請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86357完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 羅弘岳(Hong-Yueh Lo) | |
| dc.contributor.author | Chun-Jui Huang | en |
| dc.contributor.author | 黄俊瑞 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:51:04Z | - |
| dc.date.copyright | 2022-08-30 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-23 | |
| dc.identifier.citation | [1] Boussinesq, J. (1872). Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. Journal de Mathématiques Pures et Appliquées, 55-108. [2] Carrier, G. F., & Greenspan, H. P. (1958). Water waves of finite amplitude on a sloping beach. Journal of Fluid Mechanics, 4(1), 97-109. [3] Carvajal, M., Sepúlveda, I., Gubler, A., & Garreaud, R. (2022). Worldwide signature of the 2022 Tonga volcanic tsunami. Geophysical Research Letters, 49(6), e2022GL098153. [4] Chacón-Barrantes, S. (2018). Effectiveness of N-waves for predicting morphological changes due to tsunamis. Applied Ocean Research, 74, 217-226. [5] Chan, I. C., & Liu, P. L. F. (2012). On the runup of long waves on a plane beach. Journal of Geophysical Research: Oceans, 117(C8). [6] Chang, Y. H., Hwang, K. S., & Hwung, H. H. (2009). Large-scale laboratory measurements of solitary wave inundation on a 1: 20 slope. Coastal Engineering, 56(10), 1022-1034. [7] Dong, J., Wang, B., Liu, H. (2015). Run-up of non-breaking double solitary waves with equal wave heights on a plane beach. Journal of Hydrodynamics, Ser. B 26 (6), 939–950. [8] Douglass, S. L., & Krolak, J. (2008). Highways in the coastal environment: Hydraulic Engineering Circular 25 (No. FHWA-NHI-07-096). United States. Federal Highway Administration. Office of Bridge Technology. [9] Fritz, H. M., Petroff, C. M., Catalán, P. A., Cienfuegos, R., Winckler, P., Kalligeris, N., ... & Synolakis, C. E. (2011). Field survey of the 27 February 2010 Chile tsunami. Pure and Applied Geophysics, 168(11), 1989-2010. [10] Gao, J., Ji, C., Liu, Y., Ma, X., & Gaidai, O. (2018). Numerical study on transient harbor oscillations induced by successive solitary waves. Ocean Dynamics, 68(2), 193-209. [11] Gonzalez, R. C., & Woods, R. E. (2018). Digital image processing, global edition. [12] Goring, D., & Raichlen, F. (1980). The generation of long waves in the laboratory. Coastal Engineering Proceedings, (17), 46-46. [13] Greenshields, C. J. (2018). OpenFOAM user guide Version 6. The OpenFOAM Foundation, 237. [14] Grilli, S., & Svendsen, I. A. (1990). Computation of nonlinear wave kinematics during propagation and runup on a slope. Water Wave Kinematics (pp. 387-412). Springer, Dordrecht. [15] Grimshaw, R. (1971). The solitary wave in water of variable depth. Part 2. Journal of Fluid Mechanics, 46(3), 611-622. [16] Hall, J. V., & Watts, G. M. (1953). Laboratory investigation of the vertical rise of solitary waves on impermeable slopes. Tech. Memo. 33, Beach Erosion Board, US Army Corps of Engineers.14pp [17] Heidarzadeh, M., Muhari, A., & Wijanarto, A. B. (2019). Insights on the source of the 28 September 2018 Sulawesi tsunami, Indonesia based on spectral analyses and numerical simulations. Pure and Applied Geophysics, 176(1), 25-43. [18] Higuera, P. (2017). olaFlow: CFD for waves. URL https://doi. org/10.5281/zenodo, 1297013. [19] Higuera, P., Lara, J. L., & Losada, I. J. (2013). Realistic wave generation and active wave absorption for Navier–Stokes models: Application to OpenFOAM®. Coastal Engineering, 71, 102-118. [20] Higuera, P., Losada, I. J., & Lara, J. L. (2015). Three-dimensional numerical wave generation with moving boundaries. Coastal Engineering, 101, 35-47. [21] Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201-225. [22] Hsiao, S. C., Hsu, T. W., Lin, T. C., & Chang, Y. H. (2008). On the evolution and run-up of breaking solitary waves on a mild sloping beach. Coastal Engineering, 55(12), 975-988. [23] Li, Y., & Raichlen, F. (2002). Non-breaking and breaking solitary wave run-up. Journal of Fluid Mechanics, 456, 295-318. [24] Liang, D., Gotoh, H., Khayyer, A., & Chen, J. M. (2013). Boussinesq modelling of solitary wave and N-wave runup on coast. Applied Ocean Research, 42, 144-154. [25] Lima, V. V., Avilez-Valente, P., Baptista, M. A. V., & Miranda, J. M. (2019). Generation of N-waves in laboratory. Coastal Engineering, 148, 1-18. [26] Liu, P. L. F., Park, Y. S., & Cowen, E. A. (2007). Boundary layer flow and bed shear stress under a solitary wave. Journal of Fluid Mechanics, 574, 449-463. [27] Lo, H. Y., Park, Y. S., & Liu, P. L. F. (2013). On the run-up and back-wash processes of single and double solitary waves—An experimental study. Coastal Engineering, 80, 1-14. [28] Madsen, P. A., & Schaeffer, H. A. (2010). Analytical solutions for tsunami runup on a plane beach: single waves, N-waves and transient waves. Journal of Fluid Mechanics, 645, 27-57. [29] Madsen, P. A., Fuhrman, D. R., & Schäffer, H. A. (2008). On the solitary wave paradigm for tsunamis. Journal of Geophysical Research: Oceans, 113(C12). [30] McGovern, D. (2016). Experimental study of the runup of tsunami waves on a smooth sloping beach. In 6th International Conference on the Application of Physical Modelling in Coastal and Port Engineering and Science. [31] Miles, J. W. (1980). Solitary waves. Annual Review of Fluid Mechanics, 12(1), 11-43. [32] Mori, N., Takahashi, T., Yasuda, T., & Yanagisawa, H. (2011). Survey of 2011 Tohoku earthquake tsunami inundation and run‐up. Geophysical Research Letters, 38(7). [33] Peregrine, D. H. (1966). Calculations of the development of an undular bore. Journal of Fluid Mechanics, 25(2), 321-330. [34] Russell, J. S. (1845). Report on Waves: Made to the Meetings of the British Association in 1842-43. [35] Sriram, V., Didenkulova, I., Sergeeva, A., & Schimmels, S. (2016). Tsunami evolution and run-up in a large scale experimental facility. Coastal Engineering, 111, 1-12. [36] Svendsen, I. A., & Grilli, S. T. (1990). Nonlinear waves on steep slopes. Journal of Coastal Research, 185-202. [37] Svendsen, I. A., & Justesen, P. (1984). Forces on slender cylinders from very high and spilling breakers. Symposium on Description and Modelling of Directional Seas (pp. 18-20). [38] Synolakis, C. E. (1987). The runup of solitary waves. Journal of Fluid Mechanics, 185, 523-545. [39] Synolakis, C. E. (1990). Generation of long waves in laboratory. Journal of Waterway, Port, Coastal, and Ocean Engineering, 116(2), 252-266. [40] Tadepalli, S., & Synolakis, C. E. (1994). The run-up of N-waves on sloping beaches. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 445(1923), 99-112. [41] Whitham, G. B. (1974). Linear and Nonlinear Waves. John Wiley & Sons. [42] Wu, Y. T., Higuera, P., & Liu, P. L. F. (2021). On the evolution and runup of a train of solitary waves on a uniform beach. Coastal Engineering, 170, 104015. [43] Wu, Y. T., Liu, P. L. F., Hwang, K. S., & Hwung, H. H. (2018). Runup of laboratory-generated breaking solitary and periodic waves on a uniform slope. Journal of Waterway, Port, Coastal, and Ocean Engineering, 144(6), 04018023. [44] Wu, Y.-T., Hsiao, S.-C. (2011). Numerical study of successive solitary waves breaking on a sloping beach. In: Proceeding of the 33rd Ocean Engineering Conference in Taiwan, Kaohsiung, Taiwan, pp. 115–120. [45] Zelt, J. A. (1991). The run-up of nonbreaking and breaking solitary waves. Coastal Engineering, 15(3), 205-246. [46] 林立剛 (2021):「N型波傳遞之數值模擬與實驗驗證」,國立台灣大學工程科學與海洋工程研究所碩士論文,台北。 [47] 中央氣象局地震測報中心(2022)。海嘯資訊-台灣歷史海嘯。2022年6月15號, https://scweb.cwb.gov.tw/zh-tw/tsunami/taiwan | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86357 | - |
| dc.description.abstract | 本研究中主要利用前導下沉N型波作為海嘯替代模型,並基於N型波造波理論於台灣大學工程科學與海洋工程學系之長20公尺二維斷面水槽進行實驗研究,並探討N型波於斜度1:10之斜坡上溯升過程。 在眾多海嘯資料記載中皆觀察到在海嘯來臨前海岸線會出現海水退位之情形,針對此物理現象我們將以波谷領先之N型波作為海嘯替代模型,並配合適用於推板式造波機之造波理論,以實驗水槽為主OpenFOAM數值造波水槽為輔,對N型海嘯波進行研究。 利用控制變量方法探討不同控制變數對於N型波傳遞之影響。針對N型波與孤立波進行多組溯升實驗,使用均方根誤差方法計算孤立波與N型波之差異並進行歸類,最後比較N型波與孤立波溯升之差異,並得出對於破碎型N型波而言,其波浪溯升會小於對應正振幅之孤立波的結論,其原因在於前導下沉波會造成較強烈的破碎現象。利用影像處理方法求出平均溯升與溯升前線之標準差,以量化溯升線之亂度,最後提出以史托克斯數作為判別波形相似性之方法,當N型波領先波峰之史托克斯數等於1.0時,即定義波峰為遠場孤立波,提供後人一判別與孤立波之波形相似性之方法,最後透過自身擬合之經驗公式,探討遠場孤立波與N型波之溯升差異。 | zh_TW |
