Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86369
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳瑞北(Ruey Beei Wu)
dc.contributor.authorWei-Hsien Tsengen
dc.contributor.author曾瑋賢zh_TW
dc.date.accessioned2023-03-19T23:51:47Z-
dc.date.copyright2022-08-24
dc.date.issued2022
dc.date.submitted2022-08-24
dc.identifier.citation[1] J. Shen et al., 'Ultra-Wideband Surface Acoustic Wave Filters Based on the Cu/LiNbO3/SiO2/SiC Structure,' IEEE International Ultrasonics Symposium (IUS), 2021 [2] O. L. Balysheva, 'SAW filters and mobile communication systems 5G,' 2021 Wave Electron. Appl. Information Telecomm. Syst. (WECONF), 2021, pp. 1-5 [3] R. Aigner, 'SAW and BAW technologies for RF filter applications: A review of the relative strengths and weaknesses,' IEEE International Ultrasonics Symposium (IUS), 2008, pp. 582-589. [4] H. K. J. Ten Dolle, J.-W. Lobeek, A. Tuinhout, and J. Foekema, “Balanced lattice-ladder bandpass filter in bulk acoustic wave technology,” IEEE MTT-S Int. Microw. R.Aigner.SAW , BAW and the future of wireless.[Online]. https://www.edn.com/saw-baw-and-the-future-of-wireless/ [5] S. Gong and G. Piazza, 'Design and analysis of Lithium–Niobate-based high electro-mechanical coupling RF-MEMS resonators for wideband filtering,' IEEE Trans. Microw. Theory Tech., vol. 61, no. 1, pp. 403-414, Jan. 2013. [6] Detaint, B. Capelle, and Y. Epelboin, 'New materials and new devices for filtering in radio- communication systems,' 2006 IEEE Int. Freq. Control Symp, Expo., pp. 649-657, June 2006. [7] Q. Yang, W. Pang, and D. Zhang, “A wideband bulk acoustic wave filter with modified lattice configuration,' 2015 IEEE MTT-S Int. Microw. Symp., Phoenix, AZ, USA, July 2015. [8] J. Heighway, S. N. Kondratyev and V. P. Plessky, “Balanced bridge impedance element SAW filters,” EFTF, Munchen, pp. 880-885, 1994 [9] Kun Wang, M. Frank, P. Bradley, R. Ruby, W. Mueller, A. Barfknecht, and M. Gat., 'FBAR Rx filters for handset front-end modules with wafer-level packaging,' IEEE Symposium on Ultrasonics, 2003, pp. 162-165 Vol.1. [10] H. Jin, S. R. Dong, D. M. Wang “Design of Rx filter for WCDMA direct-conversion front-end using FBAR technology” 2005 2nd Asia Pacific Conf. Mobile Technol., Appl. Syst., 2005. [11] RF Front End Modules and Components for Cellphones report, Yole Développement, 2017 [12] V. Chauhan, C. Huck, A. Frank, W. Akstaller, R. Weigel and A. Hagelauer, 'Enhancing RF bulk acoustic wave devices: Multiphysical modeling and performance,' IEEE Microw. Mag., vol. 20, no. 10, pp. 56-70, Oct. 2019. [13] J. S. Hong, and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications. 2nd Edition, John Wiley & Sons Ltd., Hoboken. 2011 [14] M. Kirschning and R. H. Jansen, “Accurate wide-range design equations for the frequency-dependent characteristic of parallel coupled microstrip lines,” IEEE Trans. Microw. Theory Tech., vol. MTT-32, pp. 83-90, Jan. 1984. [15] R.Aigner.SAW , BAW and the future of wireless.[Online]. https://www.edn.com/saw-baw-and-the-future-of-wireless/ [16] M. Chatras, S. Bila, S. Giraud, L. Catherinot, J. Fan, D. Cros, M. Aubourg, A. Flament, A. Frappé, B. Stefanelli, A. Kaiser, A. Cathelin, J. B. David, A. Reinhardt, and L. L. a. Kerhervé, 'Modeling and design of BAW resonators and filters for integration in a UMTS transmitter', in Modeling Measurement Methods for Acoustic Waves and for Acoustic Microdevices. London, UK: IntechOpen, 2013 [Online]. [17] 曾豎元(2022),應用於5G載波聚合之表面聲波濾波器模組設計與實踐。博士論文,國立臺灣大學電信工程學研究所。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86369-
dc.description.abstract本論文研究聲波濾波器設計,針對晶格型組合架構分別利用解析解以及數值解兩種方法,萃取出單級晶格型聲波共振器等效電路參數。並依照此方法,針對基於YX 〖42〗^°切角的鉭酸鋰(機電耦合係數約6%),使濾波器之S參數頻率響應盡量滿足系統規格。 針對單級晶格型聲波濾波器,本文除了數值解外還提供兩種方法進行設計,一種為以傳統濾波器合成理論得到解析解,以理想Chebyshev響應推導出LC共振器的LC值,在通帶具小比例頻寬(FBW)或低回波損耗(RL)時,LC共振器可以近似到聲波共振器之等效電路模型,即BVD模型的近似公式;另一種為參數化分析,用此方法得到通帶最佳的設計曲線,提供設計者規格與設計參數的關係和通帶最佳設計規格的限制。 針對晶格型衍生多級設計,本研究進一步使用數值最佳化方法,設計二級、三級晶格型以及修正晶格型組合架構,在給定特定聲波共振器特性以及材料限制下,使設計之濾波器頻率響應盡可能滿足系統規格。設計結果與參考文獻相比,階梯型與傳統晶格型比例頻寬可設計的極限皆在5%左右;修正型的晶格型組合架構則頻寬可以不受機電耦合係數的限制,且在回波損耗10 dB以上的要求下,最大能設計出約35%的頻寬。最後,以三級晶格型架構實際應用在5G頻段,設計的頻寬範圍落在1.9%-5.1%,可滿足通帶回波損耗10 dB以上的要求,也有良好的帶外性能。zh_TW
dc.description.abstractIn this thesis, the equivalent circuit parameters of the primary lattice type acoustic resonator are extracted for the lattice combination architecture by using both analytical and numerical solutions. Based on this method, the S-parameter frequency response of the filter is made to meet the system specifications as much as possible for the lithium tantalum based on the YX 〖42〗^° cut angle (electromechanical coupling coefficient of about 6%). For single-stage lattice acoustic wave filter, this thesis provides two methods for design in addition to numerical solution. One is to obtain the analytical solution by traditional filter synthesis theory and derive the LC value of LC resonator by ideal Chebyshev response, when the passband has a small fractional bandwidth (FBW) or low return loss (RL), i.e., the approximation formula of the BVD model. Another method is parametric analysis, which is used to obtain the optimal design curve for the passband, providing the designer with the relationship between the specifications and design parameters and the limits of the optimal design specifications for the passband. For the extended multi-stage design, the study further uses the numerical optimization method to design two- and three-stage lattices and a modified lattice configuration to make the designed filter frequency response meet the system specifications as much as possible given the specific acoustic resonator characteristics and material constraints. Compared with the results in the literature, the bandwidth of the ladder type and the conventional lattice type can be designed with a limit of about 5%; the bandwidth of the modified lattice configuration is not limited by the electromechanical coupling coefficient, and the maximum bandwidth can be designed with a return loss of 10 dB or more. Finally, with a three-stage lattice-type for practical application in the 5G band, the designed bandwidth range from 1.9% to 5.1%, which can meet the requirement of passband return loss of more than 10 dB and also has good out-of-band performance.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:51:47Z (GMT). No. of bitstreams: 1
U0001-1108202212203500.pdf: 4683720 bytes, checksum: 6c21733a9f175b3caf5684adf05bd19b (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審定書 i 中文摘要 ii ABSTRACT iii 目錄 iv 圖目錄 vi 表目錄 ix 第一章 緒論 1 1.1 研究動機…………………… 1 1.2 文獻回顧 4 1.3 論文貢獻 7 1.4 章節概要 7 第二章 晶格型濾波器之基本合成理論 9 2.1 濾波器基本理論[13] 9 2.1.1 轉移函數一般定義 9 2.1.2 柴比雪夫響應 10 2.2 晶格型聲波濾波器基本理論 11 2.2.1 晶格型網路分析 11 2.2.2 聲波共振器基本理論 14 2.2.3 LC共振器與聲波共振器的近似 16 2.2.4 晶格型聲波濾波器合成 18 2.2.5 晶格型聲波濾波器通帶條件 24 第三章 一級晶格型聲波濾波器參數化分析 30 3.1 參數化流程建立 30 3.2 規格函數的定義 31 3.2.1 濾波器規格 31 3.2.2 二分法 34 3.2.3 三分法 35 3.2.4 規格函數計算流程 36 3.3 通帶最佳設計曲線 38 第四章 晶格型聲波濾波器之衍生設計 43 4.1 最佳化設計方法[17] 43 4.1.1 零極點分布最佳化流程建立 43 4.1.2 頻率響應最佳化流程建立 45 4.2 最佳化設計模擬結果 48 4.2.1 新系統參數之轉換公式 48 4.2.2 二級晶格 48 4.2.3 三級晶格型 51 4.2.4 一級修正晶格型 55 4.2.5 二級修正晶格型 58 4.3 5G頻段之應用 60 4.3.1 上行操作頻段n38之設計 61 4.3.2 上行操作頻段n20之設計 63 4.3.3 應用於5G頻段 66 第五章 結論與未來展望 68 參考文獻 69
dc.language.isozh-TW
dc.subject最佳化方法zh_TW
dc.subjectChebyshev響應zh_TW
dc.subject參數化分析zh_TW
dc.subject晶格型拓樸zh_TW
dc.subject聲波濾波器zh_TW
dc.subjectBVD模型zh_TW
dc.subject寬頻zh_TW
dc.subjectBVD modelen
dc.subjectwidebanden
dc.subjectoptimization methoden
dc.subjectparametric analysisen
dc.subjectacoustic filteren
dc.subjectChebyshev responseen
dc.subjectlattice topologyen
dc.title單級晶格型聲波濾波器的參數合成與衍生多級設計zh_TW
dc.titleParametric Synthesis of Single-Stage Lattice-Type Acoustic Wave Filters and Extended Multi-Stage Designen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃建彰(Chien-Chang Huang),吳宗霖(Tzong-Lin Wu),陳錡楓(Chi-Feng Chen),王金勝
dc.subject.keyword晶格型拓樸,寬頻,參數化分析,聲波濾波器,BVD模型,Chebyshev響應,最佳化方法,zh_TW
dc.subject.keywordlattice topology,wideband,parametric analysis,acoustic filter,BVD model,Chebyshev response,optimization method,en
dc.relation.page70
dc.identifier.doi10.6342/NTU202202292
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-08-24
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
dc.date.embargo-lift2022-08-24-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-1108202212203500.pdf4.57 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved