Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86309
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周中哲(Chung-Che Chou)
dc.contributor.authorCheng-Wei Huangen
dc.contributor.author黃丞偉zh_TW
dc.date.accessioned2023-03-19T23:48:17Z-
dc.date.copyright2022-08-30
dc.date.issued2022
dc.date.submitted2022-08-29
dc.identifier.citation1.沈厚寬 (2022) 「實尺寸一層樓子構架受高軸力及地震側力下之鋼柱耐震試驗」,碩士論文,國立台灣大學土木工程系。 2. 庫馬 (2021) 「邊界條件對兩層樓子構架箱型鋼柱影響之有限元素分析」,碩士論文,國立台灣大學土木工程系。 3. 陳冠維 (2019) 「高強度箱型鋼柱之耐震試驗與背骨曲線發展」,碩士論文,國立台灣大學土木工程系。 4. 熊厚淳 (2020) 「兩層樓子構架高強度箱型鋼柱耐震試驗與模擬分析」,碩士論文,國立台灣大學土木工程系。 5. ABAQUS-FEA/CAE. (2011). Dassault Systemes Simulia Corp., RI. 6. Ahmadizadeh, M., and Mosqueda, G. (2008): Hybrid Simulation with Improved OperatorSplitting Integration Using Experimental Tangent Stiffness Matrix Estimation. Journal of Structural Engineering, 134 (12), 1829-1838. 7. Ahmadizadeh, M., and Mosqueda, G. (2009): Online energy-based error indicator for the assessment of numerical and experimental errors in a hybrid simulation. Engineering Structures, 31 (9), 1987-1996. 8. Ahmadizadeh, M., Mosqueda, G., and Reinhorn, A. M. (2008): Compensation of actuator delay and dynamics for real-time hybrid structural simulation. Earthquake Engineering & Structural Dynamics, 37 (1), 21-42. 9. AIJ. Recommendation for limit state design of steel structures. Architectural Institute of Japan; 2010. 10. AISC (2016), Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications, AISC 358-16, American Institute of Steel Construction, Chicago, IL. 11. AISC (2016), Seismic Provisions for Structural Steel Buildings, ANSI/AISC 341-16, American Institute of Steel Construction, Chicago, Illinois. 12. AISC (2016), Specification for Structural Steel Buildings, ANSI/AISC 360-16, American Institute of Steel Construction, Chicago, Illinois. 13. ASCE (2013), Seismic Evaluation and Retrofit of Existing Building. ASCE/SEI 41-13. Reston, VA: American Society of Civil Engineers. 14. ASCE (2017), Seismic Evaluation and Retrofit of Existing Buildings. ASCE/SEI 41-17. Reston, VA: American Society of Civil Engineers. 15. ATC (2017), Guidelines for Nonlinear Structural Analysis for Design of Buildings: Part IIa – Steel Moment Frames, NIST GCR 17-917-46v2. 16. Chae, Y., Kazemibidokhti, K., and Ricles, J. M. (2013): Adaptive time series compensator for delay compensation of servo-hydraulic actuator systems for real-time hybrid simulation. Earthquake Engineering & Structural Dynamics, 42 (11), 1697-1715. 17. Chen, C., Ricles, J. M., Marullo, T. M., and Mercan, O. (2009): Real-time hybrid testing using the unconditionally stable explicit CR integration algorithm. Earthquake Engineering & Structural Dynamics, 38 (1), 23-44. 18. Chou, C. C., Chen, G. W. (2020). Lateral cyclic testing and backbone curve development of high-strength steel built-up box columns under axial compression. Engineering Structures, 223, 111147C 19. Chou, C. C., Lin, T. H., Lai, Y. C., Xiong, H. C., Uang, C. M., El-Tawil, S., McCormick, J. P., and Mosqueda, G. (2019). US-TAIWAN collaborative research on steel column through cyclic testing of two story subassemblages. International Conference in Commemoration of 20th Anniversary of the 1999 Chi-Chi Earthquake. Taipei, Taiwan, September 15-19, 2019. 20. Chou, C. C., Lai, Y. C., Xiong, H.C., Lin, T. H., Uang, C. M., Mosqueda G., Qzkula, G., El-Tawil, S., McCormick, J.P. (2022). 'Effect of Boundary Condition on the Cyclic Response of I-Shaped Steel Columns: Two-Story Subassemblage versus Isolated Column Tests,' Earthquake Engineering and Structural Dynamics. 21. Chou, C. C., Wu, S. C. (2019). Cyclic lateral load test and finite element analysis of high-strength concrete-filled steel box columns under high axial compression. Engineering Structures, 189, 89-99. 22. Darby, A. P., Blakeborough, A., and Williams, M. S. (1999): Real-Time Substructure Tests Using Hydraulic Actuator. Journal of Engineering Mechanics, 125 (10), 1133-1139. 