Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86383
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor汪立本(Li-Pen Wang)
dc.contributor.authorYun-Ting Hehen
dc.contributor.author賀筠庭zh_TW
dc.date.accessioned2023-03-19T23:52:38Z-
dc.date.copyright2022-08-24
dc.date.issued2022
dc.date.submitted2022-08-23
dc.identifier.citationS. Agrawal, L. Barrington, C. Bromberg, J. Burge, C. Gazen, and J. Hickey. Ma- chine learning for precipitation nowcasting from radar images. arXiv preprint arXiv:1912.12132, 2019. G. B. Arfken and H. J. Weber. Mathematical methods for physicists, 1999. G. Ayzel, M. Heistermann, A. Sorokin, O. Nikitin, and O. Lukyanova. All convolutional neural networks for radar-based precipitation nowcasting. Procedia Computer Science, 150:186–192, 2019. G. Ayzel, T. Scheffer, and M. Heistermann. Rainnet v1. 0: a convolutional neural network for radar-based precipitation nowcasting. Geoscientific Model Development, 13(6): 2631–2644, 2020. M. Babaeizadeh, C. Finn, D. Erhan, R. H. Campbell, and S. Levine. Stochastic variational video prediction. arXiv preprint arXiv:1710.11252, 2017. A. Bellon and G. L. Austin. The evaluation of two years of real-time operation of a short-term precipitation forecasting procedure (sharp). Journal of Applied Meteorology (1962-1982), pages 1778–1787, 1978. Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent is difficult. IEEE transactions on neural networks, 5(2):157–166, 1994. N. E. Bowler, C. E. Pierce, and A. Seed. Development of a precipitation nowcasting algorithm based upon optical flow techniques. Journal of Hydrology, 288(1-2):74–91, 2004. N. E. Bowler, C. E. Pierce, and A. W. Seed. Steps: A probabilistic precipitation forecast- ing scheme which merges an extrapolation nowcast with downscaled nwp. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 132(620):2127–2155, 2006. G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung. Time series analysis: forecasting and control. John Wiley & Sons, 2015. K. A. Browning. Review lecture: Local weather forecasting. Proceedings of the royal society of London. A. Mathematical and Physical Sciences, 371(1745):179–211, 1980. Y. Cao, Q. Li, H. Shan, Z. Huang, L. Chen, L. Ma, and J. Zhang. Precipitation nowcasting with star-bridge networks. arXiv preprint arXiv:1907.08069, 2019. S. Chen, X. Xu, Y. Zhang, D. Shao, S. Zhang, and M. Zeng. Two-stream convolutional lstm for precipitation nowcasting. Neural Computing and Applications, pages 1–10, 2022. Q. Cheng, Y. Xu, and E. Grunsky. Integrated spatial and spectrum method for geochemical anomaly separation. Natural Resources Research, 9(1):43–52, 2000. K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio. On the properties of neural machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259, 2014a. K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio. Learning phrase representations using rnn encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014b. W. Collins and P. Tissot. An artificial neural network model to predict thunderstorms within 400 km2 south texas domains. Meteorological Applications, 22(3):650–665, 2015. R. Deidda, M. G. Badas, and E. Piga. Space–time multifractality of remotely sensed rainfall fields. Journal of Hydrology, 322(1):2–13, 2006. ISSN 0022-1694. doi: https: //doi.org/10.1016/j.jhydrol.2005.02.036. URL https://www.sciencedirect.com/ science/article/pii/S0022169405001022. Hydrofractals ’03. R. R. Deshpande. On the rainfall time series prediction using multilayer perceptron ar- tificial neural network. International Journal of emerging technology and advanced engineering, 2(1):2250–2459, 2012. L. Foresti, I. V. Sideris, D. Nerini, L. Beusch, and U. Germann. Using a 10-year radar archive for nowcasting precipitation growth and decay: A probabilistic machine learn- ing approach. Weather and Forecasting, 34(5):1547–1569, 2019. M. N. French, W. F. Krajewski, and R. R. Cuykendall. Rainfall forecasting in space and time using a neural network. Journal of