請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86351完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃念祖(Nien-Tsu Huang) | |
| dc.contributor.author | Chia-Chin Hsieh | en |
| dc.contributor.author | 謝家靖 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:50:43Z | - |
| dc.date.copyright | 2022-10-20 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-09-29 | |
| dc.identifier.citation | 1.Han, Z. and S.I. Bozhevolnyi, Radiation guiding with surface plasmon polaritons.Reports on Progress in Physics, 2012. 76(1): p. 016402. 2.Chu, C.-K., et al., Combination of photothermal and photodynamic inactivation of cancer cells through surface plasmon resonance of a gold nanoring. Nanotechnology, 2016. 27(11): p. 115102. 3.Tham, H.P., et al., Photosensitizer anchored gold nanorods for targeted combinational photothermal and photodynamic therapy. Chemical Communications, 2016. 52(57): p. 8854-8857. 4.Kalluru, P., et al., Photosensitization of singlet oxygen and in vivo photodynamic therapeutic effects mediated by PEGylated W18O49 nanowires. Angewandte Chemie International Edition, 2013. 52(47): p. 12332-12336. 5.Zhu, J., et al., Surface-plasmon-enhanced GaN-LED based on the multilayered rectangular nano-grating. Optics Communications, 2014. 322: p. 66-72. 6.Yeh, D.-M., et al., Localized surface plasmon-induced emission enhancement of a green light-emitting diode. Nanotechnology, 2008. 19(34): p. 345201. 7.Chen, H.-S., et al., Surface plasmon coupled light-emitting diode with metal protrusions into p-GaN. Applied Physics Letters, 2013. 102(4): p. 041108. 8.Oh, S.Y., et al., Development of gold nanoparticle-aptamer-based LSPR sensing chips for the rapid detection of Salmonella typhimurium in pork meat. Scientific reports, 2017. 7(1): p. 1-10. 9.Suthanthiraraj, P.P.A. and A.K. Sen, Localized surface plasmon resonance (LSPR) biosensor based on thermally annealed silver nanostructures with on-chip blood-plasma separation for the detection of dengue non-structural protein NS1 antigen. Biosensors and Bioelectronics, 2019. 132: p. 38-46. 10.de la Escosura-Muñiz, A., et al., Nanochannels for diagnostic of thrombin-related diseases in human blood. Biosensors and Bioelectronics, 2013. 40(1): p. 24-31. 11.Kim, D.M., et al., Biosensing applications using nanostructure-based localized surface plasmon resonance sensors. Sensors, 2021. 21(9): p. 3191. 12.Chauhan, M. and V.K. Singh, Review on recent experimental SPR/LSPR based fiber optic analyte sensors. Optical Fiber Technology, 2021. 64: p. 102580. 13.Ahmed, A.R., Localized surface plasmon resonance based nanocube-nanosphere dimer biosensor. 2017, BRAC University. 14.Byun, I. and J. Kim, Cost-effective laser interference lithography using a 405 nm AlInGaN semiconductor laser. Journal of Micromechanics and Microengineering, 2010. 20(5): p. 055024. 15.Hulteen, J.C. and R.P. Van Duyne, Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1995. 13(3): p. 1553-1558. 16.Tseng, A.A., et al., Electron beam lithography in nanoscale fabrication: recent development. IEEE Transactions on electronics packaging manufacturing, 2003. 26(2): p. 141-149. 17.Chou, S.Y., P.R. Krauss, and P.J. Renstrom, Nanoimprint lithography. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 1996. 14(6): p. 4129-4133. 18.Buyukserin, F., S. Altuntas, and B. Aslim, Fabrication and modification of composite silica nano test tubes for targeted drug delivery. RSC Advances, 2014. 4(45): p. 23535-23539. 19.Lin, B., et al., On-spot surface enhanced Raman scattering detection of Aflatoxin B1 in peanut extracts using gold nanobipyramids evenly trapped into the AAO nanoholes. Food chemistry, 2020. 307: p. 125528. 20.Liu, S., J. Tian, and W. Zhang, Fabrication and application of nanoporous anodic aluminum oxide: a review. Nanotechnology, 2021. 32(22): p. 222001. 21.Ito, T., et al., Fabrication and characterization of nano porous lattice biosensor using anodic aluminum oxide substrate. Japanese Journal of Applied Physics, 2017. 56(6S1): p. 06GG02. 22.Kim, S.-W., et al., Easy-to-fabricate and high-sensitivity LSPR type specific protein detection sensor using AAO nano-pore size control. Sensors, 2017. 17(4): p. 856. 23.Yeom, S.-H., et al., Enhancement of the sensitivity of LSPR-based CRP immunosensors by Au nanoparticle antibody conjugation. Sensors and Actuators B: Chemical, 2013. 177: p. 376-383. 24.Lv, X., et al., Label-free exosome detection based on a low-cost plasmonic biosensor array integrated with microfluidics. Langmuir, 2019. 35(30): p. 9816-9824. 25.Su, K.-H., et al., Interparticle coupling effects on plasmon resonances of nanogold particles. Nano letters, 2003. 3(8): p. 1087-1090. 26.Jain, P.K., W. Huang, and M.A. El-Sayed, On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation. Nano Letters, 2007. 7(7): p. 2080-2088. 27.Rechberger, W., et al., Optical properties of two interacting gold nanoparticles. Optics communications, 2003. 220(1-3): p. 137-141. 28.朱旭鹏, et al., 金属表面等离激元耦合理论研究进展. 物理学报, 2019. 24. 29.Mayer, K.M. and J.H. Hafner, Localized surface plasmon resonance sensors. Chemical reviews, 2011. 111(6): p. 3828-3857. 30.Yang, H.U., et al., Optical dielectric function of silver. Physical Review B, 2015. 91(23): p. 235137. 31.Duque, J., J. Blandón, and H. Riascos. Localized Plasmon resonance in metal nanoparticles using Mie theory. in Journal of Physics: Conference Series. 2017. IOP Publishing. 32.Gans, R., Über die form ultramikroskopischer goldteilchen. Annalen der Physik, 1912. 342(5): p. 881-900. 33.Amirjani, A., F. Firouzi, and D.F. Haghshenas, Predicting the size of silver nanoparticles from their optical properties. Plasmonics, 2020. 15(4): p. 1077-1082. 34.Robatjazi, H., et al., Ultrathin AAO membrane as a generic template for sub-100 nm nanostructure fabrication. Chemistry of Materials, 2016. 28(13): p. 4546-4553. 35.Hao, Q., et al., Facile design of ultra-thin anodic aluminum oxide membranes for the fabrication of plasmonic nanoarrays. Nanotechnology, 2017. 28(10): p. 105301. 36.Jung, M., J.-H. Kim, and Y.-W. Choi, Preparation of anodic aluminum oxide masks with size-controlled pores for 2D plasmonic nanodot arrays. Journal of Nanomaterials, 2018. 2018. 37.Yu, C.-U., et al., Pore-size dependence of AAO films on surface roughness of Al-1050 sheets controlled by electropolishing coupled with fractional factorial design. Surface and coatings technology, 2007. 201(16-17): p. 7259-7265. 38.Huang, C.-H., et al., Plasmon-induced optical switching of electrical conductivity in porous anodic aluminum oxide films encapsulated with silver nanoparticle arrays. Optics express, 2010. 18(26): p. 27891-27899. 39.Chen, J.-S., et al., A Localized surface plasmon resonance (LSPR) sensor integrated automated microfluidic system for multiplex inflammatory biomarker detection. Analyst, 2020. 145(23): p. 7654-7661. 40.Jena, S.C., et al., Surface plasmon resonance immunosensor for label-free detection of BIRC5 biomarker in spontaneously occurring canine mammary tumours. Scientific reports, 2019. 9(1): p. 1-12. 41.Bonyar, A., et al., Investigation of the performance of thermally generated gold nanoislands for LSPR and SERS applications. Sensors and Actuators B: Chemical, 2018. 255: p. 433-439. 42.Geng, Z., et al., A route to low-cost nanoplasmonic biosensor integrated with optofluidic-portable platform. Sensors and Actuators B: Chemical, 2014. 195: p. 682-691. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86351 | - |
| dc.description.abstract | 近幾年,表面電漿共振由於其免標定性、即時量測性以及增強光學訊號的特色,使其具有使用在生醫檢測領域的潛力。但目前遭遇的困難是表面電漿共振的感測器靈敏度不夠大,無法量測低濃度的生物分子。因此為了提升此感測器的靈敏度。我們利用電漿子耦合的原理,調整奈米金屬粒子的大小及間距,藉以研究電漿子耦合對於提升靈敏度的關係。為達成此項目的,本文提出了利用陽極氧化鋁製作表面電漿共振感測器的方法,利用陽極氧化鋁易於控制間距與孔徑大小的特性,製作各種間距/粒徑(G/D)比例不同的結構。而為了有效預測實驗結果,我們先模擬了 36 種不同參數的奈米金粒子,分為週期為 125nm、100nm、75nm、60nm 四組,並觀察其電場與光譜。透過模擬結果,我們成功應證了波峰位置與感測器的奈米金粒子G/D 比例呈現指數遞減的趨勢,且週期最大者(125nm)的組別在相同 G/D 比值中普遍擁有較好的性能表現。並進一步利用此一特性提升剝離式感測器靈敏度,成功量測樣品中濃度在 1.1~30μg/mL 之間的 C 反應蛋白(CRP)。並且,我們提出另一非剝離式的感測器架構,利用,期望可以有效解決陽極氧化鋁製程中,蒸鍍無法應用在大深寬比結構的限制。 | zh_TW |
| dc.description.abstract | The localized surface plasmon resonance (LSPR) sensing technique has recently drawn great attention in biosensing fields due to its label-free, real time and optical-enhanced features. However, the LSPR sensor still suffer from its relatively low sensitivity. To solve this problem, we aim to utilize the plasmonic coupling effect to increase sensitivity of the LSPR sensor by adjusting the period and the diameter of nanoparticles. We utilized anodic aluminum oxide (AAO), which can better control period and diameter and fabricate structures with various gap/diameter (G/D) radios. To predict the experimental result accurately, we simulate 36 structures, which are divided into 4 groups (period=125nm, 100nm, 75nm, 60nm), and observe the electric field and spectrum. Through simulation, we confirm that sensitivity exponentially decay with G/D radio of nanoparticles. Generally, the max period group (114nm) has better Performance at same G/D radio. Finally, we successfully use plasmonic coupling effect to increase the sensitivity of LSPR sensor which is fabricated by lift off AAO, and we detect C-Reactive protein (CRP) with concentration from 1.1 to 30µg/mL. In lift off AAO sensor fabrication, evaporation cannot be applied to the high height/weight radio structure. To overcome this fabrication limitation, we propose another non-lift off AAO fabrication to solve this problem. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:50:43Z (GMT). No. of bitstreams: 1 U0001-2809202223514700.pdf: 3947491 bytes, checksum: c2de5461968487e65333b8f37f2adc30 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 誌謝1 中文摘要2 英文摘要3 目錄4 圖目錄6 表目錄8 章節 1 引言9 1.1 表面電漿子共振 9 1.1.1 表面電漿子介紹 9 1.1.2 表面電漿子共振感測器製作11 1.2 陽極氧化鋁14 1.2.1 陽極氧化鋁的介紹與應用 14 1.2.2 陽極氧化鋁的製程步驟 15 1.2.3 陽極氧化鋁-侷限型表面電漿共振生醫感測18 章節 2 理論19 2.1 Drude model 19 2.2 侷限型表面電漿子共振原理20 章節 3 材料與方法23 3.1 陽極氧化鋁感測器製程 23 3.1.1 剝離式表面電漿子感測器 23 3.1.2 非剝離式表面電漿子感測器 27 3.2 光學系統與免疫分析感測器表面修飾 29 3.3 樣品製備 31 3.3.1 葡萄糖水樣品製備 31 3.3.2 CRP 樣品製備31 章節 4 模擬32 4.1 模型建立說明 32 4.2 光譜34 4.3 電場強度 35 4.4 參數比較 36 4.4.1 波峰位置 36 4.4.2 粒徑對波峰位置的影響 37 4.4.3 週期對波峰位置的影響 38 4.4.4 間距/粒徑39 4.5 品質因數 41 章節 5 結果與討論42 5.1 剝離式表面電漿子感測器 42 5.1.1 陽極氧化鋁薄膜粒徑分析 42 5.1.2 週期性奈米金圓盤厚度選擇 44 5.1.3 陽極氧化鋁感測器特性分析 45 5.1.4 CRP 蛋白檢測46 5.2 剝離式表面電漿子感測器 47 5.2.1 自製陽極氧化鋁均勻度 47 章節 6 結論與未來方向48 參考文獻49 圖目錄 圖 1.表面電漿子的應用:(A)光動力療法[2] (B)耦合 LED 提升發光效率[5] (C)豬肉 中沙門氏菌檢測[8] (D)血漿中登革熱 NS1 抗原檢測[10]。 10 圖 2.(A)雙光干涉的基本架構 (B)單次及(C)雙次雙光干涉後形成的圖樣[14] 。 11 圖 3.奈米球微影流程[15]:(A)單層堆疊及其(B)理想孔洞、(C)SEM 圖樣,(D)雙層 堆疊及其(E)理想孔洞、(F)SEM 圖樣。 12 圖 4.(A)電子束微影架構 (B)多工平行電子束微影架構[16]。 13 圖 5. 奈米壓印流程圖[17]。 13 圖 6.(A)(B)藥物封填入陽極氧化鋁孔洞,蝕刻陽極氧化鋁後形成奈米管[18] (C)(D) 利用陽極氧化鋁修飾後抓取凝血酶及抗體前後 SEM 圖[10] (E)(F)陽極氧化鋁 孔洞填入奈米金粒子用作表面增強拉曼訊號基板,及其量測 R6G 訊號[19]。 14 圖 7.二次陽極氧化的陽極氧化鋁製程流程。 15 圖 8.陽極氧化鋁製程參數:(A)粒徑大小與所需電壓、電解液關係 (B)陽極氧化 時間與厚度關係[20]。 15 圖 9.陽極氧化鋁非剝離式 SAA1 抗原感測器[23]。 16 圖 10.陽極氧化鋁剝離式外泌體感測器[24]。 17 圖 11.奈米圓盤對模擬[26] (A)兩者間距大小與光譜變化 (B)間距與波峰位移關係。18 圖 12.一奈米金屬球受外界電場激發電漿子模型,其中εd為背景介電常數,ε(ω)為 金屬隨頻率的介電常數[28]。 20 圖 13.剝離式陽極氧化鋁製程步驟 (A)固定陽極氧化鋁薄膜於基板並浸泡於丙酮 24 圖 14.文獻與本文所製作的週期性奈米金屬粒子比較:(A) D=90nm[24] (B)藍色箭 頭 a1~a5 依序為 D=65nm,T=5nm、10nm、20nm、40nm、60nm,紅色箭頭 a7~a5 依序為 T=60nm、D=35nm、50nm、65nm[35] (C)(D)本文所製作的 TD=95nm,虛線框框為製程不完美處 (E)電子束蒸鍍機(Kao Duen Technology Corp) (F)掃描式電子顯微鏡(Hitachi S-4800)。 26 圖 15.非剝離式感測器製程流程。 27 圖 16.感測器修飾步驟與光學系統。 29 圖 17.模擬圖樣 (A)模型架構,與(B)水平方向(C)垂直方向的電場分布。 32 圖 18.模擬的 36 種參數中,三個組別的原始光譜圖樣:(A) P=125nm (B) P=100nm (C) P=75nm (D) P=60nm。 34 圖 19.在 P=100nm,光源波長=1000nm 時的電場強度 35 圖 20.模擬中四組不同週期 (A) P=125nm (B) P=100nm (C) P=75nm (D) P=60nm (E)疊合 4 組不同週期的波峰位置與靈敏度關係。36 圖 21.四組週期(P=125nm、P=100nm、P=75nm、P=60nm)波峰位置與粒徑關係。 37 圖 22.在不同週期下(A)(B) D=55nm 的光譜與波峰發生位置 (C)(D) D=50nm 的光 譜與波峰發生位置 (E)(F) D=30nm 的光譜與波峰發生位置。 38 圖 23.紅移比例與 G/D 比值的關係 39 圖 24. (A)(B)波峰位置與靈敏度對上 G/D 比值的關係。(C)(D)波峰位置與靈敏度 對上 D/P 比值的關係。 40 圖 25.週期為(A)125nm (B)100nm (C)75nm (C)60nm 其波峰位置與 G/D 比值係。 40 圖 26. FOM 與(A)間距/粒徑(G/D)比值,以及(B)粒徑的關係。 41 圖 27. P=100nm (A) TD=40nm (B) TD=50nm (C) TD=60nm 的陽極氧化鋁 SEM 圖 樣。P=125nm (D) TD=70nm (E) TD=80nm (F) TD=95nm 陽極氧化鋁 SEM 圖 樣。 42 圖 28. 理想孔徑為(A)70nm (B)80nm (C)95nm 的市售陽極氧化鋁孔徑分布圖。 43 圖 29. P=125nm TD=95nm 的(A)(B)SEM 圖樣及孔徑分布。在不同背景折射率底 下的(C)(D)模擬光譜 (E)(F)實驗光譜。 45 圖 30.利用表面電漿子感測器進行 CPR 量測實驗的(A)波峰隨時間的紅移量(B)不 同濃度的 CRP 紅移量(C)不同濃度的 CRP 產生的吸收光譜。 46 圖 31.自製的陽極氧化鋁 SEM (A)擴孔之前正面 (B)擴孔後正面 (C)擴孔後背面 47 表目錄 表格 1.玻璃基板的清洗程序與每步驟所需時間 23 表格 2.文獻中製作剝離式結構的蒸鍍參數 25 表格 3.非剝離式感測器製程所使用溶液 28 表格 4.感測器抗體抗原修飾步驟與所使用溶液成分。 30 表格 5.化學藥品列表。 31 表格 6.模擬中所使用的 36 筆參數。 33 表格 7. P=125 TD=95 T=10nm、20nm、30nm 的光譜圖樣及靈敏度。 44 | |
| dc.language.iso | zh-TW | |
| dc.subject | 靈敏度 | zh_TW |
| dc.subject | 表面電漿子 | zh_TW |
| dc.subject | 電漿子耦合 | zh_TW |
| dc.subject | CRP感測器 | zh_TW |
| dc.subject | 陽極氧化鋁 | zh_TW |
| dc.subject | Sensitivity | en |
| dc.subject | LSPR | en |
| dc.subject | AAO | en |
| dc.subject | Plasmonic coupling | en |
| dc.subject | CRP sensor | en |
| dc.title | 陽極氧化鋁基板製作侷限型表面電漿共振感測器進行表面電漿子耦合效應之研究 | zh_TW |
| dc.title | The anodic aluminum oxide (AAO) templates fabricated Localized Surface Plasmon Resonance (LSPR) sensor for the plasmonic coupling effect study | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳嘉哲(Chia-Che Wu),陳奕帆(Yih-Fan Chen),林鼎晸(Ding-Zheng Lin),王倫 | |
| dc.subject.keyword | 表面電漿子,陽極氧化鋁,電漿子耦合,CRP感測器,靈敏度, | zh_TW |
| dc.subject.keyword | LSPR,AAO,Plasmonic coupling,CRP sensor,Sensitivity, | en |
| dc.relation.page | 51 | |
| dc.identifier.doi | 10.6342/NTU202204213 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-09-30 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-10-20 | - |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2809202223514700.pdf | 3.85 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
