請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86312完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃慶璨 | zh_TW |
| dc.contributor.advisor | Ching-Tsan Huang | en |
| dc.contributor.author | 周賢明 | zh_TW |
| dc.contributor.author | Hsien-Ming Chou | en |
| dc.date.accessioned | 2023-03-19T23:48:27Z | - |
| dc.date.available | 2023-12-26 | - |
| dc.date.copyright | 2022-08-31 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | 1. Juturu, V and Wu JC: Heterologous Protein Expression in Pichia pastoris: Latest Research Progress and Applications. Chembiochem: a European journal of chemical biology, 2018.19(1): 7-21. 2. Cregg JM, Cereghino JL, Shi J, Higgins DR: Recombinant protein expression in Pichia pastoris. Molecular Biotechnology, 2000.16(1):23-52. 3. Baghban, R, et al: New Developments in Pichia pastoris Expression System, Review and Update. Current Pharmaceutical Biotechnology, 2018.19(6): 451-467. 4. Cregg, JM, Vedvick TS, Raschke WC: Recent advances in expression of foregin genes in Pichia pastoris. Biotechnology, 1993.11(8):905-910 5. Guilliermond, A: Zygosaccharomyces Pastori, nouvelle espèce de levures à copulation hétérogamique. Société mycologique de France, 1920. 6. Phaff, HJ, MW Miller, and M shifrine:The taxonomy of yeasts isolated from Drosophila in the Yosemite region of California. Antonie van Leeuwenhoek, 1956.22(1): 145-161. 7. Yamada, Y, et al:The phylogenetic relatiionships of methanol-assimilating yeasts based on the partial sequences of 18s and 26s ribosomal RNAs: the proposal of Komagataella gen, nov, (Saccharomycetaceae). Bioscience Biotechnology Biochemistry, 1995.59(3):439-444. 8. Kurtzman, CP: Biotechnological strains of Komagataella (Pichia) pastoris are Komagataella phaffii as determined from multigene sequence analysis. Journal of Industrial Microbiology and Biotechnology, 2009.36(11):1435-1438. 9. Wegner, GH and W Harder: Methylotrophic yeasts-1986. Antonie van Leeuwenhoek, 1987.53(1):29-36. 10. Cregg JM, et al: Recombinant protein expression in Pichia pastoris. Molecular Biotechnology, 2000.16(1): 23-52 11. Cregg JM, Madden K, Barringer K, Thill G, Stillman C: Functional characterization of the two alcohol oxidase genes from the yeast Pichia pastoris. Molecular and Cellular Biology, 1989.9(3):1316-1323 12. Hartner, FS and Glieder A: Regulation of methanol utilisation pathway genes in yeasts. Microbial Cell Factories, 2006,5 13. Higgins DR, Cregg JM: Introduction to Pichia pastoris. In:Pichia protocols. Springer, 1998:1-15 14. Cregg JM, Barringer K, Hessler A, Madden K: Pichia pastoris as a host system for transformations. Molecular and Cellular Biology, 1985.5(12):3376-3385 15. Li P, Anumanthan A, Gao X-G, Ilangovan K, Suzara VV, Düzgüneş N, Renugopalakrushnan V: Expression of recombinant proteins in Pichia pastoris. Applied Biochemistry and Biotechnology, 2007.142(2):105-124 16. Lin-Cereghino GP, Stark CM, Kim D, Chang J, Shaheen N, Poerwanto H, Agari K, Moua P, Low LK, Tran N: The effect of ⍺-mating factor secretion signal mutations on recombinant protein expression in Pichia pastoris, Gene 2013.519(2):311-317. 17. Waters, MG, EA Evans, and G Blobel: Prepro-alpha-factor has a cleavable signal sequence. Journal of Biological Chemistry, 1988.263(13):6209-6214. 18. Lin-Cereghino, G.P, et al: The effect of ⍺-mating factor secretion signal mutations on recombinational protein expression in Pichia pastoris. Gene, 2013.519(2):311-317. 19. Bevan, A, C Brenner, and RS Fuller: Quantitative assessment of enzyme specificity in vivo: P2 recognition by Kex2 proteases defined in a genetic system. Proceedings of the National Academy of Sciences of the United States of America, 1998.95(18):10384-10389. 20. Wagner, JC and DH Wolf: Hormone (pheromone) processing enzymes in yeast. The carboxy-terminal processing enzyme of the mating pheromone alpha-factor, carboxypeptidase ysc alpha, is absent in alpha-factor maturation defective kex1 mutant cells. Federation of European Biochemical Societies Letters, 1987.221(2):423-426 21. Wu, H, BS Ng, and G Thibault: Endoplasmic reticulum stress response in yeast and humans. Bioscience Reports, 2014.34(4). 22. Walter, P and D, Ron: The unfolded protein response: from stress pathway to homeostatic regulation. Science, 2011,334(6059):1081-1086. 23. Cox, JS, CE Shamu, and P Walter: Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell, 1993,76(6):1197-1206 24. Barrero, JJ, et al: An improved secretion signal enhances the secretion of model proteins from Pichia pastoris. Microbial Cell Factories, 2018.17(1):161. 25. Fitzgerald, I and Glick BS: Secretion of a foreign protein from budding yeasts is enhanced by cotranslational translocation and by suppression of vacuolar targeting. Microbial Cell Factories, 2014.13(1):125. 26. Rakestraw, JA, et al: Directed evolution of a secretory leader for the improved expression of heterologous proteins and full-length antibodies in Saccharomyces cerevisiae. Biotechnology and Bioengineering, 2009.103(6):1192-1201. 27. Shen W, Xue Y, Liu Y, Kong C, Wang X, Huang M, Cai M, Zhou X, Zhang Y, Zhou M: A novel methanol-free Pichia pastoris system for recombinant protein expression. Microbial Cell Factories, 2016.15(1):178 28. Gellissen, G: Heterologous protein production in methylotrophic yeasts. Applied Microbiology and Biotechnology, 2000.54(6):741-750 29. Vogl, T, et al: Orthologous promoters from related methylotrophic yeasts surpass expression of endogenous promoters of Pichia pastoris. AMB Express, 2020.10(1). 30. Ahmad, M, et al: Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Applied Microbiology and Biotechnology, 2014.98(12):5301-5317 31. Vogl T, Sturmberger L, Fauland PC, Hyden P, Fischer JE, Schmid C, Thallinger GG, Geier M, Glieder A: Methanol independent induction in Pichia pastoris by simple derepressed overexpression of single transcription factors. Biotechnology and Bioengineering, 2019.115(4):1037-1050. 32. Wang F, Wang X, Shi L, Qi F, Zhang P, Zhang Y, Zhou X, Song Z, Cai M: Methanol-independent protein expression by AOX1 promoter with trans-acting elements engineering and glucose-glycerol-shift induction in Pichia pastoris. Scientific Reports, 2017.7:41850. 33. Lin-Cereghino GP, Godfrey L, Bernard J, Johnson S, Khuongsathiene S, Tolstorukov I, Yan M, Lin-Cereghino J, Veenhuis M, Subramani S: Mxr1p, a key regulator of the methanol utilization pathway and peroxisomal genes in Pichia pastoris. Molecular and Cellular Biology, 2006.26(3):883-897. 34. Kranthi BV, Kumar R, Kumar NV, Rao DN, Rangarajan PN: Identification of key regulator of methanol utilization pathway in Pichia pastoris. Biochimica et Biophysica Acta, 2009.1789(6-8):460-468. 35. Chang C. H., Hsiung H. A., Hong K. L., Huang C. T: Enhancing the efficiency of the Pichia pastoris AOX1 promoter via the synthetic positive feedback circuit of transcription factor Mxr1. BMC Biotechnology, 2018,18:81. 36. Berkey CD, Vyas VK, Carlson M: Nrg1 and Nrg2 transcriptional repressors are differently regulated in response to carbon source. Eukaryot Cell, 2004.3:311–317 37. Wang X, Cai M, Shi L, Wang Q, Zhu J, Wang J, Zhou M, Zhou X, Zhang Y: PpNrg1 is a transcriptional repressor for glucose and glycerol repression of AOX1 promoter in methylotrophic yeast Pichia pastoris. Biotechnology Letters, 2016.38(2):291-298. 38. Barrangou R, Fermaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P: CRISPR provides acquired resistance against viruses in prokaryotes. Science, 2007.315(5819):1709-1712. 39. Wiedenheft B, Lander GC, Zhou K, Jore MM, Brouns SJ, van der OST J, Doudna JA, Nogales E: Structures of the RNA-guided surveillance complex from a bacterial immune system. Nature, 2011.477(7365):486-489. 40. Chou KSK., Siti NMN., Nadja N., Boon CT: CRISPR/dCas9-based Systems: Mechanism and Applications in Plant Sciences. Plants, 2021.10(10):2055 41. Dominguez AA, Lim WA, Qi KS: Beyond editing; repurposing CRISPR-Cas9 for precision genome regulation and interrogation. Nature Reviews Molecular Cell Biology, 2016.17(1):5 42. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012.337(6096):816-821. 43. Carte J, Christopher RT, Smith JI, Olson S, Barrangou R, Moineau S, Glover Ill CV, Graveley BR, Terns RM, Terns MP: The three major types of CRISPR-Cas systems function independently in CRISPR RNA biogenesis in Streptococcus thermophilus. Molecular Microbiology, 2014.93(1):98-112. 44. La Russa MF,Qi LS: The new state of the art: Cas9 for gene activation and repression. Molecular and Cellular Biology 2015,35(22):3800-3809 45. 謝少穎: 以CRISPRi及CRISPRa策略加強Komagataella phaffii (Pichia pastoris) AOX1啟動子效率. 國立台灣大學生化科技學系碩士論文 2020. 46. Gerhard S, Astrid M, Marion R, Michael M, Michael S, Diethard M, Brigitte G: Identification and characterization of novel Pichia pastoris for heterologous protein production. Journal of Biotechnology 2010,150:519-529 47. Javier GM, Miguel ANT, Arnau GF, Jose LMS, Xavier GO, Francisco V: Specific growth rate governs AOX1 gene expression, affecting the production kinetics of Pichia pastoris (Komagataella phaffii) PAOX1-driven recombinant producer strains with different target gene dosage. Microbial Cell Factories 2019,18:187 48. Wang JJ, Wang WL, Shi L, Qi F, Zhang P, Zhang YX, Zhou XS, Song ZW, Cai M: Methanol-independent protein expression by AOX1 promoter with trans-acting elements engineering and Glucose-Glycerol-Shift induction in Pichia pastoris. Science Report 2017,7:41850. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86312 | - |
| dc.description.abstract | Pichia pastoris (Komagataella pastoris) 為一種嗜甲醇酵母菌,因為生長迅速、低成本及具備原核細胞無法進行的轉譯後修飾,為廣泛應用異源基因表現系統的。P. pastoris表現系統最常使用之啟動子為AOX1啟動子 (alcohol oxidase I promoter),該啟動子抑制子如Nrg1與活化子如Mxr1等轉錄因子調控,僅在使用甲醇為碳源時大量表現重組蛋白質。本研究希望藉由前人建構之基因調降系統CRISPRi (Clustered regularly interspaced palindromic repeats- based interference)針對Nrg1進行抑制與基因活化系統CRISPR activation來提升Mxr1表現,以增加AOX1啟動子的表現效率,並希望進一步以CRISPRi/a同時抑制Nrg1並提升Mxr1探討是否可以獲得更高啟動子表現效率,並以E2-Crimson四聚體紅色螢光蛋白質作為模式蛋白質,該蛋白質具低生物毒性、穩定及方便觀察。結果顯示,在單獨以CRISPRi抑制Nrg1或以CRISPRa提升Mxr1實驗組別可以增加更多的螢光蛋白質產量,經生菌數對數標準化處理後在搖瓶比控制組表現量分別提高0.4倍與0.28倍,且在醱酵實驗比控制組表現量分別提高0.43與1.1倍;當同時調控Nrg1及Mxr1時,不論CRISPRa與CRISPRi建構先後順序,經生菌數對數標準化處理後螢光蛋白質表現量,在搖瓶中比單獨抑制Nrg1提高0.57倍,也比單獨提升Mxr1提升0.5倍。在醱酵槽中測試中,總螢光量在誘導第一天與控制組相比最高達到2.39倍總螢光量,經生菌數或OD600標準化處理後螢光數值仍有相同趨勢,顯示抑制Nrg1與提升Mxr1具有協同作用效果。此外, Mxr1與Nrg1之mRNA表現量證實CRISPRi/a可有效調控轉錄因子表現量。AOX活性在同時調控Nrg1與Mxr1比控制組增加0.61倍活性。目前實驗結果顯示可以CRISPRi/a同時調控Nrg1及Mxr1,未來可以發展應用在不同目標蛋白質上,以提高目標蛋白質產量。 | zh_TW |
| dc.description.abstract | Pichia pastoris (Komagataella sp.), a methanolophilic yeast, is widely used in academic and industrial production because of its rapid growth, low cost, and post-translational modifications. The most promoter used in the P. pastoris expression system is the AOX1 promoter (alcohol oxidase I promoter), which is restrictively regulated by the transcription factors like repressors Nrg1 and activators Mxr1. Recombinant proteins are abundantly expressed when the carbon source is methanol. In this study, we use the Clustered regularly interspaced palindromic repeats-based interference (CRISPRi) and CRISPR-based activation (CRISPRa) that was constructed by previous researcher for regulating the activator Mxr1 and repressor Nrg1 expression. Hence, the PAOX1 efficiency was tested by using only CRISPRi/a or CRISPRi/a together, and evaluated by the expression of red tetrameric fluorescent protein (E2-Crimson) which has lower toxicity and stability. Our results demonstrate that the E2-Crimson expression enhanced by Nrg1 Knockdown or activation of Mxr1. The Normalized fluorescence increase 0.4 and 0.28 times in flask, and significant increases 0.43 and 1.1 times in bioreactor. Furthermore, the E2-Crimson have significant increment during Nrg1 Knockdown and activation of Mxr1 in flask or bioreactor induction. We also show that Mxr1 and Nrg1 mRNA was successfully regulated by CRISPRi/a or CRISPRi/a together, and the AOX1 activity results indicate that two CRISPRs together can increase significantly. The current results illustrate that CRISPRi/a can simultaneously regulate Nrg1 and Mxr1, and it can be developed to others target proteins in future for improving the yield. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:48:27Z (GMT). No. of bitstreams: 1 U0001-1507202212500200.pdf: 7206256 bytes, checksum: d5ab213ff0d18d108f18db908bae819d (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 謝辭 I 摘要 II Abstract IV 圖目錄 XI 表目錄 XIII 第一章、前言 1 ㄧ、異源蛋白質表現系統 1 二、Pichia pastoris嗜甲醇酵母菌表現系統 2 1. Komagataella phaffii (Pichia pastoris) 2 2. Pichia pastoris嗜甲醇酵母菌甲醇代謝路徑 2 3.常用菌株與表現載體 4 4.蛋白質外泌系統 5 三、PAOX1啟動子 6 四、基因調控系統 9 1. CRISPRi (CRISPR interference) 10 2. CRISPRa (CRISPR activation) 10 3. 前人設計 10 五、研究動機 12 1.目的 12 2.設計 12 3.目標 14 六、預期結果 15 第二章、材料與方法 17 ㄧ、實驗菌株與培養條件 17 1.細菌 17 1.真菌 17 1.菌株保存 17 二、培養基 18 三、表現載體建構 21 四、嗜甲醇酵母菌電穿孔轉形 22 1. 勝任細胞製備 22 2. 電穿孔轉形 22 五、轉形株之抗性篩選 23 六、實驗菌株與培養條件 23 1. 96深孔盤誘導 23 2. 搖瓶誘導 23 3. 醱酵槽誘導 24 七、蛋白質分析 26 1. 螢光強度分析 26 2. Bradford蛋白質定量法 26 3. 十二烷基硫酸鈉聚丙烯胺膠體電泳 (SDS-PAGE) 27 4. 西方點墨法 27 5. AOX活性分析 28 八、mRNA分析 28 第三章、結果 32 ㄧ、轉形株建立與表現載體轉入分析 32 1. 建構CRISPRa M1與CRISPRi N4 菌株 32 2. 建構同時表達CRISPRa M1與CRISPRi N4菌株 32 3. 轉形株sgRNA表現與Cas9蛋白質分析 35 二、搖瓶甲醇誘導分析 38 1. CRISPRa與CRISPRi分別提升Mxr1與降低Nrg1 對於表現量影響 38 2. CRISPRa 與CRISPRi 同時調節Mxr1與Nrg1對於螢光表現量結果 38 3. Mxr1基因調控表現結果 49 3. Nrg1基因調控表現結果 51 4. AOX活性結果 53 三、5 L醱酵槽甲醇誘導分析 55 1. CRISPRa與CRISPRi各別提升Mxr1與降低Nrg1 對於表現量影響 56 2. CRISPRa 與CRISPRi 同時調節Mxr1與Nrg1對於螢光表現量結果 56 3. 5 L 醱酵槽 SDS-PAGE分析 60 4. 5 L 醱酵槽菌體生長分析 62 第四章、討論 65 ㄧ、以CRISPRa提升Mxr1或以CRISPRi 抑制Nrg1之影響 65 二、以CRISPRa/i同時提升Mxr1與抑制Nrg1之影響 66 三、AOX1與AOX2啟動子之效果 68 第五章、結論 70 第六章、未來展望 71 第七章、參考文獻 72 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | CRISPR | zh_TW |
| dc.subject | Mxr1 | zh_TW |
| dc.subject | AOX1 promoter | zh_TW |
| dc.subject | Pichia pastoris | zh_TW |
| dc.subject | CRISPR | zh_TW |
| dc.subject | Nrg1 | zh_TW |
| dc.subject | Pichia pastoris | zh_TW |
| dc.subject | AOX1 promoter | zh_TW |
| dc.subject | Mxr1 | zh_TW |
| dc.subject | Nrg1 | zh_TW |
| dc.subject | CRISPR | en |
| dc.subject | Pichia pastoris | en |
| dc.subject | AOX1 promoter | en |
| dc.subject | Mxr1 | en |
| dc.subject | Nrg1 | en |
| dc.subject | CRISPR | en |
| dc.subject | Pichia pastoris | en |
| dc.subject | AOX1 promoter | en |
| dc.subject | Mxr1 | en |
| dc.subject | Nrg1 | en |
| dc.title | 以E2-Crimson作為模式蛋白質探討CRISPRa Mxr1與CRISPRi Nrg1在Pichia pastoris調控AOX1啟動子效率 | zh_TW |
| dc.title | Effects of CRISPRa Mxr1 and CRISPRi Nrg1 on Pichia pastoris AOX1 promoter efficiency using E2-crimson as model protein | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 110-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 楊啓伸;陳浩仁;傅煦媛;林玉儒 | zh_TW |
| dc.contributor.oralexamcommittee | Chii-Shen Yang;Hau-Ren Chen;Hsu-Yuan Fu;Yu-Ju Lin | en |
| dc.subject.keyword | Pichia pastoris,AOX1 promoter,Mxr1,Nrg1,CRISPR, | zh_TW |
| dc.subject.keyword | Pichia pastoris,AOX1 promoter,Mxr1,Nrg1,CRISPR, | en |
| dc.relation.page | 78 | - |
| dc.identifier.doi | 10.6342/NTU202201478 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2022-08-26 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 生化科技學系 | - |
| dc.date.embargo-lift | 2025-08-25 | - |
| 顯示於系所單位: | 生化科技學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-110-2.pdf | 7.04 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