hydrology, 137(1-4):1–31, 1992. K. Fukushima. Neural network model for a mechanism of pattern recognition unaffected by shift in position-neocognitron. IEICE Technical Report, A, 62(10):658–665, 1979. A. Gainguly. A hybrid approach to improving rainfall forecasts. Computing in Science & Engineering, 4(4):14–21, 2002. H. Gerapetritis and J. Pelissier. The critical success index and warning strategy. In 17th Conference on Probablity and Statistics in the Atmospheric Sciences, Seattle, 2004. U. Germann and I. Zawadzki. Scale-dependence of the predictability of precipitation from continental radar images. part i: Description of the methodology. Monthly Weather Review, 130(12):2859–2873, 2002. U. Germann and I. Zawadzki. Scale dependence of the predictability of precipitation from continental radar images. part ii: Probability forecasts. Journal of Applied Meteorology, 43(1):74–89, 2004. M. Gircys and B. J. Ross. Image evolution using 2d power spectra. Complexity, 2019, 2019. B. W. Golding. Nimrod: a system for generating automated very short range fore- casts. Meteorological Applications, 5(1):1–16, 1998. doi: https://doi.org/10.1017/ S1350482798000577. URL https://rmets.onlinelibrary.wiley.com/doi/ abs/10.1017/S1350482798000577. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. Advances in neural information processing systems, 27, 2014. J. Gui, Z. Sun, Y. Wen, D. Tao, and J. Ye. A review on generative adversarial net- works: Algorithms, theory, and applications. IEEE Transactions on Knowledge and Data Engineering, 2021. L. Han, H. Liang, H. Chen, W. Zhang, and Y. Ge. Convective precipitation nowcasting using u-net model. IEEE Transactions on Geoscience and Remote Sensing, 60:1–8, 2021. D. L. Harrison, S. J. Driscoll, and M. Kitchen. Improving precipitation es- timates from weather radar using quality control and correction techniques. Meteorological Applications, 7(2):135–144, 2000. doi: https://doi.org/10.1017/ S1350482700001468. URL https://rmets.onlinelibrary.wiley.com/doi/ abs/10.1017/S1350482700001468. D. L. Harrison, R. W. Scovell, and M. Kitchen. High-resolution precipitation esti- mates for hydrological uses. Proceedings of the Institution of Civil Engineers - Water Management, 162(2):125–135, 2009. doi: 10.1680/wama.2009.162.2.125. URL https://doi.org/10.1680/wama.2009.162.2.125. W. He, T. Xiong, H. Wang, J. He, X. Ren, Y. Yan, and L. Tan. Radar echo spatiotemporal sequence prediction using an improved convgru deep learning model. Atmosphere, 13 (1):88, 2022. A. Heye, K. Venkatesan, and J. Cain. Precipitation nowcasting: Leveraging deep recurrent convolutional neural networks. In Proceedings of the Cray User Group (CUG), volume 2017. Cray User Group Washington, 2017. G. R. Hilst and J. A. Russo. An objective extrapolation technique for semi-conservative fields with an application to radar patterns. Travelers Insurance Companies, 1960. S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8): 1735–1780, 1997. W.-C. Hong. Rainfall forecasting by technological machine learning models. Applied Mathematics and Computation, 200(1):41–57, 2008. B. K. Horn and B. G. Schunck. Determining optical flow. Artificial intelligence, 17(1-3): 185–203, 1981. K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal approximators. Neural networks, 2(5):359–366, 1989. K. Janocha and W. M. Czarnecki. On loss functions for deep neural networks in classifi- cation. arXiv preprint arXiv:1702.05659, 2017. J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for real-time style transfer and super-resolution. In European conference on computer vision, pages 694–711. Springer, 2016. M. Jordan. Serial order: a parallel distributed processing approach. technical report, june 1985-march 1986. Technical report, California Univ., San Diego, La Jolla (USA). Inst. for Cognitive Science, 1986. D.-K. Kim, T. Suezawa, T. Mega, H. Kikuchi, E. Yoshikawa, P. Baron, and T. Ushio. Improving precipitation nowcasting using a three-dimensional convolutional neu- ral network model from multi parameter phased array weather radar observations. Atmospheric Research, 262:105774, 2021. S. Kim, S. Hong, M. Joh, and S.-k. Song. Deeprain: Convlstm network for precipitation prediction using multichannel radar data. arXiv preprint arXiv:1711.02316, 2017. R. Kimura. Numerical weather prediction. Journal of Wind Engineering and Industrial Aerodynamics, 90(12-15):1403–1414, 2002. Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, and L. Jackel. Handwritten digit recognition with a back-propagation network. Advances in neural information processing systems, 2, 1989. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to doc- ument recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. J. Leinonen. Spatiotemporal weather data predictions with shortcut recurrent- convolutional networks: A solution for the weather4cast challenge. arXiv preprint arXiv:2111.02121, 2021. L. Li, W. Schmid, and J. Joss. Nowcasting of motion and growth of precipitation with radar over a complex orography. Journal of applied meteorology and climatology, 34 (6):1286–1300, 1995. Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anand- kumar. Fourier neural operator for parametric partial differential equations. arXiv preprint arXiv:2010.08895, 2020. S. Lovejoy, J. Pinel, and D. Schertzer. The global space–time cascade structure of precipitation: Satellites, gridded gauges and reanalyses. Advances in Water Resources, 45:37–50, 2012. ISSN 0309-1708. doi: https://doi.org/10.1016/j.advwatres. 2012.03.024. URL https://www.sciencedirect.com/science/article/pii/ S0309170812000796. Space-Time Precipitation from Urban Scale to Global Change. K. C. Luk, J. E. Ball, and A. Sharma. An application of artificial neural networks for rainfall forecasting. Mathematical and Computer modelling, 33(6-7):683–693, 2001. C. Luo, X. Li, Y. Wen, Y. Ye, and X. Zhang. A novel lstm model with interaction dual attention for radar echo extrapolation. Remote Sensing, 13(2):164, 2021a. J. Luo, H. Qiao, and B. Zhang. Learning with smooth hinge losses. Neurocomputing, 463:379–387, 2021b. S. Marcel and Y. Rodriguez. Torchvision the machine-vision package of torch. In Proceedings of the 18th ACM international conference on Multimedia, pages 1485– 1488, 2010. F. S. Marzano, G. Rivolta, E. Coppola, B. Tomassetti, and M. Verdecchia. Rainfall nowcasting from multisatellite passive-sensor images using a recurrent neural network. IEEE Transactions on Geoscience and Remote Sensing, 45(11):3800–3812, 2007. D. W. McCann. A neural network short-term forecast of significant thunderstorms. Weather and Forecasting, 7(3):525–534, 1992. M. Mirza and S. Osindero. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784, 2014. K. F. Neocognitron. A self-organizing neural network model for a mechanism of pat- tern recognition unaffected by shift in position. Biological cybernetics, 36(4):193–202, 1980. C. Onof and L.-P. Wang. Modelling rainfall with a bartlett–lewis process: new develop- ments. Hydrology and Earth System Sciences, 24(5):2791–2815, 2020. S. Oprea, P. Martinez-Gonzalez, A. Garcia-Garcia, J. A. Castro-Vargas, S. Orts-Escolano, J. Garcia-Rodriguez, and A. Argyros. A review on deep learning techniques for video prediction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020. K. O’Shea and R. Nash. An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458, 2015. T.-y. Pan and R.-y. Wang. Using recurrent neural networks to reconstruct rainfall-runoff processes. Hydrological Processes: An International Journal, 19(18):3603–3619, 2005. T.-y. Pan, R.-y. Wang, and J.-s. Lai. A deterministic linearized recurrent neural network for recognizing the transition of rainfall–runoff processes. Advances in Water Resources, 30(8):1797–1814, 2007. R. Prudden, S. Adams, D. Kangin, N. Robinson, S. Ravuri, S. Mohamed, and A. Arribas. A review of radar-based nowcasting of precipitation and applicable machine learning techniques. arXiv preprint arXiv:2005.04988, 2020. S. Pulkkinen, D. Nerini, A. A. Pérez Hortal, C. Velasco-Forero, A. Seed, U. Germann, and L. Foresti. Pysteps: an open-source python library for probabilistic precipitation nowcasting (v1. 0). Geoscientific Model Development, 12(10):4185–4219, 2019. S. Ravuri, K. Lenc, M. Willson, D. Kangin, R. Lam, P. Mirowski, M. Fitzsimons, M. Athanassiadou, S. Kashem, S. Madge, et al. Skilful precipitation nowcasting us- ing deep generative models of radar. Nature, 597(7878):672–677, 2021. R. Rinehart and E. Garvey. Three-dimensional storm motion detection by conventional weather radar. Nature, 273(5660):287–289, 1978. G. Rivolta, F. Marzano, E. Coppola, and M. Verdecchia. Artificial neural-network tech- nique for precipitation nowcasting from satellite imagery. Advances in Geosciences, 7: 97–103, 2006. A. Robert. A stable numerical integration scheme for the primitive meteorological equa- tions. Atmosphere-Ocean, 19(1):35–46, 1981. O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention, pages 234–241. Springer, 2015. D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error propagation. Technical report, California Univ San Diego La Jolla Inst for Cognitive Science, 1985. E. Ruzanski and V. Chandrasekar. Scale filtering for improved nowcasting performance in a high-resolution x-band radar network. IEEE transactions on geoscience and remote sensing, 49(6):2296–2307, 2011. S. Samsi, C. J. Mattioli, and M. S. Veillette. Distributed deep learning for precipitation nowcasting. In 2019 IEEE High Performance Extreme Computing Conference (HPEC), pages 1–7. IEEE, 2019. C. Sandford. Correcting for wind drift in high resolution radar rainfall products: a feasi- bility study. Journal of Hydrology, 531:284–295, 2015. ISSN 0022-1694. doi: https: //doi.org/10.1016/j.jhydrol.2015.03.023. URL https://www.sciencedirect.com/ science/article/pii/S0022169415001948. Hydrologic Applications of Weather Radar. J. S. Sawyer. A semi-lagrangian method of solving the vorticity advection equation. Tellus, 15(4):336–342, 1963. J. T. Schaefer. The critical success index as an indicator of warning skill. Weather and forecasting, 5(4):570–575, 1990. D. Schertzer and S. Lovejoy. Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processes. Journal of Geophysical Research: Atmospheres, 92(D8):9693–9714, 1987. doi: https://doi.org/10.1029/ JD092iD08p09693. URL https://agupubs.onlinelibrary.wiley.com/doi/ abs/10.1029/JD092iD08p09693. A. Seed. A dynamic and spatial scaling approach to advection forecasting. Journal of Applied Meteorology, 42(3):381–388, 2003a. A. W. Seed. A dynamic and spatial scaling approach to advection forecasting. Journal of Applied Meteorology, 42(3):381 – 388, 2003b. doi: 10.1175/1520-0450(2003) 042<0381:ADASSA>2.0.CO;2. URL https://journals.ametsoc.org/view/ journals/apme/42/3/1520-0450_2003_042_0381_adassa_2.0.co_2.xml. X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-c. Woo. Convolutional lstm network: A machine learning approach for precipitation nowcasting. Advances in neural information processing systems, 28, 2015. X. Shi, Z. Gao, L. Lausen, H. Wang, D.-Y. Yeung, W.-k. Wong, and W.-c. Woo. Deep learning for precipitation nowcasting: A benchmark and a new model. Advances in neural information processing systems, 30, 2017. D. Silverman and J. A. Dracup. Artificial neural networks and long-range precipitation prediction in california. Journal of applied meteorology, 39(1):57–66, 2000. C. K. Sønderby, L. Espeholt, J. Heek, M. Dehghani, A. Oliver, T. Salimans, S. Agrawal, J. Hickey, and N. Kalchbrenner. Metnet: A neural weather model for precipitation forecasting. arXiv preprint arXiv:2003.12140, 2020. Y. M. Souto, F. Porto, A. M. Moura, and E. Bezerra. A spatiotemporal ensemble approach to rainfall forecasting. In 2018 International Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2018. D. Sun, J. Wu, H. Huang, R. Wang, F. Liang, and H. Xinhua. Prediction of short-time rainfall based on deep learning. Mathematical Problems in Engineering, 2021, 2021. Y. Tessier, S. Lovejoy, and D. Schertzer. Universal multifractals: Theory and ob- servations for rain and clouds. Journal of Applied Meteorology and Climatology, 32(2):223 – 250, 1993. doi: 10.1175/1520-0450(1993)032<0223:UMTAOF>2. 0.CO;2. URL https://journals.ametsoc.org/view/journals/apme/32/2/ 1520-0450_1993_032_0223_umtaof_2_0_co_2.xml. L. Tian, X. Li, Y. Ye, P. Xie, and Y. Li. A generative adversarial gated recurrent unit model for precipitation nowcasting. IEEE Geoscience and Remote Sensing Letters, 17 (4):601–605, 2019. Z. Tong and G. Tanaka. Hybrid pooling for enhancement of generalization ability in deep convolutional neural networks. Neurocomputing, 333:76–85, 2019. K. Trebing, T. Staǹczyk, and S. Mehrkanoon. Smaat-unet: Precipitation nowcasting using a small attention-unet architecture. Pattern Recognition Letters, 145:178–186, 2021. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin. Attention is all you need. Advances in neural information processing systems, 30, 2017. L. Xiao, J. Pennington, and S. Schoenholz. Disentangling trainability and generalization in deep neural networks. In International Conference on Machine Learning, pages 10462– 10472. PMLR, 2020. Q. Yan, F. Ji, K. Miao, Q. Wu, Y. Xia, and T. Li. Convolutional residual-attention: A deep learning approach for precipitation nowcasting. Advances in Meteorology, 2020, 2020. J. Yin, Z. Gao, and W. Han. Application of a radar echo extrapolation-based deep learning method in strong convection nowcasting. Earth and Space Science, 8(8): e2020EA001621, 2021. W. Zhang, L. Han, J. Sun, H. Guo, and J. Dai. Application of multi-channel 3d-cube successive convolution network for convective storm nowcasting. In 2019 IEEE International Conference on Big Data (Big Data), pages 1705–1710. IEEE, 2019a. W. Zhang, W. Li, and L. Han. A three-dimensional convolutional-recurrent network for convective storm nowcasting. In 2019 IEEE International Conference on Big Knowledge (ICBK), pages 333–340. IEEE, 2019b.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86383-
dc.description.abstract近年來,機器學習在語音識別、醫學、材料等多個科學領域皆有重大突破。 部分基於機器學習實現極短期定量降水預報研究指出,其模型之預報表現在特定 量化指標中優於傳統方法預報結果。儘管機器學習預報在研究數據上更具優勢, 但其產生之預報容易有空間細節流失、影像過於平滑等問題,使其難以活用於實務上。在預估流量、洪水預報等應用上,可描述局部降雨峰值變化之高解析度預報尤為重要。 綜上所述,本研究旨於探討機器學習應用於極短期降雨預報之能力,並提升機器學習預報描述空間細節之能力。通過分析基於生成對抗網路框架的機器學習降水預報方法 (Ravuri et al., 2021),本文總結了致使預報影像平滑之原因及可能改善方法,並針對此缺失提出了基於傅立葉之神經網路模型。為評估其預報表現, 本文比較了傅立葉神經網路與諸多先進的極短期定量降水預報方法。儘管成果指出傅立葉神經網路模型無法提升的整體預報表現,但其有效的提升了機器學習模型描述空間細節之能力。zh_TW
dc.description.abstractMachine learning (ML) has led to significant breakthroughs in various scientific fields, such as speech recognition, medical, materials, and many more. In recent years, a variety of attempts to apply ML to short-term rainfall forecasting (nowcasting) were also reported. These models have demonstrated the potential gains that might be achieved with ML-based nowcasting models; and in some literature, ML-based methods have been reported to outperform the state-of-the-art non-ML nowcasting methods. However, the predicted rainfall images from many of these models (and their variants) become overly smooth rather quickly; this is a common ’feature’ of many other ML models. This means that significant amount of spatial rainfall details is lost, which is undesirable for certain hy- drological applications, such urban flow and flood forecasting where small-scale rainfall variability in particular localised peaks may have tangible impacts. To address the above issues, this thesis focuses on exploring the capacity of ML-based nowcasting methods. More specifically, through investigating existing ML-based methods and through reproducing the state-of-the-art ML-based model a nowcasting model proposed by DeepMind in 2021 based upon a Generative Adversarial Network (GAN) framework (Ravuri et al., 2021), the key techniques employed by these methods are iden- tified and analyzed. Based upon this, a new ML-based model that incorporates a modified Fourier neural operator is proposed and compared with a number of cutting-edge nowcast- ing models. The comparison results suggest that, although the proposed model does not lead to the best overall performance, its ability to reproduce the observed rainfall features across various spatial scales demonstrates the potential of the proposed model.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:52:38Z (GMT). No. of bitstreams: 1
U0001-2308202210530800.pdf: 91054843 bytes, checksum: 1d237ccf1cc7ae1979d7a4a55adc55c0 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i Acknowledgements iii 摘要 v Abstract vii Contents ix List of Figures xiii List of Tables xxi Chapter 1 Introduction 1 1.1 Background and Motivations 1 1.2 Research Questions and Objectives 2 1.3 Thesis outline 3 Chapter 2 Literature review 5 2.1 Advection-based nowcasting 5 2.1.1 NWP verses radar-based nowcasting 5 2.1.2 Assumptions in advection field estimation 7 2.1.3 Advection field estimation 8 2.2 Machine Learning based methods 11 2.2.1 Multi-Layer Perceptron 11 2.2.2 Convolution Neural Network 12 2.2.3 Recurrent neural network and its variants 14 2.2.3.1 Recurrent Neural Network 15 2.2.3.2 Long Short-Term Memory 16 2.2.3.3 Gated Recurrent Unit 19 Chapter 3 Methodology 21 3.1 Learning from the best: a deep look into DGMR 21 3.1.1 Deep Generative Models of Radar 22 3.1.2 Adversarial training 26 3.1.3 Overview of nowcast generation 28 3.1.4 Space to depth 30 3.1.5 Convolutional Gated Recurrent Unit (ConvGRU) 33 3.1.6 Key lessons learned from reproducing DGMR 35 3.2 A new nowcast generator based upon Fourier Neural Operator 37 3.2.1 Overview of model structure 39 3.2.2 Incorporating spatial features of rainfall across multiple scales 40 3.2.3 Spatial-temporal sequence learning model 44 Chapter 4 Evaluation and Case Studies 47 4.1 Data and pre-processing 47 4.2 Evaluation methodology 50 4.2.1 Experimental design 50 4.2.1.1 Selected models for comparisons 50 4.2.1.2 Experimental and model settings 50 4.2.1.3 Storm event selection 51 4.2.2 Performance metrics 52 4.2.2.1 Measures of the difference between the forecasted and the obeserved 53 4.2.2.2 Measures of categorical forecast performance 54 4.2.2.3 Measures of spatial structure preservation across scales 55 4.3 Result & Discussion 56 4.3.1 Spatial feature preservation 56 4.3.2 Forecast skills 58 4.3.3 Overall forecast performance 60 4.3.4 Known problems of the selected ML-based nowcasting models 62 Chapter 5 Conclusions and Future Works 77 5.1 Summary of works and findings 77 5.2 Recommendations for the future works 81 References 83 Appendix A - Case studies 97 A.1 Predictions of each event 97 A.2 Metrics of each event 101 Appendix B - Testing dataset 141 B.1 Metrics 141
dc.language.isoen
dc.subject機器學習zh_TW
dc.subject短延時降雨預測zh_TW
dc.subject傅立葉神經運算子zh_TW
dc.subject降雨zh_TW
dc.subject機器學習zh_TW
dc.subject深度學習zh_TW
dc.subject雷達zh_TW
dc.subject降雨zh_TW
dc.subject傅立葉神經運算子zh_TW
dc.subject短延時降雨預測zh_TW
dc.subject雷達zh_TW
dc.subject深度學習zh_TW
dc.subjectnowcastingen
dc.subjectFourier neural operatoren
dc.subjectmachine learningen
dc.subjectdeep learningen
dc.subjectradaren
dc.subjectrainfallen
dc.subjectFourier neural operatoren
dc.subjectnowcastingen
dc.subjectmachine learningen
dc.subjectdeep learningen
dc.subjectradaren
dc.subjectrainfallen
dc.title傅立葉神經運算子在短延時降雨預測之應用zh_TW
dc.titleIs Fourier all we need? A simple yet efficient model for radar rainfall nowcastingen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳俊杉(Chuin-Shan Chen),李天浩(Tim-Hau Lee)
dc.subject.keyword傅立葉神經運算子,短延時降雨預測,機器學習,深度學習,雷達,降雨,zh_TW
dc.subject.keywordFourier neural operator,nowcasting,machine learning,deep learning,radar,rainfall,en
dc.relation.page145
dc.identifier.doi10.6342/NTU202202688
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-08-23
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
dc.date.embargo-lift2024-08-23-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
U0001-2308202210530800.pdf88.92 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved