請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86334完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李翔傑(Hsiang-Chieh Lee) | |
| dc.contributor.author | Po-Chuan Chen | en |
| dc.contributor.author | 陳柏銓 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:49:43Z | - |
| dc.date.copyright | 2022-08-29 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-25 | |
| dc.identifier.citation | 1. Sakata, L.M., et al., Optical coherence tomography of the retina and optic nerve - a review. Clin Exp Ophthalmol, 2009. 37(1): p. 90-9. 2. Olsen, J., J. Holmes, and G.B. Jemec, Advances in optical coherence tomography in dermatology-a review. J Biomed Opt, 2018. 23(4): p. 1-10. 3. Gora, M.J., et al., Endoscopic optical coherence tomography: technologies and clinical applications [Invited]. Biomed Opt Express, 2017. 8(5): p. 2405-2444. 4. Panta, P., et al., Optical Coherence Tomography: Emerging In Vivo Optical Biopsy Technique for Oral Cancers, in Oral Cancer Detection: Novel Strategies and Clinical Impact, P. Panta, Editor. 2019, Springer International Publishing: Cham. p. 217-237. 5. Gleich, L.L., et al., Tumor angiogenesis in T1 oral cavity squamous cell carcinoma: role in predicting tumor aggressiveness. Head Neck, 1996. 18(4): p. 343-6. 6. Tsai, M.-T., et al., Noninvasive structural and microvascular anatomy of oral mucosae using handheld optical coherence tomography. Biomedical Optics Express, 2017. 8(11): p. 5001-5012. 7. Tearney, G.J., et al., Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography. Opt Lett, 1996. 21(7): p. 543-5. 8. Kang, W., et al., Motion artifacts associated with in vivo endoscopic OCT images of the esophagus. Optics Express, 2011. 19(21): p. 20722-20735. 9. Ahsen, O.O., et al., Correction of rotational distortion for catheter-based en face OCT and OCT angiography. Opt Lett, 2014. 39(20): p. 5973-6. 10. Barney, B., Introduction to parallel computing. Lawrence Livermore National Laboratory, 2010. 6: p. 10. 11. Dagum, L. and R. Menon, OpenMP: an industry standard API for shared-memory programming. IEEE Computational Science and Engineering, 1998. 5(1): p. 46-55. 12. Chapman, B.M., G. Jost, and R.v.d. Pas. Using OpenMP - portable shared memory parallel programming. in Scientific and engineering computation. 2008. 13. NVIDIA, NVIDIA CUDA C Programming Guide. 14. Kuon, I., R. Tessier, and J. Rose, FPGA Architecture: Survey and Challenges. Foundations and Trends® in Electronic Design Automation, 2007. 2(2): p. 135-253. 15. Souza, R. and S. Spechler, Souza RF, Spechler SJConcepts in the prevention of adenocarcinoma of the distal esophagus and proximal stomach. CA Cancer J Clin 55: 334-351. CA: a cancer journal for clinicians, 2009. 55: p. 334-51. 16. Huang, D., et al., Optical coherence tomography. Science, 1991. 254(5035): p. 1178-81. 17. Lee, A.M., et al., Wide-field in vivo oral OCT imaging. Biomed Opt Express, 2015. 6(7): p. 2664-74. 18. Tsai, T.-H., et al., Optical coherence tomography in gastroenterology: a review and future outlook. Journal of Biomedical Optics, 2017. 22(12): p. 121716. 19. Leitgeb, R.A., et al., Doppler optical coherence tomography. Prog Retin Eye Res, 2014. 41(100): p. 26-43. 20. de Boer, J.F., C.K. Hitzenberger, and Y. Yasuno, Polarization sensitive optical coherence tomography - a review [Invited]. Biomed Opt Express, 2017. 8(3): p. 1838-1873. 21. Izatt, J.A. and M.A. Choma, Theory of Optical Coherence Tomography. 2008, Springer Berlin Heidelberg. p. 47-72. 22. Drexler, W., et al., Optical coherence tomography today: speed, contrast, and multimodality. J Biomed Opt, 2014. 19(7): p. 071412. 23. Fujimoto, J.G. and W. Drexler, Introduction to OCT. 2015, Springer International Publishing. p. 3-64. 24. Tang, P. and R.K. Wang, Polarization sensitive optical coherence tomography for imaging microvascular information within living tissue without polarization-induced artifacts. Biomedical Optics Express, 2020. 11(11): p. 6379-6388. 25. Tumlinson, A.R., et al., Endoscope-tip interferometer for ultrahigh. Optics Express, 2006. 14(5): p. 1878-1887. 26. Rollins, A. and J. Izatt, Optimal interferometer designs for optical coherence tomography. Optics letters, 1999. 24: p. 1484-6. 27. Lee, A.M.D., et al., Fiber-optic polarization diversity detection for rotary probe optical coherence tomography. Optics Letters, 2014. 39(12): p. 3638-3641. 28. Van Soest, G., J.G. Bosch, and A.F.W. Van Der Steen, Azimuthal Registration of Image Sequences Affected by Nonuniform Rotation Distortion. IEEE Transactions on Information Technology in Biomedicine, 2008. 12(3): p. 348-355. 29. Sun, C., et al., In vivo feasibility of endovascular Doppler optical coherence tomography. Biomedical optics express, 2012. 3: p. 2600-10. 30. Makita, S., et al., Optical coherence angiography. Optics Express, 2006. 14(17): p. 7821-7840. 31. NVIDIA. Optimizing CUDA. 2009. 32. NVIDIA, NVIDIA CUDA Profiler User Guide. 33. Ruijters, D., B. ter Haar Romeny, and P. Suetens, Efficient GPU-Based Texture Interpolation using Uniform B-Splines. J. Graphics Tools, 2008. 13: p. 61-69. 34. Ruijters, D. and P. Thévenaz, GPU Prefilter for Accurate Cubic B-spline Interpolation. The Computer Journal, 2012. 55. 35. Chen, Y.-L., Development of High-speed Functional Optical Coherence Tomography (OCT) Imaging with a Graphics Processing Unit (GPU)-accelerated Engine. 臺灣大學光電工程學研究所學位論文, 2021. 1-63. 36. Liu, W., et al., Simultaneous optical coherence tomography angiography and fluorescein angiography in rodents with normal retina and laser-induced choroidal neovascularization. Optics Letters, 2015. 40(24): p. 5782-5785. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86334 | - |
| dc.description.abstract | 導管式光學同調斷層掃描術(Catheter-based optical coherence tomography, catheter-based OCT)的發展結合了OCT所具備的優勢以及具有可以被使用在人體內部的設備條件,使其有了作為對於人體內部器官前期病變早期診斷工具的可行性。然而,由於catheter-based OCT本身透過光點掃描成像機制的影響,會使得擷取到的影像出現畸變。此外,影像畸變的現象會導致進行進階的影像分析步驟時,可能會出現不精確的運算結果,使得catheter-based OCT要作為診斷的工具會具有一定的挑戰性。 在本篇論文中,我們使用圖形處理器(Graphics Processing Units, GPU)進行catheter-based OCT影像修正演算法的開發。影像修正的部分分為兩項,第一項是針對如光纖彎曲等原因造成照射在樣本表面之入射光偏振態變化所產生的偽影進行修正,除了使用偏振分集檢測模組蒐集來自兩種偏振態的干涉訊號外,我們還改寫了過去使用C++語言開發的成像引擎,利用GPU-OCT processing演算法對來自兩種偏振態通道的OCT訊號提供即時的處理;第二項則是針對catheter-based OCT常見的由於光點掃描樣品表面之穩定性與重複性所產生的圓周畸變(Circumferential distortion),又被稱為非均勻旋轉畸變(Non-uniform Rotational Distortion, NURD)進行修正。在本篇論文中,共開發了兩套不同的演算法來進行NURD修正,基於NURD的特性會造成在連續時間上的影像之間有左右位移的現象,為了修正NURD,我們可以藉由找出導管遠端成像頭上金屬殼反射所引起的兩個基準標記來找到OCT影像中存在的NURD特徵。第一套演算法僅基於基準標記位置進行影像的位移以及調整,這是相對簡易的修正方式,所以有較好的速度表現。第二套演算法則是藉由分析基準標記位置隨時間的變化,可以計算出用來進行插值所需的資訊來對初始的OCT影像重採樣(Resample)以完成NURD的修正,第二套演算法的實現是基於對先前發表的版本進行改寫。兩套NURD修正演算法都使用C++語言以及NVIDIA CUDA toolkits所提供的函式庫來進行撰寫到現有的成像引擎內。兩套演算法皆會藉由NVIDIA Visual Profiler進行分析以優化資料處理及排程順序,並且在實驗室現有的catheter-based OCT系統上進行演算法搭配OCT血管攝影術(OCTA)的測試。修改過後的成像引擎能夠基於NURD修正演算法進行catheter-based OCT與OCTA成像,並且在資料蒐集完畢後可以立即進行OCT與OCTA影像的3D檢驗。我們相信在本論文裡所展示的結果將進一步促使未來catheter-based OCT與OCTA成像在臨床上應用的實現。 | zh_TW |
| dc.description.abstract | The development of catheter-based optical coherence tomography (catheter-based OCT), which combines the advantages OCT exhibits and also the apparatus can be used inside the human body, enables the feasibility of realizing early diagnosis of the lesions at the early stage in internal organs of the human body. However, due to the influence of the beam scanning imaging mechanism implemented in catheter-based OCT, the image acquired will be distorted. Furthermore, the presence of image distortion might lead to inaccurate computation results during advanced image analysis steps, making it challenging for catheter-based OCT to be used as a diagnostic tool in practice. In this thesis work, we have utilized graphics processing units (GPU) to develop an image correction framework for catheter-based OCT. The image correction framework is divided into two parts. The first part is to correct the artifacts caused by the change of light polarization state illuminating on the sample surface caused by fiber bending for example. In addition to utilizing polarization diversity detection module to collect inference signals from both polarization states, we have revised the imaging engine developed using C++ language previously to provide real-time processing of OCT signal from both polarization channels using GPU-OCT processing algorithm. The second part is to correct the circumferential distortion due to the stability and repeatability of the beam scanning over the sample surface, also known as non-uniform rotational distortion (NURD), commonly presented in catheter-based OCT imaging. In this thesis work, we have developed two different algorithms for NURD correction, based on the characteristics of NURD, which cause the OCT image to shift left and right, during temporal evolution. In order from correct the NURD, we can find the NURD characteristic present in the OCT imaging by identifying two fiducial markers caused by the reflection from the metal shell on the distal imaging head of the catheter. The first algorithm simply applies the imaging shifting and resizing based on the fiducial marker locations. It is a relatively simple correction method, so it has better speed performance. For the second algorithm, by analyzing the variation of the fiducial marker position as a function of time, we can compute the interpolation information to resample the initial OCT images to yield NURD-corrected ones. The implementation of the second algorithm was based on revision of a previously reported version. Both NURD correction algorithms are implemented to the existing imaging engine using C++ language and the function library provided by NVIDIA CUDA toolkits. The performance of both algorithms were evaluated using NVIDIA Visual Profiler to optimize data processing and scheduling. Then, the algorithms were tested on the existing catheter-based OCT system in our laboratory, including OCT angiography (OCTA) imaging. The revised imaging engine enables catheter-based OCT or OCTA imaging based on the either NURD correction algorithms, as well as 3D examination of the OCT or OCTA imaging data immediately after the data acquisition. We believe the results demonstrated in this thesis work should further facilitate the implementation of catheter-based OCT/OCTA imaging in the clinical practice in the future. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:49:43Z (GMT). No. of bitstreams: 1 U0001-2308202221332500.pdf: 5923736 bytes, checksum: 612b5eb70d67b6644d8b064f80d07da0 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 論文口試委員審定書 I 誌謝 II 中文摘要 III ABSTRACT V 目錄 VII 表目錄 X 圖目錄 XI CHAPTER 1 緒論 1 1.1 導管式光學同調斷層掃描術之發展 1 1.1.1 側視型導管(Side-viewing catheter) 2 1.1.2 前視型導管(Forward-viewing catheter) 3 1.1.3 近端掃描式導管(Proximal-end scanning catheter) 3 1.1.3 遠端掃描式導管(Distal-end scanning catheter) 3 1.2 影像畸變(Distortion) 4 1.3 平行運算方法 5 1.3.1 多執行緒中心處理器(Central Processing Units, CPU) 6 1.3.2 圖形處理器(Graphics Processing Units, GPU) 7 1.3.3 現場可程式化邏輯閘陣列(Field Programmable Gate Array, FPGA) 7 1.4 研究動機 8 1.5 論文範疇 9 CHAPTER 2 光學同調斷層掃描術(Optical Coherence Tomography) 10 2.1 光學同調斷層掃描術介紹 10 2.2 光學同調斷層掃描術之基本原理與其特性 10 2.2.1 低同調干涉儀 10 2.2.2 軸向解析度 14 2.2.3 橫向解析度 15 2.3 光學同調斷層掃描術之發展 16 2.3.1 時域式光學同調斷層掃描術(Time-domain OCT) 16 2.3.2 頻域式光學同調斷層掃描術(Spectral-domain OCT) 16 2.3.3 掃頻式光學同調斷層掃描術(Swept-source OCT) 17 2.4 光纖偏振分集檢測(Fiber-optic polarization diversity detection) 18 2.5 非均勻旋轉畸變(Non-uniform Rotational Distortion, NURD)修正 19 2.6 導管式光學同調斷層掃描血管攝影術(Catheter-based Optical Coherence Tomography Angiography, catheter-based OCTA) 21 CHAPTER 3 GPU平行運算 23 3.1 GPU介紹及GPU架構 23 3.2 統一計算架構(Compute Unified Device Architecture, CUDA) 25 3.3 NVIDIA Visual Profiler 26 CHAPTER 4 系統架構與演算法開發方法 28 4.1 Catheter-based dual-channel OCT系統架構 28 4.2 C++ graphic user interface (GUI) 30 4.3 用於Dual-channel即時成像之GPU-accelerated C++處理框架 31 4.4 用於修正NURD之GPU-accelerated C++處理框架 32 4.4.1 Framework Ⅰ- GPU-NURD interpolation version algorithm 33 4.4.2 Framework Ⅱ- GPU-NURD shifting version algorithm 35 CHAPTER 5 實驗結果與討論 37 5.1 光纖偏振分集檢測之結果 37 5.2 基準性能 38 5.2.1 Framework Ⅰ- GPU-NURD interpolation version algorithm 39 5.2.2 Framework Ⅱ- GPU-NURD shifting version algorithm 43 5.3 NURD修正之影像結果與比較 45 5.4 利用OCTA對NURD修正影像之驗證與比較 47 5.5 討論 50 CHAPTER 6 結論與未來展望 52 6.1 結論 52 6.2 未來展望 52 參考文獻 55 | |
| dc.language.iso | zh-TW | |
| dc.subject | 三維視覺化 | zh_TW |
| dc.subject | 光學同調斷層掃描術 | zh_TW |
| dc.subject | 圖形處理器 | zh_TW |
| dc.subject | 平行運算 | zh_TW |
| dc.subject | 光纖偏振分集檢測 | zh_TW |
| dc.subject | 非均勻旋轉畸變修正 | zh_TW |
| dc.subject | 血管攝影 | zh_TW |
| dc.subject | optical coherence tomography (OCT) | en |
| dc.subject | three-dimensional visualization | en |
| dc.subject | optical coherence tomography angiography (OCTA) | en |
| dc.subject | non-uniform rotational distortion correction | en |
| dc.subject | fiber-optic polarization diversity detection | en |
| dc.subject | parallel computing | en |
| dc.subject | graphics processing units (GPU) | en |
| dc.title | 利用圖形處理器加速引擎於高速導管式光學同調斷層掃描術之開發 | zh_TW |
| dc.title | Development of High-speed Catheter-based Optical Coherence Tomography (OCT) Imaging with a Graphic Processing Unit (GPU)-accelerated Engine | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡睿哲(Jui-Che Tsai),李正匡(Cheng-Kuang Lee),孫家偉(Chia-Wei Sun) | |
| dc.subject.keyword | 光學同調斷層掃描術,圖形處理器,平行運算,光纖偏振分集檢測,非均勻旋轉畸變修正,血管攝影,三維視覺化, | zh_TW |
| dc.subject.keyword | optical coherence tomography (OCT),graphics processing units (GPU),parallel computing,fiber-optic polarization diversity detection,non-uniform rotational distortion correction,optical coherence tomography angiography (OCTA),three-dimensional visualization, | en |
| dc.relation.page | 57 | |
| dc.identifier.doi | 10.6342/NTU202202730 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-08-26 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2023-12-31 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2308202221332500.pdf | 5.78 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