23. Del Carpio R., M., Hashemi, M. J., and Mosqueda, G. (2017): Evaluation of integration methods for hybrid simulation of complex structural systems through collapse. Earthquake Engineering and Engineering Vibration, 16 (4), 745-759. 24. Del M, Ramos C, Mosqueda G, Hashemi MJ. Large-Scale Hybrid Simulation of a Steel Moment Frame Building Structure through Collapse. J. Struct. Eng. 2015, vol. 142, no. 1, p. 04015086. 25. Dermitzakis, S. N., and Mahin, S. A.1985. “Development of substructuring techniques for on-line computer controlled seismic performance testing.” UCB/EERC-85/04. Earthquake Engineering Research Center, University of California, Berkeley. 26. Ghaboussi, J., Yun, G. J., and Hashash, Y. M. A. (2006): A novel predictor–corrector algorithm for sub-structure pseudo-dynamic testing. Earthquake Engineering & Structural Dynamics, 35 (4), 453-476. 27. Horiuchi, T., and Konno, T. (2001): A new method for compensating actuator delay in real–time hybrid experiments. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 359 (1786), 1893-1909. 28. Lin, B.Z., Chuang, M.C. and Tsai, K.C., “Object-oriented Development and Application of a Nonlinear Structural Analysis Framework.” Advances in Engineering Software, 40, pp. 66-82, 2009. 29. Lin, T. H., Chou, C. C. (2022). High-strength steel deep H-shaped and box columns under proposed near-fault and post-earthquake loadings. Thin-Walled Structures, 172, 108892 30. Magonette, G. (2001): Development and application of large-scale continuous pseudo-dynamic testing techniques. Phil. Trans. R. Soc. Lond., 359, 1771-1799. 31. Mosqueda, G., and Mahin, S. A. (2005): Implementation and accuracy of continuous hybrid simulation with geographically distributed substructures. 32. Nakashima, M., and Masaoka, N. (1999): Real-time on-line test for MDOF systems. Earthquake Engineering & Structural Dynamics, 28(4), 393–420. 33. Nakashima, M., Kato, M., and Takaoka, E.1992. “Development of real-time pseudo dynamic testing.” Earthquake Engineering & Structural Dynamics, 21(1), 79–92. 34. NIST-ATC. (2017) Guidelines for Nonlinear Structural Analysis for Design of Buildings: Part IIa – Steel Moment Frames. NIST GCR 17-917-46v2. 35. Optitrak (2022), Optitrak Motion Capture Systems, https://optitrack.com/ 36. Schneider S.P. and Roeder C.W. (1994) “An inelastic substructure technique for the pseudodynamic test method.” Earthquake Engineering & Structural Dynamics. 23(7): 761-775. 37. Sepulveda C., Mosqueda G., Uang C. M., Chou C. C., Wang K. J. (2022). Hybrid simulation using mixed displacement and equivalent-force control to capture column shortening in frame structures. Proceedings of the 12th National Conference in Earthquake Engineering, Earthquake Engineering Research Institute, Salt Lake City, UT. 38. Shing, P., and Mahin, S. A. (1984): Pseudodynamic test method for seismic performance evaluation: theory and implementation. EERC ReportUBC/EERC-84 39. Shing, P.-S. B., Vannan, M. T., and Cater, E. (1991): Implicit time integration for pseudodynamic tests. Earthquake Engineering & Structural Dynamics, 20 (6), 551-576. 40. Takanashi, K., Udagawa, K., Seki, M., Okada, T., and Tanaka, H.1975. “Non-linear earthquake response analysis of structures by a computer-actuator online system.” Trans. of the Architectural Institute of Japan, 229, 77–83. 41. Wang K.J. and Tsai K.C. (2011). A software framework for quasi-static structural testing. NCREE technical report, NCREE-11-007, Taipei, Taiwan, 2011. 42. Wang K.J. and Tsai K.C. (2015). A uniform method to integrate test equipment for large-scale quasi-static structural testing. Proceedings of the 6th International Conference on Advances in Structural Engineering, University of Illinois, Urbana-Champaign, United States, 2015. 43. Wang KJ, Chou CC, Huang CW, Tam MH, Sepulveda C, Mosqueda G, Uang CM. Hybrid Simulation of a Seven-story BRBF Using a Mixed Displacement and Force Control Method for the First-story Beam-to-column Subassemblage. 12th National Conference in Earthquake Engineering, Salt Lake City, UT, 2022.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86309-
dc.description.abstract在本研究中將會針對複合模擬(hybrid simulation)此實驗方法進行改進。於有限元素分析軟體PISA3D中建立七層樓鋼造二元構架系統模型,在此平面構架中,其中一跨為特殊抗彎構架(SMRF),另一跨為挫屈束制斜撐構架(BRBF)。所使用的試體為一組全尺寸一層樓鋼造子構架,於實驗過程中,水平自由度使用位移控制,垂直自由度使用力量控制,而根據PISA3D事前分析的結果,旋轉自由度則不用控制也能自動滿足。在進行複合模擬時,一組額外的虛擬力施加在構架中的一層樓柱頂,此虛擬力的主要目的為滿足試體與分析模型中彼此間的位移諧和性。一般來說,PISA3D無法模擬因柱挫屈造成的縮短量,故需要透過額外的虛擬力將模型中的柱縮短至指定位置。中間柱的縮短量透過試體量測而得,而外柱的縮短量則是透過ABAQUS事前模擬得知。實驗結果證明此研究中所提出之新的複合模擬方法可行,相較於傳統的複合模擬,其結果更能反應構架真實的行為。 為了研究整體構架的行為受到中間柱有不同程度的縮短量、地震力方向、二階效應及柱底旋轉效應的影響,進行一系列的虛擬複合模擬(virtual hybrid simulation),其結果顯示當同時考慮二階效應及柱底旋轉效應且中間柱有顯著縮短量時,一樓水平位移會有顯著的提升,並且當中間柱與其中一根外柱同時有明顯挫屈時,其對一樓水平位移的影響會比只有中間柱有明顯挫屈時來的顯著。 此研究結果顯示進行構架動力歷時分析時,若所有桿件都是由數值模型模擬,與考慮柱真實回復力及柱挫屈造成垂直位移的結果相比,在一樓水平位移上有低估的情形。說明PISA3D在模擬建築物受到地震的情況下,其模擬方法仍有改進的空間。zh_TW
dc.description.abstractThis research introduces some advancement in the implementation of hybrid simulation (HS). A structure under the consideration is a 7-story dual system with one bay is a special moment resisting frame (SMRF) and the other bay is a buckling-restrained braced frame (BRBF). The finite element analysis program “Platform of Inelastic Structural Analysis for 3D Systems” (PISA3D) is used as the analysis kernel for the HS. The specimen is a full-scale cruciform beam-column connection subassemblage. The displacement- and force-control are adopted to achieve the control target when the first-story served as the physical substructure (PS). Preliminary PISA3D simulations indicates that without control the rotation DOF of column top is acceptable. The fictitious force method is used to address one of the principal challenges in this series of HS: to incorporate the column shortening due to local buckling into the HS, while the PISA3D does not support the modelling. In addition, the HS considers shortening of exterior first-story columns by incorporating preliminary ABAQUS simulation results in each integration step in the HS. Test results confirmed that the proposed modelling and control methods could successfully integrate the information available only in the laboratory and ABAQUS simulation into the HS, and provide more realistic structural response that otherwise cannot be obtained by traditional numerical simulation or testing methods. Moreover, to investigate the influence of the different level of shortening in interior column, direction of the excitation, P-Delta, and column base rotation on the first-story horizontal displacement, a well calibrated specimen model in the ABAQUS is adopted to generate the interior column restoring force in a series of the virtual hybrid simulation (VHS). The analysis result indicates that the influence of P-Delta and the column base rotation on the first-story horizontal displacement can be significant with the severe column shortening in the interior column, and when the significant column shortening due to local buckling occurred in the interior and one of the exterior column at the same time, the influence on the first-story horizontal displacement was more major than that when only interior column performed significant shortening. This research indicates the results of first-story horizontal displacement from the PISA3D analytical analysis are underestimate compared to the results from the HS which considered the specimen actual restoring force and vertical deformation due to column local buckling which shows that the PISA3D still has room for improvement in its simulation method when simulating buildings subjected to earthquakes.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:48:17Z (GMT). No. of bitstreams: 1
U0001-2608202207241000.pdf: 28961567 bytes, checksum: f168b1fdb12dda232b87ec9204f2135c (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審定書 i ACKNOWLEDGMENTS ii 摘要 iii ABSTRACT iv TABLE OF CONTENTS vi LIST OF TABLES x LIST OF FIGURES xii LIST OF PHOTOS xviii CHAPTER 1. INTRODUCTION 1 1.1 Background 1 1.2 Literature Review 2 1.3 Research Objectives 5 1.4 Organization of Thesis 5 CHAPTER 2. HYBRID SIMULATION METHOD 7 2.1 Numerical Substructure 7 2.1.1 Modelling Detail of Prototype Frame 7 2.1.2 Material Property Definition and Calibration 9 2.1.3 Time History Analysis 14 2.2 Physical Substructure 17 2.2.1 Specimen Design 18 2.2.2 Material Property 18 2.2.3 Test Setup 19 2.2.3.1 Test Configuration 19 2.2.3.2 Instrumentation 20 2.2.4 Calculation of the Specimen Restoring Force 23 2.3 Method of Hybrid Simulation 24 2.3.1 Control Target 25 2.3.1.1 Horizontal DOF 25 2.3.1.2 Vertical DOF 25 2.3.1.3 Rotational DOF 26 2.3.2 Displacement Compatibility 27 2.3.3 Estimation of the Exterior Column Shortening 28 2.3.3.1 Modelling Detail of Isolated Column 29 2.3.3.2 Modelling Detail of Subassemblage Column 31 2.3.4 Hybrid Simulation Framework 33 2.3.4.1 Modelling Detail of PisaRef 34 2.3.4.2 Modelling Detail of PisaHS 34 2.3.5 Test Plan 36 CHAPTER 3. TEST RESULTS AND OBSERVATIONS 37 3.1 Control Accuracy 37 3.2 Specimen Observation 39 3.3 Specimen Response 42 3.4 Validation of Pull-Down Force Method 47 3.4.1 Error Propagation Revealed in Vertical Displacement History 47 3.4.2 Method of Virtual Hybrid Simulation 49 3.5 Comparison of Analytical and HS Result 51 3.5.1 Column Base Rotation 52 3.5.2 Modelling Detail of Specimen 52 3.5.3 Comparison of Different Boundary Condition 59 3.6 Comparison of PisaRef and PisaHS 61 3.6.1 Influence of Pull-Down Force on Overall Structure Behavior 62 CHAPTER 4. SENSITIVITY AND PARAMETRIC STUDY 63 4.1 Introduction 63 4.2 Effect of Different Level of Column Shortening 63 4.2.1 Influence of Interior Column Restoring Force 64 4.2.1.1 Estimation of Interior Column Restoring Force 64 4.2.2 Influence of Interior Column Large Shortening on Frame Behavior 65 4.2.2.1 Comparison of First-Story Horizontal Displacement 66 4.3 Effect of Ground Motion Direction 67 4.3.1 Influence of Pull-Down on Symmetric and Asymmetric Structure 68 4.3.2 Comparison of First-Story Horizontal Displacement 68 4.4 Effect of P-Delta 70 4.4.1 Modelling Detail of Leaning Column 70 4.4.2 Comparison of First-Story Horizontal Displacement 71 4.5 Effect of Exterior Column Base Rotation 72 4.5.1 Modelling Detail of Rotational Spring 73 4.5.2 Comparison of First-Story Horizontal Displacement 73 4.6 Effect of Interior and Exterior Column Shortening 74 4.7 Conclusions 75 CHAPTER 5. CONCLUSIONS 76 5.1 Conclusions 76 5.2 Suggestions 80 REFERENCES 81
dc.language.isoen
dc.subject複合模擬zh_TW
dc.subject鋼造箱型柱zh_TW
dc.subject梁柱子構架zh_TW
dc.subject有限元素分析zh_TW
dc.subject局部挫屈zh_TW
dc.subjectBeam-to-Columnen
dc.subjectBox steel columnen
dc.subjectHybrid simulationen
dc.subjectSubassemblageen
dc.subjectFinite Element Analysisen
dc.subjectLocal bucklingen
dc.title七層樓鋼造二元構架系統複合模擬: 中等韌性箱型鋼柱之一層樓實尺寸子結構試驗zh_TW
dc.titleHybrid Simulation of a Steel Seven-Story Dual Frame System: Testing of a First-Story Beam-to-Column Subassemblage with a Moderately Ductile Built-Up Box Columnen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許協隆(Hsieh-Lung Hsu),胡宣德(Hsuan-Teh Hu),鍾興陽(Hsin-Yang Chung)
dc.subject.keyword複合模擬,鋼造箱型柱,梁柱子構架,有限元素分析,局部挫屈,zh_TW
dc.subject.keywordHybrid simulation,Box steel column,Beam-to-Column,Subassemblage,Finite Element Analysis,Local buckling,en
dc.relation.page178
dc.identifier.doi10.6342/NTU202202838
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-08-29
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
dc.date.embargo-lift2023-08-25-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
U0001-2608202207241000.pdf28.28 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved