請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8628
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 簡國龍 | |
dc.contributor.author | Yi-Tsen Tsai | en |
dc.contributor.author | 蔡依岑 | zh_TW |
dc.date.accessioned | 2021-05-20T19:59:04Z | - |
dc.date.available | 2010-09-09 | |
dc.date.available | 2021-05-20T19:59:04Z | - |
dc.date.copyright | 2010-09-09 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-06-29 | |
dc.identifier.citation | 中文文獻
39. 黃怡真. 維生素D與乳癌關係之病例對照研究, 國防醫學院公共衛生研究所營養學組; 2006. 43. 沈明來, ed. 實用多變數分析: 九州圖書文物有限公司; 2007. 因素分析. 48. 沈明來, ed. 實用多變數分析: 九州圖書文物有限公司; 2007. 判別分析. 英文文獻 1. Chang HY, Pan WH, Yeh WT, Tsai KS. Hyperuricemia and gout in Taiwan: results from the Nutritional and Health Survey in Taiwan (1993-96). J Rheumatol. 2001;28(7):1640-1646. 2. Lee MS, Lin SC, Chang HY, Lyu LC, Tsai KS, Pan WH. High prevalence of hyperuricemia in elderly Taiwanese. Asia Pac J Clin Nutr. 2005;14(3):285-292. 3. Lee MS, Wahlqvist ML, Yu HL, Pan WH. Hyperuricemia and metabolic syndrome in Taiwanese children. Asia Pac J Clin Nutr. 2007;16 Suppl 2:594-600. 4. Choi HK, Ford ES. Haemoglobin A1c, fasting glucose, serum C-peptide and insulin resistance in relation to serum uric acid levels--the Third National Health and Nutrition Examination Survey. Rheumatology. 2008;47(5):713-717. 5. Cook DG, Shaper AG, Thelle DS, Whitehead TP. Serum uric acid, serum glucose and diabetes: relationships in a population study. Postgrad Med J. 1986;62(733):1001-1006. 6. Chiou WK, Wang MH, Huang DH, Chiu HT, Lee YJ, Lin JD. The relationship between serum uric acid level and metabolic syndrome: differences by sex and age in Taiwanese. J Epidemiol. 2010;20(3):219-224. 7. Sui X, Church TS, Meriwether RA, Lobelo F, Blair SN. Uric acid and the development of metabolic syndrome in women and men. Metabolism. 2008;57(6):845-852. 8. Chien K-L, Hsu H-C, Sung F-C, Su T-C, Chen M-F, Lee Y-T. Hyperuricemia as a risk factor on cardiovascular events in Taiwan: The Chin-Shan Community Cardiovascular Cohort Study. Atherosclerosis. 2005;183(1):147-155. 9. Johnson RJ, Kang DH, Feig D, Kivlighn S, Kanellis J, Watanabe S, Tuttle KR, Rodriguez-Iturbe B, Herrera-Acosta J, Mazzali M. Is there a pathogenetic role for uric acid in hypertension and cardiovascular and renal disease? Hypertension. 2003;41(6):1183-1190. 10. Mikuls TR, Saag KG. New insights into gout epidemiology. Current Opinion in Rheumatology. 2006;18(2):199-203. 11. Diamond HS, Paolino JS. Evidence for a postsecretory reabsorptive site for uric acid in man. J Clin Invest. 1973;52(6):1491-1499. 12. Choi HK, Mount DB, Reginato AM, American College of P, American Physiological S. Pathogenesis of gout. Annals of Internal Medicine. 2005;143(7):499-516. 13. Reinders MK, Jansen TL. Management of hyperuricemia in gout: focus on febuxostat. Clin Interv Aging.5:7-18. 14. Terkeltaub R, Bushinsky DA, Becker MA. Recent developments in our understanding of the renal basis of hyperuricemia and the development of novel antihyperuricemic therapeutics. Arthritis Research & Therapy. 2006;8 Suppl 1:S4. 15. Conen D, Wietlisbach V, Bovet P, Shamlaye C, Riesen W, Paccaud F, Burnier M. Prevalence of hyperuricemia and relation of serum uric acid with cardiovascular risk factors in a developing country. BMC Public Health. 2004;4:9. 16. Choi HK, Liu S, Curhan G. Intake of purine-rich foods, protein, and dairy products and relationship to serum levels of uric acid: the Third National Health and Nutrition Examination Survey. Arthritis & Rheumatism. 2005;52(1):283-289. 17. Miao Z, Li C, Chen Y, Zhao S, Wang Y, Wang Z, Chen X, Xu F, Wang F, Sun R, Hu J, Song W, Yan S, Wang CY. Dietary and lifestyle changes associated with high prevalence of hyperuricemia and gout in the Shandong coastal cities of Eastern China. J Rheumatol. 2008;35(9):1859-1864. 18. Choi HK, Atkinson K, Karlson EW, Willett W, Curhan G. Alcohol intake and risk of incident gout in men: a prospective study.[see comment]. Lancet. 2004;363(9417):1277-1281. 19. Choi JWJ, Ford ES, Gao X, Choi HK. Sugar-sweetened soft drinks, diet soft drinks, and serum uric acid level: the Third National Health and Nutrition Examination Survey. Arthritis & Rheumatism. 2008;59(1):109-116. 20. Gao X, Qi L, Qiao N, Choi HK, Curhan G, Tucker KL, Ascherio A. Intake of added sugar and sugar-sweetened drink and serum uric acid concentration in US men and women. Hypertension. 2007;50(2):306-312. 21. Choi HK, Curhan G. Coffee, tea, and caffeine consumption and serum uric acid level: the third national health and nutrition examination survey. Arthritis & Rheumatism. 2007;57(5):816-821. 22. Choi HK, Willett W, Curhan G. Coffee consumption and risk of incident gout in men: a prospective study. Arthritis & Rheumatism. 2007;56(6):2049-2055. 23. Lyu L-C, Hsu C-Y, Yeh C-Y, Lee M-S, Huang S-H, Chen C-L. A case-control study of the association of diet and obesity with gout in Taiwan. American Journal of Clinical Nutrition. 2003;78(4):690-701. 24. Schlesinger N. Dietary factors and hyperuricaemia. Curr Pharm Des. 2005;11(32):4133-4138. 25. Newby PK, Tucker KL. Empirically derived eating patterns using factor or cluster analysis: a review. Nutrition Reviews. 2004;62(5):177-203. 26. Hu FB. Dietary pattern analysis: a new direction in nutritional epidemiology. Current Opinion in Lipidology. 2002;13(1):3-9. 27. Waijers PM, Feskens EJ, Ocke MC. A critical review of predefined diet quality scores. Br J Nutr. 2007;97(2):219-231. 28. The Healthy Eating Index, 1989-1990. 29. McCullough ML, Feskanich D, Rimm EB, Giovannucci EL, Ascherio A, Variyam JN, Spiegelman D, Stampfer MJ, Willett WC. Adherence to the Dietary Guidelines for Americans and risk of major chronic disease in men. American Journal of Clinical Nutrition. 2000;72(5):1223-1231. 30. Rumawas ME, Meigs JB, Dwyer JT, McKeown NM, Jacques PF. Mediterranean-style dietary pattern, reduced risk of metabolic syndrome traits, and incidence in the Framingham Offspring Cohort. Am J Clin Nutr. 2009;90(6):1608-1614. 31. Schulze MB, Hoffmann K. Methodological approaches to study dietary patterns in relation to risk of coronary heart disease and stroke. British Journal of Nutrition. 2006;95(5):860-869. 32. Costello AB, Osborne J. Best Practices in Exploratory Factor Analysis: Four Recommendations for Getting the Most From Your Analysis. Practical Assessment Research & Evaluation,. 2005;10(7):2-9. 33. Deshmukh-Taskar PR, O'Neil CE, Nicklas TA, Yang SJ, Liu Y, Gustat J, Berenson GS. Dietary patterns associated with metabolic syndrome, sociodemographic and lifestyle factors in young adults: the Bogalusa Heart Study. Public Health Nutr. 2009;12(12):2493-2503. 34. Shimazu T, Kuriyama S, Hozawa A, Ohmori K, Sato Y, Nakaya N, Nishino Y, Tsubono Y, Tsuji I. Dietary patterns and cardiovascular disease mortality in Japan: a prospective cohort study.[see comment]. International Journal of Epidemiology. 2007;36(3):600-609. 35. Kemsley EK, Le Gall G, Dainty JR, Watson AD, Harvey LJ, Tapp HS, Colquhoun IJ. Multivariate techniques and their application in nutrition: a metabolomics case study. British Journal of Nutrition. 2007;98(1):1-14. 36. Osler M, Heitmann BL, Gerdes LU, Jorgensen LM, Schroll M. Dietary patterns and mortality in Danish men and women: a prospective observational study. Br J Nutr. 2001;85(2):219-225. 37. DiBello JR, McGarvey ST, Kraft P, Goldberg R, Campos H, Quested C, Laumoli TS, Baylin A. Dietary patterns are associated with metabolic syndrome in adult Samoans. Journal of Nutrition. 2009;139(10):1933-1943. 38. Pencina MJ, Millen BE, Hayes LJ, D'Agostino RB. Performance of a method for identifying the unique dietary patterns of adult women and men: the Framingham nutrition studies. J Am Diet Assoc. 2008;108(9):1453-1460. 40. Fossati P, Prencipe L, Berti G. Use of 3,5-dichloro-2-hydroxybenzenesulfonic acid/4-aminophenazone chromogenic system in direct enzymic assay of uric acid in serum and urine. Clin Chem. 1980;26(2):227-231. 41. L H. A Step-by Step Approach to Using the SAS System for factor Analysis and Structure Equation Modeling, SAS Press, Cary , North Carolina. 1994. 42. Wu s-J, Chang Y-H, Fang C-W, Pan W-H. Food Sources of Weight, Calories, and Three Macro-nutrients-NAHSIT 1993-1996. NUTRITIONAL SCIENCES JOURNAL. 1999;24(1):41-58. 44. Ford Jk, MacCallum RC, Tait m. The application of exploratory factor analysis in applied psychology: a critical review and analysis. Personnel Psychology. 1986;39:291-314. 45. Osborne ABCaJW. Best Practices in Exploratory Factor Analysis: Four Recommendations for Getting the Most From Your Analysis. Practical Assessment Research & Evaluation,. 2005;10(7). 46. Feng B, Wu SM, Lv S, Liu F, Chen HS, Gao Y, Dong FT, Wei L. A novel scoring system for prognostic prediction in d-galactosamine/lipopolysaccharide-induced fulminant hepatic failure BALB/c mice. BMC Gastroenterol. 2009;9:99. 47. Tu Y-K, Woolston A, Baxter PD, Gilthorpe MS. Accessing the Impact of Body Size throughout the Lifecourse on Blood Pressure in Later Life Using Partial Least Squares Regression. 49. Randall E, Marshall JR, Graham S, Brasure J. Patterns in food use and their associations with nutrient intakes. Am J Clin Nutr. 1990;52(4):739-745. 50. Agurs-Collins T, Rosenberg L, Makambi K, Palmer JR, Adams-Campbell L. Dietary patterns and breast cancer risk in women participating in the Black Women's Health Study. American Journal of Clinical Nutrition. 2009;90(3):621-628. 51. Tseng T-S, Lin H-Y. Gender and age disparity in health-related behaviors and behavioral patterns based on a National Survey of Taiwan. International Journal of Behavioral Medicine. 2008;15(1):14-20. 52. Flood A, Rastogi T, Wirfalt E, Mitrou PN, Reedy J, Subar AF, Kipnis V, Mouw T, Hollenbeck AR, Leitzmann M, Schatzkin A. Dietary patterns as identified by factor analysis and colorectal cancer among middle-aged Americans. American Journal of Clinical Nutrition. 2008;88(1):176-184. 53. Deshmukh-Taskar PR, O'Neil CE, Nicklas TA, Yang SJ, Liu Y, Gustat J, Berenson GS. Dietary patterns associated with metabolic syndrome, sociodemographic and lifestyle factors in young adults: the Bogalusa Heart Study. Public Health Nutr. 2009:1-11. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8628 | - |
dc.description.abstract | 研究背景和目的:根據台灣國民營養現況之調查,尿酸高(男性:≧7.7mg/dl;女性:≧6.6mg/dl)或是服用降尿酸藥物者,男性盛行率約為26%,女性約為19%。尿酸為痛風、胰島素阻抗及代謝症候群之危險因子。造成尿酸升高的原因有三,一為過度生成尿酸,二是不易排除尿酸,最後則為合併兩種情況。過去研究肉類、海鮮食品、酒精和非酒精的糖類飲品,會增加血清中的尿酸值,而乳製品和咖啡可明顯降低尿酸值。營養素方面,膳食纖維對於高尿酸血症具有保護作用。飲食模式為考慮整體飲食習慣對於疾病之影響,相較於觀察單一食物的影響,飲食模式更貼近真實的生活習慣。但至目前為止,台灣尚無飲食模式與尿酸間相關性的研究,因此本研究之目的為觀察飲食模式與尿酸之相關性及比較不同獲取飲食模式之統計方法其差異性。
材料與方法:去除熱量不在正常範圍(女性: 500<總熱量<2842; 男性: 800<總熱量<3245及大於或小於3個標準差)內之人數和尿酸或是臨床變項中缺失值者,最後共有266人進入分析,飲食模式取得方法為主成分分析、偏最小平方法及探索性因素分析,每個飲食模式皆可獲得因素分數,用此因素分數觀察與尿酸間的相關性,並利用判別分析決定飲食模式對於尿酸之預測能力。由因素分析中可得三個飲食模式,模式適配度之p值大於0.05。 結果:尿酸傾向飲食模式(uric acid-prone pattern)包含海鮮食品、肉類、內臟飲料、飲料、蛋、油炸物及主食,魚類飲食模式(fish pattern)與僅含魚類,蔬菜及水果飲食模式(vegetable and fruit pattern)則是含有豆類製品、水果、深色蔬菜和淺色蔬菜。將三個飲食模式分數作四分位分層之趨勢檢定皆未達顯著水準。判別分析之結果顯示,於模式中加入尿酸傾向飲食模式,特異度為80%,敏感度下降至52%。 結論:本研究透過因素分析取得三個飲食模式,其與尿酸間之相關性,在經調整干擾因子後,並無顯著之結果,但身體質量指數與性別與尿酸具有顯著相關性存在。總熱量於本研究中僅在模式中進行調整,以避免減少食物之變異程度。 | zh_TW |
dc.description.abstract | Background and objectives: Hyperuricemia is the risk factor for gout and insulin resistance. In Taiwan the prevalence of adult hyperuricemia are 26% and 17% in men and women respectively. Previous studies showed single food or nutrient affected serum uric acid, however, single food or nutrient are not consumed in isolation, in fact, in numerous different combinations that generated complex synergistic effects. The combined effects of nutrients or foods were observed through dietary patterns and the results from dietary patterns analysis are more helpful in disseminating diet-related information rather than related to single food or nutrient. No data showed the relationship between dietary patterns and serum level of uric acid among Chinese. We conducted the data-driven methods to explore the association between dietary patterns and hyperuricemia and compared to different methods for derived dietary patterns.
Methods and materials: We recruited adults who age older 35 years. The participants without uric acid and confounding factors data or energy intake beyond normal range (women: 500 kcal < total energy < 2842 kcal; men: 800 kcal < total energy < 3245 kcal) or energy intake beyond 3 standard deviation we were excluded. All participants had signed the informed consents. Derived dietary pattern methods are principle component analysis, partial least square and factor analysis, and then the factor score for each pattern is derived and used in regression analysis to test relationship between patterns and uric acid. In our study, we use discriminant analysis to cumulate the sensitivity and specificity of dietary patterns. Three dietary patterns are chose from factor analysis, and p value of the model fitness test is great 0.05. Results: The relationship between three patterns and food, the contents of uric acid-prone pattern is seafood, meat, viscus, beverage, egg, fried food, and staple; fish pattern is only fish; Soy products, fruit, dark vegetable and white vegetable are included in vegetable and fruit pattern. Test the trend for uric acid by quartile of factor score, p for trend are not significance. Discriminant analysis results shows to add uric acid-prone pattern into model, specificity is 80%, and sensitivity is 52%. Conclusion: We derived three dietary patterns from factor analysis. The association between dietary patterns and uric acid are no significance after adjusted confounding factors. However, BMI and gender are significant effects for uric acid. In our study, total energy is adjusted by modeling to avoid reduction of food variations. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T19:59:04Z (GMT). No. of bitstreams: 1 ntu-99-R97846007-1.pdf: 2167148 bytes, checksum: 01fc94e186c156c3ff254f9b5238bf60 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 摘要 I
ABSTRACT III 致謝 V 目錄 VI 表目錄 X 圖目錄 XIII 第一章 研究背景 1 第一節 尿酸與疾病的相關性 1 第二節 影響尿酸的因素 2 1.2.1 高尿酸血症之機制 3 1.2.2 藥物 3 1.2.3 性別、身體質量指數和年齡 4 第三節 食物與尿酸的相關性 4 1.3.1 肉類及海鮮 4 1.3.2 酒精飲品 4 1.3.3 糖類飲品(Sugar-sweetened drinks)及果汁(fruit juice) 5 1.3.4 乳製品 6 1.3.5 咖啡 6 第四節 營養素與尿酸間的相關性 6 1.4.1 果糖 6 1.4.2 膳食纖維(dietary fiber)和可溶纖維(soluble fiber) 7 1.4.3 綜合食物對尿酸之影響 7 第五節 飲食模式(DIETARY PATTERN) 7 第六節 統計方法 10 1.6.1 探索性因素分析 10 1.6.2 主成分分析法 (Principal component analysis, PCA) 11 1.6.3 偏最小平方分析( Partial least square, PLS) 12 1.6.4 判別分析 13 第七節 過去研究限制 13 第二章 研究目的 14 第一節 研究假設 14 第二節 研究設計 14 第三節 研究目標 14 第三章 材料與方法 15 第一節 參與者 15 第二節 資料收集 15 3.2.1 半定量飲食頻率問卷(FFQ) 15 3.2.2 血液資料 16 3.3.3 體位檢查和病例回顧 16 第三節 高尿酸血症的定義 17 第四節 統計資料 17 3.4.1 樣本數 17 3.4.2 熱量調整 17 3.4.3 描述性分析 18 3.4.4 飲食模式估計之方法 19 3.4.4-1因素分析 19 3.4.4-2 主成分分析(Principan component analysis, PCA) 20 3.4.4-3 偏最小平方法(Partial least square, PLS) 21 3.4.5 分析性統計 22 3.4.5-1 線性迴歸 22 3.4.5-2 趨勢檢定 23 3.4.5-3 線性、二次式及三次式檢定 23 3.4.5-4 判別分析 23 3.4.5-5 統計軟體 24 第四章 結果 25 第一節 人口學分析 25 第二節 因素分析結果 25 第三節 經調整熱量後之因素分析結果 27 第四節 PCA結果 27 第五節 PLS結果 28 第五章 討論 29 第一節 不同統計方法之飲食模式 29 第二節 使用統計方法獲得飲食模式之限制 29 第三節 身體質量指數、性別和飲食模式對於尿酸之影響 30 第四節 熱量調整對於飲食模式之影響 30 第五節 問卷之信、效度 31 第六節 研究優點與限制 31 第七節 結論與未來研究 31 第六章 參考文獻 33 第一節 中文文獻 33 第二節 英文文獻 34 第七章 附件 85 | |
dc.language.iso | zh-TW | |
dc.title | 台灣飲食模式與尿酸間的相關性研究 | zh_TW |
dc.title | A study on the relationship between dietary pattern serum uric acid levels in Taiwan | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 劉仁沛 | |
dc.contributor.oralexamcommittee | 李美璇,黃國晉,陳珮蓉 | |
dc.subject.keyword | 飲食模式,尿酸,因素分析, | zh_TW |
dc.subject.keyword | dietary pattern,uric acid,factor analysis, | en |
dc.relation.page | 101 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2010-06-30 | |
dc.contributor.author-college | 公共衛生學院 | zh_TW |
dc.contributor.author-dept | 預防醫學研究所 | zh_TW |
顯示於系所單位: | 流行病學與預防醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf | 2.12 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。