| dc.description.abstract | In many recent events, tsunamis have been observed to lead with significant water drawdown. How this wave drawdown affects the tsunami runup requires further investigation. In this study the propagation and runup of leading depression N-waves are investigated using combination of experimental and numerical methods. Attempts to find out the effect of leading depression wave on runup. Based on the theoretical formulation for generation of N-waves, N-waves were generated in the 20 m long wave maker flume of National Taiwan University by using piston type wavemaker and these waves shoal and runup on a 1 on 10 slope. A set of N-wave and solitary wave experiments were carried out and discussed the influence of different control variables on N-wave propagation. By using root-mean-square deviation method to classify N-waves and further discussed the differences between N-waves runup and solitary waves runup. This study found out that for wave breaking case, N-waves runup will be smaller than solitary waves runup because the leading depression waves will cause a stronger breaking waves. At the same time, the average and standard deviation of the runup lines was found by using image processing, in order to compare the uniformity of runup lines between solitary waves and N-waves. In the end, we proposed Stokes number method to quantitatively evaluate the similarity between leading wave crest of N-wave and solitary wave by using open source CFD software OpenFOAM. When the Stokes number of N-wave reach 1.0, the leading wave of N-wave is defined as far-field solitary wave and discuss the runup difference between far-field solitary wave and N-wave by using empirical formula of numerical simulation. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:51:04Z (GMT). No. of bitstreams: 1 U0001-2308202215300000.pdf: 10446106 bytes, checksum: ad9abd6108bea9a0df9749ebc1d3896e (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 謝誌 ii 摘 要 iii Abstract iv 目錄 vi 圖目錄 ix 表目錄 xiii 符號說明 xiv 1 第一章 緒論 1 1.1 研究動機及目的 1 1.2 海嘯研究與N型波 2 2 第二章 N型海嘯波 7 2.1 N型波定義 7 2.2 N型波造波理論 8 2.3 統御參數 11 2.4 孤立波定義 14 2.5 孤立波造波理論 15 3 第三章 實驗設備介紹 16 3.1 實驗配置與規劃 16 3.2 造波水槽結構 17 3.2.1 水槽框架 17 3.2.2 造波機結構 17 3.3 溯升撐架與斜板 21 3.4 造波運動控制與資料擷取系統 23 3.4.1 造波運動控制 23 3.4.2 資料擷取系統 25 3.5 影像擷取 28 3.5.1 影像擷取設備 28 3.5.2 影像處理方法 29 3.5.3 影像魚眼校正 30 3.6 資料串流平台 32 4 第4章 孤立波與N型波溯升實驗 34 4.1 孤立波波形驗證 34 4.2 孤立波溯升實驗 36 4.3 N型波傳遞與溯升 38 4.3.1 非線性參數對N型波之影響 39 4.3.2 頻散參數對N型波之影響 42 4.3.3 偏心率對N型波之影響 46 4.4 特異最大溯升值之討論 49 4.5 RMSD波形分類方法 52 4.6 N型波之溯升之結果 55 4.7 平均溯升值與溯升前線標準差 60 5 第5章 數值模擬 63 5.1 OpenFOAM 介紹 63 5.2 數值造波水槽 64 5.2.1 控制方程 64 5.2.2 數值造波水槽 65 5.2.3 自由液面捕捉方法 66 5.2.4 模擬波形傳遞驗證 67 5.3 N型波數值與實驗驗證 68 5.4 N型波之相似性測試 69 5.5 以史托克斯數探討N型波之傳遞 70 5.6 N型波與遠場孤立波之溯升比較 75 6 第6章 結論與未來展望 76 6.1 結論 76 6.2 未來展望 77 7 參考文獻 78 | |
| dc.language.iso | zh-TW | |
| dc.subject | 溯升 | zh_TW |
| dc.subject | N型波 | zh_TW |
| dc.subject | 孤立波 | zh_TW |
| dc.subject | OpenFOAM | zh_TW |
| dc.subject | 遠場孤立波 | zh_TW |
| dc.subject | 史托克斯數 | zh_TW |
| dc.subject | 波破碎 | zh_TW |
| dc.subject | OpenFOAM | en |
| dc.subject | N-wave | en |
| dc.subject | wave breaking | en |
| dc.subject | solitary wave | en |
| dc.subject | Stokes number | en |
| dc.subject | far-field solitary wave | en |
| dc.title | 前導下沉N型海嘯波之傳遞與溯升 | zh_TW |
| dc.title | Propagation and runup of leading depression N-waves | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 戴璽恆(Xi-Heng Dai),吳昀達(Yun-Da Wu),莊偉良(Wei-Liang Zhuang) | |
| dc.subject.keyword | N型波,孤立波,溯升,波破碎,史托克斯數,遠場孤立波,OpenFOAM, | zh_TW |
| dc.subject.keyword | N-wave,solitary wave,wave breaking,Stokes number,far-field solitary wave,OpenFOAM, | en |
| dc.relation.page | 80 | |
| dc.identifier.doi | 10.6342/NTU202202705 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-08-24 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-08-30 | - |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2308202215300000.pdf | 10.2 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
