Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86367
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor羅清華(Ching-Hua Lo)
dc.contributor.authorTsung-Han Huangen
dc.contributor.author黃琮瀚zh_TW
dc.date.accessioned2023-03-19T23:51:40Z-
dc.date.copyright2022-08-31
dc.date.issued2022
dc.date.submitted2022-08-23
dc.identifier.citationAllmendinger, R. W., Cardozo, N., & Fisher, D. (2012). Structural geology algorithms: Vectors and tensors in structural geology. Cambridge University Press, 302pp. Aoki, K., Windley, B. F., Maruyama, S., & Omori, S. (2014). Metamorphic P–T conditions and retrograde path of high-pressure Barrovian metamorphic zones near Cairn Leuchan, Caledonian orogen, Scotland. Geological Magazine, 151(3), 559-571. Barnes, C. G., Berry, R., Barnes, M. A., & Ernst, W. G. (2017). Trace element zoning in hornblende: Tracking and modeling the crystallization of a calc-alkaline arc pluton. American Mineralogist, 102(12), 2390-2405. Berger, A., Schmid, S. M., Engi, M., Bousquet, R., & Wiederkehr, M. (2011). Mechanisms of mass and heat transport during Barrovian metamorphism: A discussion based on field evidence from the Central Alps (Switzerland/northern Italy). Tectonics, 30(1), TC1007. Bohlen, S. R., & Mezger, K. (1989). Origin of granulite terranes and the formation of the lowermost continental crust. Science, 244(4902), 326-329. Borisova, E. B., & Baltybaev, S. K. (2021). Petrochemical Criteria of Staurolite Stability in Metapelites at Medium-Temperature Low-and Medium-Pressure Metamorphism. Petrology, 29(4), 336-350. Brune, S., Heine, C., Pérez-Gussinyé, M., & Sobolev, S. V. (2014). Rift migration explains continental margin asymmetry and crustal hyper-extension. Nature Communications, 5(1), 1-9. Burbank, D. W. (2002). Rates of erosion and their implications for exhumation. Mineralogical Magazine, 66(1), 25-52. Carosi, R., Montomoli, C., Langone, A., Turina, A., Cesare, B., Iaccarino, S., Fascioli, L., Visonà, D., Ronchi, A., & Rai, S.M. (2015). Eocene partial melting recorded in peritectic garnets from kyanite-gneiss, Greater Himalayan Sequence, central Nepal. Geological Society, London, Special Publications, 412(1), 111-129. Cardozo, N., & Allmendinger, R.W. (2013). Spherical projections with OSXStereonet: Computers & Geosciences, 51, 193-205. Chen, C. H., Lee, C. Y., Tien, J. L., Xiang, H., Walia, M., & Lin, J. W. (2020). Post-orogenic thermal reset of the Pingtan-Dongshan metamorphic belt (SE China): Insights from zircon fission track and U-Pb double dating. Journal of Asian Earth Sciences, 201, 104512. Chen, C. H., Lin, W., Lan, C. Y., & Lee, C. Y. (2004). Geochemical, Sr and Nd isotopic characteristics and tectonic implications for three stages of igneous rock in the Late Yanshanian (Cretaceous) orogeny, SE China. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 95, 237–248. Chen, N. H., Dong, J. J., Chen, J. Y., Dong, C. W., & Shen, Z. Y. (2014). Geometry and emplacement of the Late Cretaceous mafic dyke swarms on the islands in Zhejiang Province, Southeast China: Insights from high-resolution satellite images. Journal of Asian Earth Sciences, 79, 302-311. Chen, W. S., Yang, H. C., Wang, X., & Huang, H. (2002). Tectonic setting and exhumation history of the Pingtan–Dongshan Metamorphic Belt along the coastal area, Fujian Province, Southeast China. Journal of Asian Earth Sciences, 20(7), 829-840. Chiu, Y. P., Yeh, M. W., Wu, K. H., Lee, T. Y., Lo, C. H., Chung, S. L., & Iizuka, Y. (2018). Transition from extrusion to flow tectonism around the Eastern Himalaya syntaxis. Geological Society of America Bulletin, 130(9-10), 1675-1696. Christensen, N. I., & Mooney, W. D. (1995). Seismic velocity structure and composition of the continental crust: A global view. Journal of Geophysical Research: Solid Earth, 100(B6), 9761-9788. Davis, G. H., Reynolds, S. J., & Kluth, C. F. (2011). Structural geology of rocks and regions (third edition). John Wiley & Sons, 839pp. Deer, W. A., Howie, R. A., & Zussman, J. (2013). An introduction to the rock-forming minerals, third edition. The Mineralogical Society, London, 498 pp. Döpke, D. (2017). Modelling the Thermal History of Onshore Ireland, Britain and Its Offshore Basins Using Low-temperature Thermochronology. Doctoral dissertation, Trinity College Dublin, Ireland, 279 pp. Dong, S., Zhang, Y., Li, H., Shi, W., Xue, H., Li, J., Huang, S., & Wang, Y. (2018). The Yanshan orogeny and late Mesozoic multi-plate convergence in East Asia—Commemorating 90th years of the “Yanshan Orogeny”. Science China Earth Sciences, 61(12), 1888-1909. Duke, E. F. (1994). Near infrared spectra of muscovite, Tschermak substitution, and metamorphic reaction progress: Implications for remote sensing. Geology, 22(7), 621-624. Ferry, J. M. (1981). Petrology of graphitic sulfide-rich schists from south-central Maine: an example of desulfidation during prograde regional metamorphism. American Mineralogist, 66(9-10), 908-930. Fossen, H. (2016). Structural Geology (second edition). Cambridge university press. Gao, L., Zeng, L., & Xie, K. (2012). Eocene high-grade metamorphism and crustal anatexis in the North Himalaya Gneiss Domes, Southern Tibet. Chinese Science Bulletin, 57(6), 639-650. Gleadow, A. J. W., & Duddy, I. R. (1981). A natural long-term track annealing experiment for apatite. Nuclear Tracks 5, 169–174. Granger, D. E. (2007) Cosmogenic nuclide dating: landscape evolution. Encyclopedia of Quaternary Science, Elsevier, pp. 445-452. Hammarstrom, J. M., & Zen, E. A. (1986). Aluminum in hornblende: an empirical igneous geobarometer. American Mineralogist, 71(11-12), 1297-1313. Hansen, V. L. (1990). Collection and preparation of thin sections of oriented samples. Journal of Geological Education, 38(4), 294-297. Harrison, A. D., Whale, T. F., Carpenter, M. A., Holden, M. A., Neve, L., O'Sullivan, D., Temprado, J. V., & Murray, B. J. (2016). Not all feldspars are equal: a survey of ice nucleating properties across the feldspar group of minerals. Atmospheric Chemistry and Physics, 16(17), 10927-10940. Harrison, T. M. (1982). Diffusion of 40Ar in hornblende. Contributions to Mineralogy and Petrology. 78, 324–331. Harrison, T. M., & McDougall, I. (1982). The thermal significance of potassium feldspar K-Ar ages inferred from 40Ar39Ar age spectrum results. Geochimica et Cosmochimica Acta 46, 1811–1820. Hawthorne, F. C., Oberti, R., Harlow, G. E., Maresch, W. V., Martin, R. F., Schumacher, J. C., & Welch, M. D. (2012). Nomenclature of the amphibole supergroup. American Mineralogist, 97(11-12), 2031-2048. Henry, D. J., Guidotti, C. V., & Thomson, J. A. (2005). The Ti-saturation surface for low-to-medium pressure metapelitic biotites: Implications for geothermometry and Ti-substitution mechanisms. American Mineralogist, 90(2-3), 316-328. Henry, D. J., & Guidotti, C. V. (2002). Titanium in biotite from metapelitic rocks: Temperature effects, crystal-chemical controls, and petrologic applications. American Mineralogist, 87(4), 375-382. Holdaway, M. J. (2000). Application of new experimental and garnet Margules data to the garnet-biotite geothermometer. American Mineralogist, 85(7-8), 881-892. Holdaway, M. J. (2001). Recalibration of the GASP geobarometer in light of recent garnet and plagioclase activity models and versions of the garnet-biotite geothermometer. American Mineralogist, 86(10), 1117-1129. Hollister, L. S., Grissom, G. C., Peters, E. K., Stowell, H. H., & Sisson, V. B. (1987). Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. American Mineralogist, 72(3-4), 231-239. Huang, T. H., & Yeh, M. W. (2020). Structural Evolution of Extended Continental Crust Deciphered From the Cretaceous Batholith in SE China, a Kinmen Island Perspective. Frontiers in Earth Science, 330. Imayama, T., Uehara, S., Sakai, H., Yagi, K., Ikawa, C., & Yi, K. (2020). The absence of high-pressure metamorphism in the inverted Barrovian metamorphic sequences of the Arun area, eastern Nepal and its tectonic implication. International Journal of Earth Sciences, 109(2), 465-488. Jamtveit, B., Dunkel, K. G., Petley-Ragan, A., Austrheim, H., Corfu, F., & Schmid, D. W. (2021). Rapid fluid-driven transformation of lower continental crust associated with thrust-induced shear heating. Lithos, 396, 106216. Johnson, M. C., & Rutherford, M. J. (1989). Experimental calibration of the aluminum-in-hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks. Geology, 17(9), 837-841. La Roche, R. S., Gervais, F., Tremblay, A., Crowley, J. L., & Ruffet, G. (2015). Tectono-metamorphic history of the eastern Taureau shear zone, Mauricie area, Québec: Implications for the exhumation of the mid-crust in the Grenville Province. Precambrian Research, 257, 22-46. Lan, C. Y., Chung, S. L., Mertzman, S. A., & Chen, C. H. (1995). Mafic dikes from Chinmen and Liehyu islands off SE China, petrochemical characteristics and tectonic implication. Journal of the Geological Society of China, 38, 183-214. Lan, C. Y., Chung, S. L., & Mertzman, S. A. (1997). Mineralogy and geochemistry of granitic rocks from Chinmen, Liehyu and Dadan Islands, Fujian. Journal of the Geological Society of China, 40, 527-558. Lee, C. Y. (1994). Chronology and Geochemistry of Basaltic Rocks from Penghu Islands and Mafic Dykes from East Fujian: Implications for The Mantle Evolution of SE China Since Late Mesozoic. Doctoral dissertation, National Taiwan University, Taipei, 243pp. Lee, J. K., Williams, I. S., & Ellis, D. J. (1997). Pb, U and Th diffusion in natural zircon. Nature 390, 159–162. Li, F., Sun, Z., Pang, X., Liao, J., Yang, H., Xie, H., Zhuo, H., & Zhao, Z. (2019). Low‐viscosity crustal layer controls the crustal architecture and thermal distribution at hyperextended margins: modeling insight and application to the northern South China Sea Margin. Geochemistry, Geophysics, Geosystems, 20(7), 3248-3267. Li, J., Zhang, Y., Dong, S., & Johnston, S. T. (2014). Cretaceous tectonic evolution of South China: A preliminary synthesis. Earth-Science Reviews, 134, 98-136. Li, X., Zhang, C., Behrens, H., & Holtz, F. (2020). Calculating amphibole formula from electron microprobe analysis data using a machine learning method based on principal components regression. Lithos, 362, 105469. Li, X. H. (2000). Cretaceous magmatism and lithospheric extension in Southeast China. Journal of Asian Earth Sciences, 18(3), 293-305. Li, Y., Ma, C. Q., Xing, G. F., & Zhou, H. W. (2015). The Early Cretaceous evolution of SE China: Insights from the Changle–Nan'ao Metamorphic Belt. Lithos, 230, 94-104. Li, Z., Qiu, J. S., & Yang, X. M. (2014). A review of the geochronology and geochemistry of Late Yanshanian (Cretaceous) plutons along the Fujian coastal area of southeastern China: Implications for magma evolution related to slab break-off and rollback in the Cretaceous. Earth-Science Reviews, 128, 232-248. Lin, W. (1994). Geochemistry and thermal history of Late Yanshanian granites from Chinmen area. Master thesis, National Taiwan University, Taipei., 108pp. (in Chinese). Lin, W., Lee, C. Y., Yang, H. C., & Chen, C. H. (2011). Geological Map of Taiwan scale 1:50000, Kinmen Area. Central Geological Survey, MOEA, ROC, 57pp. Lin, W. (2001). Late Yanshanian intrusive magmatism in coastal region of South China and tectonic implications. Ph. D. Thesis, National Taiwan University, Taipei., 237pp. (in Chinese). Liu, J. X., Wang, S., Wang, X. L., Du, D. H., Xing, G. F., Fu, J. M., Chen, X., & Sun, Z. M. (2020). Refining the spatio-temporal distributions of Mesozoic granitoids and volcanic rocks in SE China. Journal of Asian Earth Sciences, 201, 104503. Liu, L., Xu, X., & Xia, Y. (2016). Asynchronizing paleo-Pacific slab rollback beneath SE China: Insights from the episodic Late Mesozoic volcanism. Gondwana Research, 37, 397-407. Liu, Q., Yu, J. H., Wang, Q., Su, B., Zhou, M. F., Xu, H., & Cui, X. (2012). Ages and geochemistry of granites in the Pingtan–Dongshan Metamorphic Belt, Coastal South China: new constraints on Late Mesozoic magmatic evolution. Lithos, 150, 268-286. Lo, C. H., Onstott, T. C., & Lee, C. M. (1993). 40Ar/39Ar dating of plutonic/metamorphic rocks from Chinmen Island off Southeast China and its tectonic implications. Journal of Geological Society of China, 36(1), 35-55. Mao, J., Li, Z., & Ye, H. (2014). Mesozoic tectono-magmatic activities in South China: retrospect and prospect. Science China Earth Sciences, 57, 2853–2877. McDougall, I., & Harrison, T. M. (1999). Geochronology and Thermochronology by the 40Ar/39Ar Method. Oxford: Oxford University Press, 269 pp. Miller, C. F., McDowell, S. M., & Mapes, R. W. (2003). Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology, 31(6), 529-532. Miyazaki, K. (2004). Low‐P–high‐T metamorphism and the role of heat transport by melt migration in the Higo Metamorphic Complex, Kyushu, Japan. Journal of Metamorphic Geology, 22(9), 793-809. Möller, C., Andersson, J., Dyck, B., & Lundin, I. A. (2015). Exhumation of an eclogite terrane as a hot migmatitic nappe, Sveconorwegian orogen. Lithos, 226, 147-168. Nabelek, P. I., Hofmeister, A. M., & Whittington, A. G. (2012). The influence of temperature-dependent thermal diffusivity on the conductive cooling rates of plutons and temperature-time paths in contact aureoles. Earth and Planetary Science Letters, 317, 157-164. Nakano, N., Osanai, Y., Jargalan, S., Adachi, T., Dolzodmaa, B., Kundyz, S., Owada, M., & Satish-Kumar, M. (2021). Petrology and geochronology of andalusite-and sillimanite-bearing kyanite metapelites from the Gobi Altai Mountains: Evidence for prolonged convergent tectonics in the Central Asian Orogenic Belt. Lithos, 400, 106362. Nandi, K. (1967). Garnets as indices of progressive regional metamorphism. Mineralogical Magazine and Journal of the Mineralogical Society, 36(277), 89-93. Nyström, A. I., & Kriegsman, L. M. (2003). Prograde and retrograde reactions, garnet zoning patterns, and accessory phase behaviour in SW Finland migmatites, with implications for geochronology. Geological Society, London, Special Publications, 220, 213-230. Passchier, C. W., & Trouw, R. A. (2005). Microtectonics (second edition). Springer Science & Business Media, 366pp. Pan, X., Shen, Z., Roberts, A. P., Heslop, D., & Shi, L. (2014). Syntectonic emplacement of Late Cretaceous mafic dyke swarms in coastal southeastern China: Insights from magnetic fabrics, rock magnetism and field evidence. Tectonophysics, 637, 328-340. Reed, S. J. B. (2005). Electron microprobe analysis and scanning electron microscopy in geology (second edition). Cambridge University Press, 232pp. Santosh, M., Liu, S. J., Tsunogae, T., & Li, J. H. (2012). Paleoproterozoic ultrahigh-temperature granulites in the North China Craton: implications for tectonic models on extreme crustal metamorphism. Precambrian Research, 222, 77-106. Schmidt, M. W. (1992). Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contributions to Mineralogy and Petrology, 110(2), 304-310. Schumacher, J. C. (1991). Empirical ferric iron corrections: necessity, assumptions, and effects on selected geothermobarometers. Mineralogical Magazine, 55(378), 3-18. Searle, M. P. (2022). Tectonic evolution of the Caledonian orogeny in Scotland: a review based on the timing of magmatism, metamorphism and deformation. Geological Magazine, 159, 124-152. Severin, K. P. (2004). Energy dispersive spectrometry of common rock forming minerals. Dordrecht, The Netherlands: Kluwer Academic, 225. Shi, J. J. (2011). Dividing of deformation and metamorphic stages and determination of its ages in Changle-Nanao tectonic zone. Geology of Fujian 3, 189–199. Skrzypek, E., Štípská, P., Schulmann, K., Lexa, O., & Lexova, M. (2011). Prograde and retrograde metamorphic fabrics–a key for understanding burial and exhumation in orogens (Bohemian Massif). Journal of Metamorphic Geology, 29(4), 451-472. Spear, F. S. (1993). Metamorphic phase equilibria and pressure-temperature-time paths. Mineralogical Society of America Monograph, 799pp. Sturt, B. A. (1962). The composition of garnets from pelitic schists in relation to the grade of regional metamorphism. Journal of Petrology, 3(2), 181-191. Tirone, M., & Ganguly, J. (2010). Garnet compositions as recorders of P–T–t history of metamorphic rocks. Gondwana Research, 18(1), 138-146. Tong, W. X., & Tobisch, O. T. (1996). Deformation of granitoid plutons in the Dongshan area, southeast China: constraints on the physical conditions and timing of movement along the Changle-Nanao shear zone. Tectonophysics, 267(1-4), 303-316. Tracy, R. J., Robinson, P., & Thompson, A. B. (1976). Garnet composition and zoning in the determination of temperature and pressure of metamorphism, central Massachusetts. American Mineralogist, 61(7-8), 762-775. Vanderhaeghe, O. (2012). The thermal–mechanical evolution of crustal orogenic belts at convergent plate boundaries: A reappraisal of the orogenic cycle. Journal of Geodynamics, 56, 124-145. Wang, F. Y., Ling, M. X., Ding, X., Hu, Y. H., Zhou, J. B., Yang, X. Y., Liang, H. Y., Fan, W. M., & Sun, W. (2011). Mesozoic large magmatic events and mineralization in SE China: oblique subduction of the Pacific plate. International Geology Review, 53(5-6), 704-726. Wang, Y., Fan, W., Zhang, G., & Zhang, Y. (2013). Phanerozoic tectonics of the South China Block: Key observations and controversies. Gondwana Research, 23(4), 1273-1305. Wang, Z., Zhao, X., Yu, S., Li, S., Peng, Y., & Liu, Y. (2020). Cretaceous granitic intrusions in Fujian Province, Cathaysia Block: Implications for slab rollback and break-off of the Paleo-Pacific plate. Journal of Asian Earth Sciences, 190, 104164. Wang, Z. H., & Lu, H. F. (2000). Ductile deformation and 40Ar/39Ar dating of the Changle–Nanao ductile shear zone, southeastern China. Journal of Structural Geology, 22(5), 561-570. Weller, O. M., Mottram, C. M., St-Onge, M. R., Möller, C., Strachan, R., Rivers, T., & Copley, A. (2021). The metamorphic and magmatic record of collisional orogens. Nature Reviews Earth & Environment, 2(11), 781-799. Wlodek, A., Grochowina, A., Golębiowska, B., & Pieczka, A. (2015). A phosphate-bearing pegmatite from Lutomia and its relationships to other pegmatites of the Góry Sowie Block, southwestern Poland. Journal of Geosciences, 60(1), 45-72. Winter, J. D. (2013). Principles of igneous and metamorphic petrology (second edition). Pearson education, 738pp. Wu, C. M. (2020). Calibration of the biotite-muscovite geobarometer for metapelitic assemblages devoid of garnet or plagioclase. Lithos, 372, 105668. Xu, X., Zhao, K., He, Z., Liu, L., & Hong, W. (2021). Cretaceous volcanic-plutonic magmatism in SE China and a genetic model. Lithos, 402, 105728. Yang, Y. L., Ni, P., Yan, J., Wu, C. Z., Dai, B. Z., & Xu, Y. F. (2017). Early to late Yanshanian I-type granites in Fujian Province, SE China: Implications for the tectonic setting and Mo mineralization. Journal of Asian Earth Sciences, 137, 194-219. Yardley, B. (1977). An empirical study of diffusion in garnet. American Mineralogist, 62(7-8), 793-800. Yeh, M. W., Lin, Y. L., Lee, T. Y., & Ji, J. Q. (2013). Microfabric reconstruction via quantitative digital petrographic image analysis for weakly foliated gneisses. Tectonophysics, 587, 107-118. Yui, T. F., Heaman, L., & Lan, C. Y. (1996). U-Pb and Sr isotopic studies on granitoids from Taiwan and Chinmen-Lieyu and tectonic implications. Tectonophysics 263, 61–76. Zhang, Y. Q., Dong, S. W., Li, J. H., Cui, J. J., Shi, W., Su, J. B., & Li, Y. (2012). The new progress in the study of Mesozoic tectonics of South China. Acta Geoscientica Sinica, (3), 257-279. Zhang, Z., Xiang, H., Dong, X., Ding, H., & He, Z. (2015). Long-lived high-temperature granulite-facies metamorphism in the Eastern Himalayan orogen, south Tibet. Lithos, 212, 1-15. Zhao, J. H., Hu, R., Zhou, M. F., & Liu, S. (2007). Elemental and Sr–Nd–Pb isotopic geochemistry of Mesozoic mafic intrusions in southern Fujian Province, SE China: implications for lithospheric mantle evolution. Geological Magazine, 144(6), 937-952. Zhao, J. L., Qiu, J. S., Liu, L., & Wang, R. Q. (2016). The Late Cretaceous I-and A-type granite association of southeast China: Implications for the origin and evolution of post-collisional extensional magmatism. Lithos, 240, 16-33. Zhao, J. L., Qiu, J. S., Liu, L., & Wang, R. Q. (2015). Geochronological, geochemical and Nd–Hf isotopic constraints on the petrogenesis of Late Cretaceous A-type granites from the southeastern coast of Fujian Province, South China. Journal of Asian Earth Sciences, 105, 338-359. Zheng, Y. F., & Chen, R. X. (2021). Extreme metamorphism and metamorphic facies series at convergent plate boundaries: Implications for supercontinent dynamics. Geosphere, 17(6), 1647-1685. Zheng, Y. F., & Chen, R. X. (2017). Regional metamorphism at extreme conditions: Implications for orogeny at convergent plate margins. Journal of Asian Earth Sciences, 145, 46-73. Zhou, B. X., Sun, T., Shen, W., Shu, L., & Niu, Y. (2006). Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: a response to tectonic evolution. Episodes 29:26.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86367-
dc.description.abstract中國東南部的大陸地殼分佈著大面積白堊紀時期的火成岩體以及張裂盆地,這些地質事件的形成被前人研究認為是在古太平洋板塊隱沒後撤的期間所發生的,而古太平洋板塊長時間的後撤讓中國東南部的大陸地殼從原先的主動大陸邊緣轉變為被動大陸邊緣,這樣地體構造轉換的過程就被位於此大陸邊緣上金門地區的基盤岩給記錄下來,因此金門地區的基盤岩就成為探討大陸地殼減薄過程中地殼內部變質溫壓演化的適合地點。前人研究根據金門地區花崗岩基盤構造變形的伸張應變特徵,提出此處的大陸地殼在花崗岩基盤侵入以後是在減薄的狀態,並在減薄的過程啟動這些複雜且高溫的變形事件,但由於缺乏決斷性的溫壓證據,因此本研究將從變質岩岩石學的觀點來探討大陸地殼減薄過程中地殼內部溫壓演化的歷史。 金門島基盤岩的核心由花崗岩體組成,並在花崗岩體的周圍零星分布不同的變質岩體,包含英雲閃長岩質的片麻岩、角閃岩、黑雲母片麻岩與矽線石雲母片岩。根據構造演化重建、岩象學以及變質岩岩石學的分析,雖然這些複雜的岩性源自於不同的母岩,但是它們都是在類似巴坎式溫壓變質作用 (Buchan-type metamorphism) 的溫壓特徵下一起經歷地殼的變形。在這些基盤岩從深部 (28.3-30.4公里) 出露到近地表 (<6.9公里) 的過程中共伴隨了六期的變形事件,並且溫壓演化的路徑是一個減壓、退變質的特徵。在基盤的花崗岩體侵入地殼以後,第一期的變形事件為公里規模的片麻岩隆穹,形成的溫度在644-725 °C且最大的壓力為7.9 kbar。第二期變形事件是地殼在重力垮塌的過程中所產生近水平的S型構造岩,其溫度環境與D1相同但是位於更低的壓力環境。隨著地殼持續的減薄以及岩體逐漸地上抬,片麻岩隆穹的東西兩側開始發育北北東-南南西走向的剪切褶皺帶 (D3),其形成溫度為658-704 °C且最大壓力為5.5 kbar。隨後地殼的持續張裂以及基盤上抬至中部至上部地殼時發育了東北東-西南西走向具有左移特徵的伸張剪切帶 (D4),其形成溫度為534-682 °C且最大壓力為4.6 kbar。由於基盤岩持續的上抬至地殼淺部壓力至少小於1.9 kar的地方,地殼開始轉變為脆性變形並且伴隨偉晶岩脈 (D5) 以及基性岩脈群 (D6) 的侵入。 從以上重建出的溫壓演化路徑顯示起初在D1以前至D3的期間,地殼經歷了減壓但是溫度範圍維持高溫的演化路徑,從最高的變質溫度725 °C與最大的變質壓力7.9 kbar,減壓成704 °C與5.5 kbar,隨後在D3end到D6的期間地殼還是在逐漸減壓的環境但是具有大規模的溫度下降,從在D3end時最高變質溫度682 °C與最大變質壓力4.6 kbar,到在D5以前的最低變質溫度534 °C與最低的變質壓力為1.9 kbar,最後在D5與D6期間溫度是低於534 °C、壓力是小於1.9 kbar。將重建出的地溫梯度曲線與一般大陸地殼的地溫梯度比較,若是在一般大陸地殼內部要達到這些最高的變質溫度,其地殼深度必須要在41.8至51.9公里處,這樣的深度明顯遠高於金門地區的基盤岩侵入深度以及後續的變質深度,因此金門地區在過去白堊紀時期具有較高的地溫梯度,在相對地殼的淺處就已經達到上部角閃岩相至粒變岩相的溫度區間。如此長時間的高度變質作用,加上伸張的應變特徵以及同時期的雙模式岩漿活動,並無法在擠壓且地殼增厚的造山帶中形成,相反的必須在大陸地殼持續伸張減薄的過程才有辦法形成這樣相對低壓但是持續高溫的地殼環境。zh_TW
dc.description.abstractThe continental crust of southeast China is featured by widespread Cretaceous magmatic complexes and extensional basins, which are attributed to the continual rollback of the subducted Paleo-Pacific plate. This long-lasting slab rollback transformed the original active continental margin into a passive one. Such a tectonic transition was recorded in the crystalline basement of Kinmen Island, along the SE Asia continental margin, making Kinmen Island a great candidate for exploring the metamorphic evolution of the continental crust during crustal thinning processes. Previous studies have reconstructed the structural evolution of the granitoid basements in Kinmen Island and proposed a continual crustal thinning setting, yet without conclusive evidence provided, which has been solved in the present study. The crystalline basement of Kinmen Island comprises a granite core, surrounded by tonalitic gneiss, amphibolite, biotite gneiss and sillimanite mica schist. Based on a combination of structural, petrographic, and metamorphic petrology analyses, and despite these complex lithologies originating from different protoliths, it is revealed that the granite core along with the surrounding metamorphic rocks were all deformed at similar P-T conditions characteristic of Buchan-type metamorphism. A decompressional and regressive P-T path is revealed accompanying the identified six deformation events as the deep-seated crystalline basements exhumed from 28.3-30.4 km (pre-D1) to <6.9 km (D5-D6). A kilometer-scale gneiss dome (D1) formed after the intrusion of the granitoid basements at 644-725 °C/<7.9 kbar. A similar temperature range was maintained with pressure decreasing during the gravitational collapse of the continental crust with a generation of subhorizontal S-tectonite (D2). Further exhumation of the crystalline basements due to continual crustal thinning formed a NNE-SSW striking shear fold belt (D3) along the east and west limbs of the gneiss dome at 658-704 °C/<5.5 kbar. With further crustal extension and exhumation into the middle to upper crust, an ENE-WSW striking sinistral transtensional shear zone was developed throughout the basement at 534-682 °C/<4.6 kbar. Due to the continual exhumation into shallow levels (<1.9 kbar), the continental crust was further deformed by brittle fracturing along with intrusion of pegmatitic dykes (D5) and mafic dyke swarm (D6). The reconstructed P-T trajectory shows nearly sustained high temperatures along a decompressional path from 725 °C/<7.9 kbar (pre-D1 to D2) to 704 °C/<5.5 kbar (D3), followed by continual decompression but a rapid temperature drops from 682 °C/<4.6 kbar (D3end), 534 °C/1.9 kbar (pre-D5) to <300 °C/<1.9 kbar (D5 to D6). Compared with a normal continental geotherm, the corresponding depths to reach such peak metamorphic temperatures should be around 41.8-51.9 km, which is much deeper than the pressure conditions of Kinmen Island. It is therefore suggested that the continental crust of Kinmen Island had an elevated geotherm, which reached upper amphibolite to granulite facies conditions at shallower crustal levels. Such a sustained high-grade metamorphism since the emplacement of granitoids to D4 during crustal decompression along with the extensional strain pattern and contemporaneous bimodal magmatism cannot be produced at a contractional setting. Instead, a prolonged thinned crust under extension is preferred.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:51:40Z (GMT). No. of bitstreams: 1
U0001-2208202217043800.pdf: 19477889 bytes, checksum: e8de8205b9f52b623e7464168069cf78 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontentsMaster’s Thesis Acceptance Certificate I Contents II 誌謝 V 中文摘要 VII Abstract IX Figure Contents XII Table Contents XV 1 Introduction 1 2 Geological Background 3 3 Materials and Methods 9 3.1 Field Observation 9 3.2 Oriented Thin Sections 11 3.3 Petrographic and Microstructural Analysis 13 3.4 Scanning Electron Microscope 14 3.4.1 BSE Image 14 3.4.2 SEM-EDS 16 3.4.3 EPMA 17 3.5 Mineral Chemistry 18 3.5.1 Mineral Formulae Recalculation 19 3.5.2 Ti-in-biotite Geothermometer 24 3.5.3 Al-in-hornblende Geobarometer 25 3.5.4 Biotite-Muscovite Geobarometer 26 3.6 Whole-rock Geochemistry 27 4 Results and Interpretation 28 4.1 Field Work 28 4.1.1 Reconstructed Lithological Evolution 28 4.1.2 Reconstructed Structural Evolution 31 4.2 Petrography and Microstructural Analysis 50 4.2.1 Sillimanite Mica Schist 50 4.2.2 Biotite gneiss 57 4.2.3 Amphibolite 59 4.2.4 Tonalitic gneiss 61 4.2.5 Summary 63 4.3 Mineral Chemistry 64 4.3.1 18LYA01 Sillimanite Mica Schist 65 4.3.2 181117A01 Sillimanite Mica Schist 77 4.3.3 18LYB03 Biotite Gneiss 80 4.3.4 18TP01 Amphibolite 94 4.3.5 18TP04 Amphibolite 99 4.3.6 18TP04 Tonalitic Gneiss 102 4.3.7 Ti-in-biotite Geothermometer 112 4.3.8 Al-in-hornblende Geobarometer 117 4.3.9 Biotite-Muscovite Geobarometer 121 5 Discussion 124 5.1 P-T Evolution during Crustal Deformation of Kinmen Island 124 5.1.1 Estimated P-T Conditions for each Deformation Event 124 5.1.2 Reconstructed P-T path and Elevated Geotherm in Kinmen Island 130 5.2 Heat Source for the Sustained High-grade Metamorphism in Shallow Crust 132 5.3 Thermochronological Constraints on Reconstructed Structural Evolution 135 5.3.1 Timing for Deformation Events 135 5.3.2 Estimated Cooling Rates and their Tectonic Implication 137 5.3.3 Comparison to Pingtan-Dongshan Metamorphic Belt 140 5.4 Tectonic Setting for Sustained High-temperature in Shallow Crust 144 5.5 Tectonic and Crustal Evolution of Kinmen Island 147 6 Conclusion 151 7 Reference 153 8 Appendices 170 8.1 Procedures for Making Oriented Thin Sections 170 8.1.1 Reorientation 170 8.1.2 Sectioning 172 8.1.3 Impregnation 173 8.1.4 Polishing 176 8.1.5 Mounting 178 8.1.6 Final Sectioning and Polishing 179 8.2 Analytical Results of Major and Trace elements 181 8.3 Field Structural Measurement Data 182 8.4 BSE images with Marked Positions of EPMA Analyses 186 8.4.1 18LYA01 Sillimanite Mica Schist 186 8.4.2 181117A01 Sillimanite Mica Schist 188 8.4.3 18LYB03 Biotite Gneiss 189 8.4.4 18TP01 Amphibolite 191 8.4.5 18TP04 Amphibolite and Tonalitic gneiss 193 8.5 Analytical Results of Mineral Chemistry 196 8.5.1 18LYA01 Sillimanite Mica Schist 196 8.5.2 181117A01 Sillimanite Mica Schist 202 8.5.3 18LYB03 Biotite Gneiss 204 8.5.4 18TP01 Amphibolite 216 8.5.5 18TP04 Amphibolite and Tonalitic Gneiss 219
dc.language.isoen
dc.subject地殼減薄zh_TW
dc.subject伸張應變zh_TW
dc.subject金門島zh_TW
dc.subject高度變質作用zh_TW
dc.subject地質溫壓計zh_TW
dc.subjectKinmen Islanden
dc.subjectextensional strainen
dc.subjecthigh-grade metamorphismen
dc.subjectcrustal thinningen
dc.subjectgeothermobarometeren
dc.title金門地區減薄大陸地殼中持續的高度變質作用zh_TW
dc.titleSustained High-grade Metamorphism of Thinned Continental Crust in Kinmen Islanden
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李通藝(Tung-Yi Lee),葉孟宛(Meng-Wan Yeh),臼杵直(Tadashi Usuki)
dc.subject.keyword金門島,伸張應變,高度變質作用,地殼減薄,地質溫壓計,zh_TW
dc.subject.keywordKinmen Island,extensional strain,high-grade metamorphism,crustal thinning,geothermobarometer,en
dc.relation.page229
dc.identifier.doi10.6342/NTU202202659
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-08-24
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
dc.date.embargo-lift2022-08-31-
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
U0001-2208202217043800.pdf19.02 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved