Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86371
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曾泰琳(Tai-Lin Tseng)
dc.contributor.authorHsuan-Hsiu Huangen
dc.contributor.author黃暄琇zh_TW
dc.date.accessioned2023-03-19T23:51:54Z-
dc.date.copyright2022-08-26
dc.date.issued2022
dc.date.submitted2022-08-24
dc.identifier.citationAbers, G. A., et al. (2003). The wet Nicaraguan slab. Geophysical Research Letters, 30(2). doi: 10.1029/2002GL015649 Abers, G. A. (2005). Seismic low-velocity layer at the top of subducting slabs: observations, predictions, and systematics. Physics of the Earth and Planetary Interiors, 149(1-2), 7- 29. doi: 10.1016/j.pepi.2004.10.002 Alterman, Z., & Karal Jr, F. C. (1968). Propagation of elastic waves in layered media by finite difference methods. Bulletin of the Seismological Society of America, 58(1), 367-398. doi: 10.1785/BSSA0580010367 Chapman, C. H.(2004). Fundamentals of Seismic Wave Propagation, Cambridge Univ. Press Chen, C. H., Li, C. P., & Teng, T. L. (2002). Surface-wave dispersion measurements using Hilbert-Huang transform. Terrestrial Atmospheric and Oceanic Sciences, 13(2), 171-184. Chen, K. H., Kennett, B. L., & Furumura, T. (2013). High‐frequency waves guided by the subducted plates underneath Taiwan and their association with seismic intensity anomalies. Journal of Geophysical Research: Solid Earth, 118(2), 665-680. doi: 10.1002/jgrb.50071 Chou, H. C., Kuo, B. Y., Chiao, L. Y., Zhao, D., & Hung, S. H. (2009). Tomography of the westernmost Ryukyu subduction zone and the serpentinization of the fore‐arc mantle. Journal of Geophysical Research: Solid Earth, 114(B12). doi:10.1029/2008JB006192 Coulson, S., Garth, T., & Rietbrock, A. (2018). Velocity structure of the subducted Yakutat terrane, Alaska: Insights from guided waves. Geophysical Research Letters, 45(8), 3420-3428. doi: 10.1002/2017GL076583 Coutant, O., Virieux, J., & Zollo, A. (1995). Numerical source implementation in a 2D finite difference scheme for wave propagation. Bulletin of the Seismological Society of America, 85(5), 1507-1512. doi: 10.1785/BSSA0850051507 Dziewonski, A., Bloch, S., & Landisman, M. (1969). A technique for the analysis of transient seismic signals. Bulletin of the seismological Society of America, 59(1), 427-444. doi: 10.1785/BSSA0590010427 Frohlich, C. (1989). The nature of deep-focus earthquakes. Annual Review of Earth and Planetary Sciences, 17, 227. doi: 10.1146/annurev.ea.17.050189.001303 Fukao, Y., Hori, S., & Ukawa, M. (1983). A seismological constraint on the depth of basalt–eclogite transition in a subducting oceanic crust. Nature, 303(5916), 413-415. doi:10.1038/303413a0 Furumura, T., and Kennett, B. L. N. (2005). Subduction zone guided waves and the heterogeneity structure of the subducted plate: Intensity anomalies in northern Japan. Journal of Geophysical Research, 110(B10). doi:10.1029/2004jb003486 Garth, T. and A. Rietbrock (2014). Downdip velocity changes in subducted oceanic crust beneath Northern Japan—insights from guided waves. Geophysical Journal International, 198(3), 1342-1358. doi: 10.1093/gji/ggu206 Helffrich, G. (1996). Subducted lithospheric slab velocity structure: Observations and mineralogical inferences. in Subduction: top to bottom, Geophysical Monograph, 96, edited by G.E. Bebout et al., pp. 215-222. doi: doi.org/10.1029/GM096p0215 Hori, S., Inoue, H., Fukao, Y., & Ukawa, M. (1985). Seismic detection of the untransformed ‘basaltic’oceanic crust subducting into the mantle. Geophysical Journal International, 83(1), 169-197. doi: 10.1111/j.1365-246X.1985.tb05162.x Hori, S. (1990). Seismic waves guided by untransformed oceanic crust subducting into the mantle: the case of the Kanto district, central Japan. Tectonophysics, 176(3-4), 355-376. doi:10.1016/0040-1951(90)90078-m Hou, C. S., Hu, J. C., Ching, K. E., Chen, Y. G., Chen, C. L., Cheng, L. W., ... & Lo, C. H. (2009). The crustal deformation of the Ilan Plain acted as a westernmost extension of the Okinawa Trough. Tectonophysics, 466(3-4), 344-355. doi: 10.1016/j.tecto.2007.11.022 Huang, H. H., Wu, Y. M., Song, X., Chang, C. H., Lee, S. J., Chang, T. M., & Hsieh, H. H. (2014). Joint Vp and Vs tomography of Taiwan: Implications for subduction-collision orogeny. Earth and Planetary Science Letters, 392, 177-191. doi: 10.1016/j.epsl.2014.02.026 Kao, H., & Rau, R. J. (1999). Detailed structures of the subducted Philippine Sea plate beneath northeast Taiwan: a new type of double seismic zone. Journal of Geophysical Research: Solid Earth, 104(B1), 1015-1033. doi:10.1029/1998jb900010. Kennett, B. L. N., & Engdahl, E. R. (1991). Traveltimes for global earthquake location and phase identification. Geophysical Journal International, 105(2), 429-465. doi: 10.1111/j.1365-246X.1991.tb06724.x Lin, J. Y., Hsu, S. K., & Sibuet, J. C. (2004). Melting features along the western Ryukyu slab edge (northeast Taiwan): Tomographic evidence. Journal of Geophysical Research: Solid Earth, 109(B12). doi:10.1029/2004JB003260. Li, D. Z., et al. (2014). Li, D., Helmberger, D., Clayton, R. W., & Sun, D. (2014). Global synthetic seismograms using a 2-D finite-difference method. Geophysical Journal International, 197(2), 1166-1183. doi: 10.1093/gji/ggu050 Lin, C. H., Shih, M. H., & Lai, Y. C. (2020). A strong seismic reflector within the mantle wedge above the Ryukyu subduction of Northern Taiwan. Seismological Research Letters, 91(1), 310-316. doi: 10.1785/0220190174 Martin, S., et al. (2005). Forearc decoupling of guided waves in the Chile-Peru subduction zone. Geophysical Research Letters, 32(23). doi: 10.1029/2005GL024183 Martin, S., & Rietbrock, A. (2006). Guided waves at subduction zones: dependencies on slab geometry, receiver locations and earthquake sources. Geophysical Journal International, 167(2), 693-704. doi: 10.1111/j.1365-246X.2006.02963.x Su, P. L., Chen, P. F., & Wang, C. Y. (2019). High‐Resolution 3‐DP Wave Velocity Structures Under NE Taiwan and Their Tectonic Implications. Journal of Geophysical Research: Solid Earth, 124(11), 11601-11614. doi:10.1029/2019JB018697 Sun, D., Miller, M. S., Agostinetti, N. P., Asimow, P. D., & Li, D. (2014). High frequency seismic waves and slab structures beneath Italy. Earth and Planetary Science Letters, 391, 212-223. doi: 10.1016/j.epsl.2014.01.034 Vidale, J., Helmberger, D. V., & Clayton, R. W. (1985). Finite-difference seismograms for SH waves. Bulletin of the Seismological Society of America, 75(6), 1765-1782. doi: 10.1785/BSSA0750061765 Vidale, J. E., & Helmberger, D. V. (1987). Seismic strong motion synthetics, in Computational Techniques—4. Wu, Y. M., Chang, C. H., Zhao, L., Teng, T. L., & Nakamura, M. (2008). A comprehensive relocation of earthquakes in Taiwan from 1991 to 2005. Bulletin of the Seismological Society of America, 98(3), 1471-1481. doi:10.1785/0120070166. Wang, Y., Takenaka, H., & Furumura, T. (2001). Modelling seismic wave propagation in a two dimensional cylindrical whole earth model using the pseudospectral method. Geophysical Journal International, 145(3), 689-708. doi:10.1046/j.1365-246x.2001.01413.x 林鈺真(2020),南琉球隱沒帶中深層地震的波型特徵和分類,國立台灣大學地質科學研究所碩士論文,共 94 頁。 周芝吟(2022),以二維頻譜元素法模擬地震波經岩漿庫、地函貫入體和隱沒帶異質構造的波傳現象和合成波形:以北台灣為例,國立台灣大學地質科學研究所碩士論文,共 103頁。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86371-
dc.description.abstract隱沒帶地震產生低頻初達波(小於2赫茲)接續高頻(大於3赫茲)尾波的導波特徵在琉球隱沒帶南北兩端以及日本、阿留申、南美洲都曾被發現,過去在台灣地區則有學者認為觀測到的高頻且大振幅尾波是由地震波在具有小尺度異質體板塊內的多重散射產生,也有研究透過一維波形模擬認為導波之波形特徵為主要是由板塊中低速層狀構造配合小尺度非均質體引起。本研究使用於北台灣地區架設的密集地震觀測網—台灣陣列,以2019年間三起規模大於四且深度大於200公里的琉球隱沒帶南段中深層地震事件,探究導波在台灣北部的空間分佈和該現象相關聯的二維速度構造。 首先,本研究利用高斯時頻分析辨識地震波形是否具有P波頻散特徵並透過時頻圖輔助來挑選高頻訊號到時。發現除東北角沿岸地區以及大屯山區域的測站外,台灣陣列大多數都能觀測到頻散現象,指示出該特徵可能與方位角無關而是一定程度受到震央距及深部構造的影響。藉由三起事件的垂直分量波形記錄,可以歸納出三個主要的特徵,分別是(一)、低頻初達和高頻(3赫茲)訊號的時間差會由震央距50公里處的3秒減少至震央距100公里處的0.5秒;(二)、延遲高頻訊號相對於初達的低頻訊號具有較大的振幅,震央距在70公里和100公里左右特別顯著;(三)、隨震央距縮短(70至50公里)會發現高頻訊號振幅削弱的情形。 接著,運用二維有限差分法探尋南琉球隱沒帶中和導波相關聯的速度構造形貌。本研究成功透過250公里深的中深部地震波傳行經隱沒板塊最上方約8公里厚、速度變化負7%的低速薄層,擬合出低頻初達波接續高頻波包與相對振幅的特徵。然而,由於這些高頻波包開始出現的位置為震央距120公里之後,表示前述構造無法解釋在台灣陣列(震央距120公里以內)觀測到的頻率變化,仍須將不同速度構造納入考量。根據測試結果,在隱沒板塊150公里深上方加入一個與背景相差5%的低速條帶即可在震央距60至100公里處產生初達訊號後的一高頻波包,與前述的特徵(一)相似。 本研究首次偵測出隱沒帶弧前區域的P波頻散現象,同時印證菲律賓海板塊最上層存在低速薄層是解釋台灣地區波形特徵的一項必要條件。而雪山山脈最北端地下35公里至150公里深處存在的低速條帶配合隱沒板塊上覆的低速薄層,為現階段推論最有可能產生近震央距處(120公里以內)頻散現象的最適構造。zh_TW
dc.description.abstractSubduction zone guided wave, often characterized by low frequency (<2 Hz) first P arrival followed by high frequency (> 3Hz) coda, had been discovered around the Pacific including Taiwan. Such phenomenon of delayed high frequency energy is often associated with multiple scattering from small scale heterogeneities inside the subducting slab, and/or the dispersive nature of P wave created by low-velocity structure near the slab top. In this study, we use dense Formosa array (FMarray) to investigate the waveform dispersions, propagation of guided wave from three intermediate-depth earthquakes (with magnitudes above 4 and depth greater than 200 km) in 2019 in the Ryukyu subduction zone, aiming to understand the plausible 2D velocity structures beneath northeast Taiwan. We first calculate the spectrogram to identify dispersion property of P wave and mark up the arrivals of high-frequency packets in the waveforms. Data from FMarray generally show the property of low-frequency initial wave and the delayed high frequency (>3 Hz) packet with clear move-out, except for those stations nearest to the northeastern coast and Tatun Volcanic region. The consistencies among three events infer that the systematic variation in waveforms consisting guided waves is insensitive to azimuth and is more dependent of epicentral distances as well as deep structures beneath. Seismic profiles reveal three key features: (1) relative time between high- and low-frequency energy reduces gradually from 2.0–2.5 s to 0.5–1.0 s as epicentral distance increases from 50 km to 100 km toward the trench, (2) relative amplitude shows systematic changes with the strongest high-frequency arrivals at the distance range between 70 and 95 km, and (3) high-frequency arrival diminishes very quickly within 20 km distance from ~70 km toward the source, and is completely undetectable (no dispersion) at distance of 50 km. To pinpoint the structures responsible for the waveform properties observed, we further use 2D finite difference method to simulate seismic waveforms. We successfully produce the delayed high-frequency wavelet and its relative amplitude in simulated waveform using a model for a 250 km deep earthquake located inside a low-velocity layer (LVL) with VP of about -7% (relative to slab mantle) and thickness of 8 km in the top portion of the plate subducting at 60˚. However, the predicted high-frequency signals appear at epicentral distance beyond 120 km, which fail to explain the large energy and delay time observed at shorter distances unless another slow-anomaly in the wedge is implemented. According to our synthetic tests, there should be a low-velocity channel (with VP of about -5% relative to surrounding mantle, or equivalently -7% to slab mantle) on top of the dipping slab, in order to produce high-frequency wavelet in epicentral distance 60-100 km as the feature (1) mentioned above. To conclude, our study gives the first sight of P-wave dispersion in the forearc region, and verifies that a LVL in the upper part of subducting Philippine sea plate is required in explaining the overall features of guided waves detected in northern Taiwan. To further reconcile the dispersion observed at near-side stations of FMarray (within epicentral distance of 120 km), we propose the existence of another low-velocity channel underneath northern Hsuehshan Range.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:51:54Z (GMT). No. of bitstreams: 1
U0001-2408202211483300.pdf: 9926994 bytes, checksum: 942c91e9b7674d7995fe8734bcc041b9 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員審定書 …………………………………………………………………………………ⅱ 致謝 …………………………………………………………………………………………………ⅲ 中文摘要 ……………………………………………………………………………………………ⅳ Abstract ………………………………………………………………………………………………ⅴ 目錄 ………………………………………………………………………………………………… vii 圖目錄 ………………………………………………………………………………………………ⅰⅹ 表目錄 …………………………………………………………………………………………ⅹⅰ 第一章 緒論 ……………………………………………………………………………………… 1 1.1 導波的前人研究 ………………………………………………………………………1 1.1.1 導波的特性與形成原因 ………………………………………………………1 1.1.2 台灣的導波研究 ………………………………………………………………4 1.2 琉球隱沒帶南段之地體構造與地震特性 …………………………………………7 1.3 研究動機與目的 ………………………………………………………………………11 1.4 論文內容 ………………………………………………………………………………12 第二章 研究方法與原理 ………………………………………………………………………13 2.1 高斯時頻分析 …………………………………………………………………………13 2.2 有限差分法 ……………………………………………………………………………14 第三章 資料與分析 ……………………………………………………………………………19 3.1 資料來源與測站分布 ………………………………………………………………19 3.2 資料篩選與前置處理 …………………………………………………………………21 3.3 高斯時頻圖之分析 ……………………………………………………………………25 3.4 有限差分法之參數設定 ………………………………………………………………27 第四章 結果與討論 ………………………………………………………………………………29 4.1 高斯時頻分析之結果 ………………………………………………………………29 4.1.1 台灣陣列接收之頻率特徵 …………………………………………………29 4.1.2 頻散現象於台灣陣列之空間分布 …………………………………………31 4.1.3 高頻訊號隨震央具之特徵變化歸納 ………………………………………32 4.2 二維有限差分法模模擬結果 ………………………………………………………35 4.2.1 隱沒帶原始模型與假設 ……………………………………………………35 4.2.2 不同震源種類與位置之測試 ………………………………………………40 4.2.3 不同隱沒角度之測試 ………………………………………………………42 4.2.4 隱沒帶折彎處之測試 ………………………………………………………44 4.2.5 水平低速層狀構造之測試 …………………………………………………46 4.2.6 低速塊狀構造之測試 ………………………………………………………48 4.3 二維有限差分法模擬結果與其他速度模型比較 ………………………………54 第五章 結論 ………………………………………………………………………………………58 參考文獻 ……………………………………………………………………………………………59 附錄A 測站資訊 …………………………………………………………………………………62 附錄B 地震事件時頻圖 ………………………………………………………………………66 附錄C其他低速層深度測試 …………………………………………………………………78 附錄D深度150公里塊體速度快慢測試 …………………………………………………79
dc.language.isozh-TW
dc.subject有限差分模擬zh_TW
dc.subject福爾摩沙陣列zh_TW
dc.subjectP波頻散zh_TW
dc.subject導波zh_TW
dc.subject琉球隱沒帶zh_TW
dc.subjectRyukyu subduction zoneen
dc.subjectfinite-difference modelingen
dc.subjectP-wave dispersionen
dc.subjectguided waveen
dc.subjectFormosa arrayen
dc.title以臺灣陣列探討南琉球隱沒帶中深層地震頻散特徵與二維地震波場模擬zh_TW
dc.titleCharacteristics of P-Wave Dispersion from Intermediate-Depth Events in Southern Ryukyu Subduction Zone Revealed by Formosa Array and 2D Seismic Wavefield Simulationsen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.coadvisor柯彥廷(Yen-Ting Ko)
dc.contributor.oralexamcommittee黃柏壽(Bor-Shouh Huang),陳伯飛(Po-Fei Chen),洪淑蕙(Shu-Huei Hung)
dc.subject.keyword琉球隱沒帶,導波,P波頻散,福爾摩沙陣列,有限差分模擬,zh_TW
dc.subject.keywordRyukyu subduction zone,guided wave,P-wave dispersion,Formosa array,finite-difference modeling,en
dc.relation.page79
dc.identifier.doi10.6342/NTU202202744
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-08-24
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
dc.date.embargo-lift2022-08-26-
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
U0001-2408202211483300.pdf9.69 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved