, N. (2019). Phytochrome B Induces Intron Retention and Translational Inhibition of PHYTOCHROME-INTERACTING FACTOR31 [OPEN]. Plant Physiol. 182, 159-166.
Farré, E.M., Harmer, S.L., Harmon, F.G., Yanovsky, M.J., and Kay, S.A. (2005). Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock. Curr Biol 15, 47-54.
Feke, A., Liu, W., Hong, J., Li, M.W., Lee, C.M., Zhou, E.K., and Gendron, J.M. (2019). Decoys provide a scalable platform for the identification of plant E3 ubiquitin ligases that regulate circadian function. eLife 8, e44558.
Feke, A.M., Hong, J., Liu, W., and Gendron, J.M. (2020). A Decoy Library Uncovers U-Box E3 Ubiquitin Ligases That Regulate Flowering Time in Arabidopsis. Genetics 215, 699-712.
Fernández, V., Takahashi, Y., Le Gourrierec, J., and Coupland, G. (2016). Photoperiodic and thermosensory pathways interact through CONSTANS to promote flowering at high temperature under short days. Plant J 86, 426-440.
Fornara, F., Panigrahi, K.C., Gissot, L., Sauerbrunn, N., Rühl, M., Jarillo, J.A., and Coupland, G. (2009). Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response. Dev Cell 17, 75-86.
Gebauer, F., and Hentze, M.W. (2004). Molecular mechanisms of translational control. Nat. Rev. Mol. Cell Biol. 5, 827-835.
Gendron, J.M., Pruneda-Paz, J.L., Doherty, C.J., Gross, A.M., Kang, S.E., and Kay, S.A. (2012). Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor. Proc Natl Acad Sci U S A 109, 3167-3172.
Gil, K.E., Park, M.J., Lee, H.J., Park, Y.J., Han, S.H., Kwon, Y.J., Seo, P.J., Jung, J.H., and Park, C.M. (2017). Alternative splicing provides a proactive mechanism for the diurnal CONSTANS dynamics in Arabidopsis photoperiodic flowering. Plant J 89, 128-140.
Gordon, K., Fütterer, J., and Hohn, T. (1992). Efficient initiation of translation at non-AUG triplets in plant cells. Plant J 2, 809-813.
Greenham, K., and McClung, C.R. (2015). Integrating circadian dynamics with physiological processes in plants. Nat Rev Genet 16, 598-610.
Guo, J., Wang, J., Xi, L., Huang, W.D., Liang, J., and Chen, J.G. (2009). RACK1 is a negative regulator of ABA responses in Arabidopsis. J Exp Bot 60, 3819-3833.
Guo, R., and Sun, W. (2017). Sumoylation stabilizes RACK1B and enhance its interaction with RAP2.6 in the abscisic acid response. Sci Rep 7, 44090.
Harmer, S.L. (2009). The circadian system in higher plants. Annu Rev Plant Biol 60, 357-377.
Hayama, R., Sarid-Krebs, L., Richter, R., Fernández, V., Jang, S., and Coupland, G. (2017). PSEUDO RESPONSE REGULATORs stabilize CONSTANS protein to promote flowering in response to day length. Embo j 36, 904-918.
Hernández, G., Osnaya, V.G., and Pérez-Martínez, X. (2019). Conservation and Variability of the AUG Initiation Codon Context in Eukaryotes. Trends Biochem Sci 44, 1009-1021.
Hinnebusch, A.G. (2014). The scanning mechanism of eukaryotic translation initiation. Annu Rev Biochem 83, 779-812.
Hori, K., and Watanabe, Y. (2005). UPF3 suppresses aberrant spliced mRNA in Arabidopsis. Plant J 43, 530-540.
Horton, R.M., Cai, Z.L., Ho, S.N., and Pease, L.R. (1990). Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. Biotechniques 8, 528-535.
Ingolia, N.T., Ghaemmaghami, S., Newman, J.R., and Weissman, J.S. (2009). Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324, 218-223.
Jackson, R.J., Hellen, C.U., and Pestova, T.V. (2010). The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 11, 113-127.
James, A.B., Syed, N.H., Bordage, S., Marshall, J., Nimmo, G.A., Jenkins, G.I., Herzyk, P., Brown, J.W., and Nimmo, H.G. (2012). Alternative splicing mediates responses of the Arabidopsis circadian clock to temperature changes. Plant Cell 24, 961-981.
James, A.B., Calixto, C.P.G., Tzioutziou, N.A., Guo, W., Zhang, R., Simpson, C.G., Jiang, W., Nimmo, G.A., Brown, J.W.S., and Nimmo, H.G. (2018). How does temperature affect splicing events? Isoform switching of splicing factors regulates splicing of LATE ELONGATED HYPOCOTYL (LHY). Plant Cell Environ 41, 1539-1550.
Jia, T., Zhang, B., You, C., Zhang, Y., Zeng, L., Li, S., Johnson, K.C.M., Yu, B., Li, X., and Chen, X. (2017). The Arabidopsis MOS4-Associated Complex promotes microRNA biogenesis and precursor messenger RNA splicing. Plant Cell 29, 2626-2643.
Johnson, K.C.M., Dong, O.X., and Li, X. (2011). The evolutionarily conserved MOS4-associated complex. Cent Eur J Med 6, 776.
Jones, M.A. (2009). Entrainment of the Arabidopsis Circadian Clock. J. Plant Biol. 52, 202-209.
Kardailsky, I., Shukla, V.K., Ahn, J.H., Dagenais, N., Christensen, S.K., Nguyen, J.T., Chory, J., Harrison, M.J., and Weigel, D. (1999). Activation tagging of the floral inducer FT. Science 286, 1962-1965.
Kinmonth-Schultz, H., Lewandowska-Sabat, A., Imaizumi, T., Ward, J.K., Rognli, O.A., and Fjellheim, S. (2021). Flowering times of wild Arabidopsis accessions from across Norway correlate with expression levels of FT, CO, and FLC Genes. Frontiers in Plant Science 12, 747740.
Kobayashi, Y., Kaya, H., Goto, K., Iwabuchi, M., and Araki, T. (1999). A pair of related genes with antagonistic roles in mediating flowering signals. Science 286, 1960-1962.
Kochetov, A.V., Ahmad, S., Ivanisenko, V., Volkova, O.A., Kolchanov, N.A., and Sarai, A. (2008). uORFs, reinitiation and alternative translation start sites in human mRNAs. FEBS Lett 582, 1293-1297.
Kulkarni, S.D., Zhou, F., Sen, N.D., Zhang, H., Hinnebusch, A.G., and Lorsch, J.R. (2019). Temperature-dependent regulation of upstream open reading frame translation in S. cerevisiae. BMC Biol 17, 101.
Kumar, S.V., Lucyshyn, D., Jaeger, K.E., Alós, E., Alvey, E., Harberd, N.P., and Wigge, P.A. (2012). Transcription factor PIF4 controls the thermosensory activation of flowering. Nature 484, 242-245.
Kurihara, Y. (2020). uORF shuffling fine-tunes gene expression at a deep level of the process. Plants (Basel) 9, 608.
Kwon, Y.J., Park, M.J., Kim, S.G., Baldwin, I.T., and Park, C.M. (2014). Alternative splicing and nonsense-mediated decay of circadian clock genes under environmental stress conditions in Arabidopsis. BMC Plant Biol 14, 136.
Lee, J.H., Yoo, S.J., Park, S.H., Hwang, I., Lee, J.S., and Ahn, J.H. (2007). Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes Dev 21, 397-402.
Lee, J.H., Ryu, H.S., Chung, K.S., Posé, D., Kim, S., Schmid, M., and Ahn, J.H. (2013). Regulation of temperature-responsive flowering by MADS-box transcription factor repressors. Science 342, 628-632.
Leijten, W., Koes, R., Roobeek, I., and Frugis, G. (2018). Translating flowering time from Arabidopsis thaliana to Brassicaceae and Asteraceae Crop Species. Plants (Basel) 7, 111.
Li, H.D., Menon, R., Omenn, G.S., and Guan, Y. (2014). The emerging era of genomic data integration for analyzing splice isoform function. Trends Genet 30, 340-347.
Li, S., Liu, K., Zhou, B., Li, M., Zhang, S., Zeng, L., Zhang, C., and Yu, B. (2018). MAC3A and MAC3B, Two Core Subunits of the MOS4-Associated Complex, positively influence miRNA biogenesis. Plant Cell 30, 481-494.
Li, Y., Yang, J., Shang, X., Lv, W., Xia, C., Wang, C., Feng, J., Cao, Y., He, H., Li, L., and Ma, L. (2019). SKIP regulates environmental fitness and floral transition by forming two distinct complexes in Arabidopsis. New Phytol 224, 321-335.
Li, Y.R., and Liu, M.J. (2020). Prevalence of alternative AUG and non-AUG translation initiators and their regulatory effects across plants. Genome Res 30, 1418-1433.
Lin, G., Zhang, K., and Li, J. (2015). Application of CRISPR/Cas9 Technology to HBV. International Journal of Molecular Sciences 16, 26077-26086.
Locke, J.C., Kozma-Bognár, L., Gould, P.D., Fehér, B., Kevei, E., Nagy, F., Turner, M.S., Hall, A., and Millar, A.J. (2006). Experimental validation of a predicted feedback loop in the multi-oscillator clock of Arabidopsis thaliana. Mol Syst Biol 2, 59.
Luo, M., Tai, R., Yu, C.W., Yang, S., Chen, C.Y., Lin, W.D., Schmidt, W., and Wu, K. (2015). Regulation of flowering time by the histone deacetylase HDA5 in Arabidopsis. Plant J 82, 925-936.
Lutz, U., Posé, D., Pfeifer, M., Gundlach, H., Hagmann, J., Wang, C., Weigel, D., Mayer, K.F., Schmid, M., and Schwechheimer, C. (2015). Modulation of ambient temperature-dependent flowering in Arabidopsis thaliana by natural variation of FLOWERING LOCUS M. PLoS Genet 11, e1005588.
Lyons, R., Rusu, A., Stiller, J., Powell, J., Manners, J.M., and Kazan, K. (2015). Investigating the association between flowering time and defense in the Arabidopsis thaliana-Fusarium oxysporum Interaction. PLOS ONE 10, e0127699.
Mateos, J.L., de Leone, M.J., Torchio, J., Reichel, M., and Staiger, D. (2018). Beyond transcription: fine-tuning of circadian timekeeping by post-transcriptional regulation. Genes (Basel) 9, 616.
McClung, C.R. (2006). Plant circadian rhythms. Plant Cell 18, 792-803.
Merchante, C., Stepanova, A.N., and Alonso, J.M. (2017). Translation regulation in plants: an interesting past, an exciting present and a promising future. Plant J 90, 628-653.
Mizuno, T., Nomoto, Y., Oka, H., Kitayama, M., Takeuchi, A., Tsubouchi, M., and Yamashino, T. (2014). Ambient temperature signal feeds into the circadian clock transcriptional circuitry through the EC night-time repressor in Arabidopsis thaliana. Plant and Cell Physiology 55, 958-976.
Monaghan, J., Xu, F., Gao, M., Zhao, Q., Palma, K., Long, C., Chen, S., Zhang, Y., and Li, X. (2009). Two Prp19-like U-box proteins in the MOS4-associated complex play redundant roles in plant innate immunity. PLoS Pathog 5, e1000526.
Moon, J., Suh, S.S., Lee, H., Choi, K.R., Hong, C.B., Paek, N.C., Kim, S.G., and Lee, I. (2003). The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant J 35, 613-623.
Mutasa-Göttgens, E., and Hedden, P. (2009). Gibberellin as a factor in floral regulatory networks. J Exp Bot 60, 1979-1989.
Nakamichi, N., Kita, M., Ito, S., Yamashino, T., and Mizuno, T. (2005). PSEUDO-RESPONSE REGULATORS, PRR9, PRR7 and PRR5, together play essential roles close to the circadian clock of Arabidopsis thaliana. Plant Cell Physiol 46, 686-698.
Nakamichi, N., Kita, M., Niinuma, K., Ito, S., Yamashino, T., Mizoguchi, T., and Mizuno, T. (2007). Arabidopsis clock-associated pseudo-response regulators PRR9, PRR7 and PRR5 coordinately and positively regulate flowering time through the canonical CONSTANS-dependent photoperiodic pathway. Plant Cell Physiol 48, 822-832.
Nibau, C., Gallemí, M., Dadarou, D., Doonan, J.H., and Cavallari, N. (2019). Thermo-sensitive alternative splicing of FLOWERING LOCUS M is modulated by Cyclin-Dependent Kinase G2. Front Plant Sci 10, 1680.
Parcy, F. (2005). Flowering: a time for integration. Int J Dev Biol 49, 585-593.
Pestova, T.V., Kolupaeva, V.G., Lomakin, I.B., Pilipenko, E.V., Shatsky, I.N., Agol, V.I., and Hellen, C.U. (2001). Molecular mechanisms of translation initiation in eukaryotes. Proc Natl Acad Sci U S A 98, 7029-7036.
Posé, D., Verhage, L., Ott, F., Yant, L., Mathieu, J., Angenent, G.C., Immink, R.G., and Schmid, M. (2013). Temperature-dependent regulation of flowering by antagonistic FLM variants. Nature 503, 414-417.
Pouteau, S., Ferret, V., and Lefebvre, D. (2006). Comparison of environmental and mutational variation in flowering time in Arabidopsis. J Exp Bot 57, 4099-4109.
Pouteau, S., Carré, I., Gaudin, V., Ferret, V., Lefebvre, D., and Wilson, M. (2008). Diversification of photoperiodic response patterns in a collection of early-flowering mutants of Arabidopsis. Plant Physiol 148, 1465-1473.
Ruiz-García, L., Madueño, F., Wilkinson, M., Haughn, G., Salinas, J., and Martínez-Zapater, J.M. (1997). Different roles of flowering-time genes in the activation of floral initiation genes in Arabidopsis. Plant Cell 9, 1921-1934.
Salomé, P.A., Weigel, D., and McClung, C.R. (2010). The role of the Arabidopsis morning loop components CCA1, LHY, PRR7, and PRR9 in temperature compensation. Plant Cell 22, 3650-3661.
Salomé, P.A., and McClung, C.R. (2005). PSEUDO-RESPONSE REGULATOR 7 and 9 are partially redundant genes essential for the temperature responsiveness of the Arabidopsis circadian clock. Plant Cell 17, 791-803.
Samach, A., Onouchi, H., Gold, S.E., Ditta, G.S., Schwarz-Sommer, Z., Yanofsky, M.F., and Coupland, G. (2000). Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288, 1613-1616.
Samanta, M.K., Dey, A., and Gayen, S. (2016). CRISPR/Cas9: an advanced tool for editing plant genomes. Transgenic Research 25, 561-573.
Sawa, M., Nusinow, D.A., Kay, S.A., and Imaizumi, T. (2007). FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science 318, 261-265.
Schepetilnikov, M., Dimitrova, M., Mancera-Martínez, E., Geldreich, A., Keller, M., and Ryabova, L.A. (2013). TOR and S6K1 promote translation reinitiation of uORF-containing mRNAs via phosphorylation of eIF3h. Embo j 32, 1087-1102.
Seaton, D.D., Smith, R.W., Song, Y.H., MacGregor, D.R., Stewart, K., Steel, G., Foreman, J., Penfield, S., Imaizumi, T., Millar, A.J., and Halliday, K.J. (2015). Linked circadian outputs control elongation growth and flowering in response to photoperiod and temperature. Mol Syst Biol 11, 776.
Shang, X., Cao, Y., and Ma, L. (2017). Alternative splicing in plant genes: A means of regulating the environmental fitness of plants. Int J Mol Sci 18, 432.
Shi, Y. (2017). Mechanistic insights into precursor messenger RNA splicing by the spliceosome. Nat Rev Mol Cell Biol 18, 655-670.
Simpson, G.G., and Dean, C. (2002). Arabidopsis, the rosetta stone of flowering time? Science 296, 285-289.
Sureshkumar, S., Dent, C., Seleznev, A., Tasset, C., and Balasubramanian, S. (2016). Nonsense-mediated mRNA decay modulates FLM-dependent thermosensory flowering response in Arabidopsis. Nat Plants 2, 16055.
Tiwari, S.B., Shen, Y., Chang, H.C., Hou, Y., Harris, A., Ma, S.F., McPartland, M., Hymus, G.J., Adam, L., Marion, C., Belachew, A., Repetti, P.P., Reuber, T.L., and Ratcliffe, O.J. (2010). The flowering time regulator CONSTANS is recruited to the FLOWERING LOCUS T promoter via a unique cis-element. New Phytol 187, 57-66.
Tsuji, H. (2017). Molecular function of florigen. Breed Sci 67, 327-332.
von Arnim, A.G., Jia, Q., and Vaughn, J.N. (2014). Regulation of plant translation by upstream open reading frames. Plant Sci 214, 1-12.
Waheed, S., and Zeng, L. (2020). The critical role of miRNAs in regulation of flowering time and flower development. Genes (Basel) 11, 319.
Wang, L., Fujiwara, S., and Somers, D.E. (2010). PRR5 regulates phosphorylation, nuclear import and subnuclear localization of TOC1 in the Arabidopsis circadian clock. Embo j 29, 1903-1915.
Wenkel, S., Turck, F., Singer, K., Gissot, L., Le Gourrierec, J., Samach, A., and Coupland, G. (2006). CONSTANS and the CCAAT box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis. Plant Cell 18, 2971-2984.
Wiborg, J., O'Shea, C., and Skriver, K. (2008). Biochemical function of typical and variant Arabidopsis thaliana U-box E3 ubiquitin-protein ligases. Biochem. J. 413, 447-457.
Wilkinson, M.E., Charenton, C., and Nagai, K. (2020). RNA splicing by the spliceosome. Annu Rev Biochem 89, 359-388.
Will, C.L., and Lührmann, R. (2011). Spliceosome structure and function. Cold Spring Harb Perspect Biol 3.
Yu, C.W., Liu, X., Luo, M., Chen, C., Lin, X., Tian, G., Lu, Q., Cui, Y., and Wu, K. (2011). HISTONE DEACETYLASE6 interacts with FLOWERING LOCUS D and regulates flowering in Arabidopsis. Plant Physiol 156, 173-184.
Zhang, T., Wu, A., Yue, Y., and Zhao, Y. (2020). uORFs: Important cis-regulatory elements in plants. Int J Mol Sci 21, E6238.
Zhang, Y., Madl, T., Bagdiul, I., Kern, T., Kang, H.S., Zou, P., Mäusbacher, N., Sieber, S.A., Krämer, A., and Sattler, M. (2013). Structure, phosphorylation and U2AF65 binding of the N-terminal domain of splicing factor 1 during 3'-splice site recognition. Nucleic Acids Res 41, 1343-1354.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86385-
dc.description.abstract選擇性剪接在植物感應溫度的調控中扮演非常重要的角色,而MOS4相關複合物或稱作MAC可作為剪接因子,去調節選擇性剪接同功型的產生。MAC的功能中心是由MAC3A與MAC3B這一組序列相近的E3 泛素連接酶所組成,它們具有調控剪接體和選擇性剪接的功能,所以MAC3A與MAC3B的突變會導致植物體內有大量的內含子保留事件的發生,而造成許多性狀。其中,mac3a mac3b突變體會對生物時鐘以及開花時間造成影響,然而,MAC3A與MAC3B所參與的詳細途徑以及調控機制仍未明瞭。在本論文中,我研究了 MAC3A/MAC3B 是否透過調節選擇性剪接影響溫度調控的開花途徑。我的實驗結果顯示,當MAC3A與MAC3B產生缺陷時,植物會降低感應溫度變化而調控開花時間的能力,其中可能造成的原因是因為在mac3a mac3b中,開花調控因子FLM的同功型無法像在Col-0隨著溫度而產生改變。此外,溫度也會影響植物生物時鐘的功能,而進一步影響下游的光週期所調控的開花途徑,先前研究證實在mac3a mac3b中,有兩個生物時鐘相關的基因,PRR7與PRR9會額外產生大量的內含子保留事件。在我的實驗結果顯示,溫度的升高下,PRR7的同功型原本會隨之上升,然而此一現象並無發生在mac3a mac3b中。我進一步探討溫度如何調控MAC3A和MAC3B,我調查了在MAC3A與MAC3B 5’端非轉譯區域(5’ untranslated region)中的上游開放讀序 (upstream open reading frame, uORF),此段調控序列被認為可以抑制下游的編碼區,而且與環境的刺激息息相關。藉由冷光素酶的報導試驗,我確認了MAC3A與MAC3B的uORF確實能夠抑制下游編碼區的轉譯,而且溫度的變化會藉由uORF影響其下游的轉譯。總結所有結果,MAC3A與MAC3B可能會藉由影響FLM以及PRR7的選擇性剪接參與開花時間的調控,而且MAC3A與MAC3B的uORF會受到溫度的調節,影響下游基因的轉譯活性。這可能是導致FLM的選擇性剪接為何會因應溫度變化改變的因素之一。zh_TW
dc.description.abstractAlternative splicing (AS) plays a major role in regulating plant thermal adaptation pathways. The MOS4-associated complex (MAC) acts as a splicing factor to interact and regulate spliceosome, which then mediates the production of alternative splicing isoforms. E3 ubiquitin ligases MAC3A and MAC3B are the functional components of the MAC to modulate splicing. Mutation of them causes an increase in intron retention events, which affect pleiotropic biological processes, including circadian rhythm and flowering time. However, the mechanisms that MAC3A/MAC3B regulate these pathways remain to be elucidated. In this study, I examined the roles of MAC3A/MAC3B in mediating AS to regulate temperature-dependent flowering. The defects in both MAC3A and MAC3B reduced the sensitivity in the temperature-responsive flowering. This phenomenon may be partially explained by alterations in the ratios of flowering regulator FLM splicing isoforms in the mac3a mac3b at ambient temperatures. Additionally, temperatures also affect the circadian clock to further mediate downstream flowering pathways. Here, I found that elevated temperatures induced intron retention of PRR7, and these phenomena did not occur in mac3a mac3b. This alteration could affect the photoperiodic flowering pathways and lead to less sensitivity in the temperature-responsive flowering in mac3a mac3b. To further investigate the potential translational mechanism that MAC3A/ MAC3B responded to temperatures, I examined the upstream open reading frames (uORFs) in their 5’ UTR. uORFs may repress the translation of downstream coding regions and are reported to respond to environmental stimuli. The results from luciferase reporter assays suggested that the uORFs in MAC3A/3B serve as temperature-responsive translational suppressors. To sum up, my results indicated that MAC3A/MAC3B may regulate the AS of FLM and PRR7 to engage in flowering time control, and the uORFs of MAC3A/MAC3B are temperature-responsive translational repressors. These findings may explain the temperature-responsive AS of FLM.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:52:45Z (GMT). No. of bitstreams: 1
U0001-2409202215022600.pdf: 4210375 bytes, checksum: ca29a7010d226de4525870e300151591 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents論文口試委員審定書…………………………………………………………………....Ⅰ
致謝……………………………………………………………………………………..Ⅱ
Tables of contents…………………………………………………………………......Ⅲ
中文摘要…………………………………………………………………………….…Ⅵ
Abstract………………………………………………………………………….......Ⅷ
Abbreviations…………………………………………………………………………..Ⅹ
Introduction……………………………………………………………………………..1
Alternative splicing………………………………………………………………..1
The MOS4-associated complex in Arabidopsis…………………………………..3
Temperature-responsive flowering pathway…………………………………….5
Modulation of the photoperiodic flowering pathway by temperatures…..……8
Upstream open reading frame……………………………………………………9
Motivation and objectives……………………………………………………….12
Materials and methods………………………………………………………………..14
Plant materials, growth conditions, and phenotypic analyses………………...14
Construction of plasmids………………………………………………………..15
Generation of transgenic plants………………………………………………...15
RNA extraction, cDNA synthesis, and RT-qPCR……………………………...16
Luciferase reporter assay……………………………………………………….18
Immunoblotting………………………………………………………………….18
Primers and accession numbers………………………………………………...20
Results………………………………………………………………………………….21
MAC3A and MAC3B transcripts levels are compromised by T-DNA insertions…………………………………………………………………………………….21
Mutations of MAC3A and MAC3B exhibit less sensitivity in the temperature-responsive flowering…………………………...…………………………….….22
The MAC3A and MAC3B might regulate flowering time by affecting the alternative splicing of FLM……………………………………………………..25
MAC3A and MAC3B affect the high temperature-induced intron retention isoforms of PRR7………………………….……………………………...….…..26
Examining the downstream flowering activators, CO and FT, under different temperatures……………………………………………………………………..27
uORFs in MAC3A and MAC3B might affect the downstream mORF through translational regulation………………………………………………………….29
The uORFs exist in MAC3A and MAC3B are functional and temperature-responsive………………………………………………………………………...30
Discussion……………………………………………………………………………...32
The abnormal growth rate and circadian defects in mac3a mac3b may explain the different results of flowering time measured by two flowering indexes…32
The flowering phenotype in mac3a mac3b is partially caused by altering the ratios of FLM isoforms………………………………………………………….33
MAC3A and MAC3B might integrate temperature signals into the photoperiodic flowering pathway by mediating the AS of PRR7………….…35
The expression levels of FT at ambient temperatures under different photoperiods……………………………………………………………………..36
The FT transcripts levels in mac3a mac3b can’t fully explain the flowering phenotypes………………………………………...……………………………..38
Ambient temperatures regulate the inhibitory function of uORFs in the MAC3A and MAC3B 5’ UTR…………………………………………………...40
Table…………………………………………………………………………………...43
Figures………………………………………………………………………………...48
Appendices……………………………………………………………………………66
References…………………………………………………………………………….77
-
dc.language.isoen-
dc.subjectMAC3Azh_TW
dc.subject上游開放讀序zh_TW
dc.subject溫度反應zh_TW
dc.subject開花途徑zh_TW
dc.subject選擇性剪接zh_TW
dc.subjectMAC3Bzh_TW
dc.subject阿拉伯芥zh_TW
dc.subjectflowering pathwaysen
dc.subjectMAC3Ben
dc.subjectMAC3Aen
dc.subjectArabidopsisen
dc.subjectalternative splicingen
dc.subjectFLMen
dc.subjecttemperature responsesen
dc.subjectuORFen
dc.titleMAC3A 與 MAC3B 在不同溫度下調控開花時間的研究zh_TW
dc.titleA study of MAC3A and MAC3B participating in thermal pathways to mediate flowering timeen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee蔡皇龍;劉明容;涂世隆;林翰佳zh_TW
dc.contributor.oralexamcommitteeHuang-Lung Tsai;Ming-Jung Liu;Shih-Long Tu;Han-Jia Linen
dc.subject.keyword阿拉伯芥,MAC3A,MAC3B,選擇性剪接,開花途徑,溫度反應,上游開放讀序,zh_TW
dc.subject.keywordArabidopsis,MAC3A,MAC3B,alternative splicing,FLM,flowering pathways,temperature responses,uORF,en
dc.relation.page85-
dc.identifier.doi10.6342/NTU202203970-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2022-09-28-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept植物科學研究所-
dc.date.embargo-lift2027-09-24-
顯示於系所單位:植物科學研究所

文件中的檔案:
檔案 大小格式 
U0001-2409202215022600.pdf
  此日期後於網路公開 2027-09-24
4.11 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved