請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86282完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 魏志潾 | zh_TW |
| dc.contributor.advisor | Chih-Lin Wei | en |
| dc.contributor.author | 董玨辰 | zh_TW |
| dc.contributor.author | Chueh-Chen Tung | en |
| dc.date.accessioned | 2023-03-19T23:46:44Z | - |
| dc.date.available | 2023-12-27 | - |
| dc.date.copyright | 2022-09-02 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | Aller, R. C. (1982). The effects of macrobenthos on chemical properties of marine sediment and overlying water. In Animal-sediment relations (pp. 53-102). Springer, Boston, MA.
Aller, R. C. (1994). Bioturbation and remineralization of sedimentary organic matter: effects of redox oscillation. Chemical Geology, 114(3-4), 331-345. Allesina, S., & Ulanowicz, R. E. (2004). Cycling in ecological networks: Finn’s index revisited. Computational biology and chemistry, 28(3), 227-233. Alongi, D. M. (1988). Bacterial productivity and microbial biomass in tropical mangrove sediments. Microbial ecology, 15(1), 59-79. Alongi, D. M., Sasekumar, A., Chong, V. C., Pfitzner, J., Trott, L. A., Tirendi, F., Dixon, P. & Brunskill, G. J. (2004). Sediment accumulation and organic material flux in a managed mangrove ecosystem: estimates of land–ocean–atmosphere exchange in peninsular Malaysia. Marine geology, 208(2-4), 383-402. Amaro, T., Witte, H., Herndl, G. J., Cunha, M. R., & Billett, D. S. (2009). Deep-sea bacterial communities in sediments and guts of deposit-feeding holothurians in Portuguese canyons (NE Atlantic). Deep Sea Research Part I: Oceanographic Research Papers, 56(10), 1834-1843. Anh, P. V., Everaert, G., Goethals, P., Vinh, C. T., & De Laender, F. (2015). Production and food web efficiency decrease as fishing activity increases in a coastal ecosystem. Estuarine, Coastal and Shelf Science, 165, 226-236. Archer, D., & Devol, A. (1992). Benthic oxygen fluxes on the Washington shelf and slope: A comparison of in situ microelectrode and chamber flux measurements. Limnology and Oceanography, 37(3), 614-629. Baguley, J. G., Hyde, L. J., & Montagna, P. A. (2004). A semi‐automated digital microphotographic approach to measure meiofaunal biomass. Limnology and Oceanography: Methods, 2(6), 181-190. Baker, C. A., Estapa, M. L., Iversen, M., Lampitt, R., & Buesseler, K. (2020). Are all sediment traps created equal? An intercomparison study of carbon export methodologies at the PAP-SO site. Progress in Oceanography, 184, 102317. Banse, K., & Mosher, S. (1980). Adult body mass and annual production/biomass relationships of field populations. Ecological monographs, 50(3), 355-379. Baselga, A. (2010). Partitioning the turnover and nestedness components of beta diversity. Global ecology and biogeography, 19(1), 134-143. Baselga, A. (2012). The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Global Ecology and Biogeography, 21(12), 1223-1232. Benner, R., Pakulski, J. D., McCarthy, M., Hedges, J. I., & Hatcher, P. G. (1992). Bulk chemical characteristics of dissolved organic matter in the ocean. Science, 255(5051), 1561-1564. Berg, P., Risgaard‐Petersen, N., & Rysgaard, S. (1998). Interpretation of measured concentration profiles in sediment pore water. Limnology and Oceanography, 43(7), 1500-1510. Bernhardt, A., & Schwanghart, W. (2021). Where and why do submarine canyons remain connected to the shore during sea‐level rise? Insights from global topographic analysis and Bayesian regression. Geophysical Research Letters, 48(10), e2020GL092234. Bianchelli, S., Gambi, C., Zeppilli, D., & Danovaro, R. (2010). Metazoan meiofauna in deep-sea canyons and adjacent open slopes: a large-scale comparison with focus on the rare taxa. Deep Sea Research Part I: Oceanographic Research Papers, 57(3), 420-433. Blair, N. E., Levin, L. A., DeMaster, D. J., & Plaia, G. (1996). The short‐term fate of fresh algal carbon in continental slope sediments. Limnology and Oceanography, 41(6), 1208-1219. Bodini, A. (2012). Building a systemic environmental monitoring and indicators for sustainability: What has the ecological network approach to offer?. Ecological Indicators, 15(1), 140-148. Bouillon, S., Borges, A. V., Castañeda‐Moya, E., Diele, K., Dittmar, T., Duke, N. C., Kristensen, E., Lee, S. Y., Marchand, C., Middelburg, J. J., Rivera-Monroy, V. H., Smith III, T. J., & Twilley, R. R. (2008). Mangrove production and carbon sinks: a revision of global budget estimates. Global biogeochemical cycles, 22(2). Burnett, B. R. (1979). Quantitative sampling of microbiota of the deep-sea benthos. II. Evaluation of technique and introduction to the biota of the San Diego Trough. Transactions of the American Microscopical Society, 233-242. Calow, P. (1977). Conversion efficiencies in heterotrophic organisms. Biological reviews, 52(3), 385-409. Canals, M., Puig, P., de Madron, X. D., Heussner, S., Palanques, A., & Fabres, J. (2006). Flushing submarine canyons. Nature, 444(7117), 354-357. Carter, L., Gavey, R., Talling, P. J., & Liu, J. T. (2014). Insights into submarine geohazards from breaks in subsea telecommunication cables. Oceanography, 27(2), 58-67. Chiang, C. S., & Yu, H. S. (2022). Controls of Submarine Canyons Connected to Shore during the LGM Sea-Level Rise: Examples from Taiwan. Journal of Marine Science and Engineering, 10(4), 494. Chiang, C. S., Hsiung, K. H., Yu, H. S., & Chen, S. C. (2020). Three types of modern submarine canyons on the tectonically active continental margin offshore southwestern Taiwan. Marine Geophysical Research, 41(1), 1-17. Chiou, M. D., Jan, S., Wang, J., Lien, R. C., & Chien, H. (2011). Sources of baroclinic tidal energy in the Gaoping Submarine Canyon off southwestern Taiwan. Journal of Geophysical Research: Oceans, 116(C12). Clausen, I. B., & Riisgård, H. U. (1996). Growth, filtration and respiration in the mussel Mytilus edulis: no evidence for physiological regulation of the filter-pump to nutritional needs. Marine Ecology Progress Series, 141, 37-45. Conover, R. J. (1966). Assimilation of organic matter by zooplankton 1. Limnology and oceanography, 11(3), 338-345. Covault, J. A., & Graham, S. A. (2010). Submarine fans at all sea-level stands: Tectono-morphologic and climatic controls on terrigenous sediment delivery to the deep sea. Geology, 38(10), 939-942. Covault, J. A., Normark, W. R., Romans, B. W., & Graham, S. A. (2007). Highstand fans in the California borderland: The overlooked deep-water depositional systems. Geology, 35(9), 783-786. Crisp, D. J. (1971). Energy flow measurements. Methods for the study of marine benthos. Danovaro, R. (2009). Methods for the study of deep-sea sediments, their functioning and biodiversity. CRC press. Danovaro, R. (2012). Extending the approaches of biodiversity and ecosystem functioning to the deep ocean. Marine Biodiversity and Ecosystem Functioning: Frameworks, methodologies, and integration, edited by: Solan, M., Aspden, RJ, and Paterson, DM, Oxford University Press, Oxford, 115-126. Danovaro, R., Dell’Anno, A., Corinaldesi, C., Magagnini, M., Noble, R., Tamburini, C., & Weinbauer, M. (2008). Major viral impact on the functioning of benthic deep-sea ecosystems. Nature, 454(7208), 1084-1087. Danovaro, R., Marrale, D., Dell'Anno, A., Della Croce, N., Tselepides, A., & Fabiano, M. (2000). Bacterial response to seasonal changes in labile organic matter composition on the continental shelf and bathyal sediments of the Cretan Sea. Progress in oceanography, 46(2-4), 345-366. De Leo, F. C., Smith, C. R., Rowden, A. A., Bowden, D. A., & Clark, M. R. (2010). Submarine canyons: hotspots of benthic biomass and productivity in the deep sea. Proceedings of the Royal Society B: Biological Sciences, 277(1695), 2783-2792. De Leo, F. C., Vetter, E. W., Smith, C. R., Rowden, A. A., & McGranaghan, M. (2014). Spatial scale-dependent habitat heterogeneity influences submarine canyon macrofaunal abundance and diversity off the Main and Northwest Hawaiian Islands. Deep Sea Research Part II: Topical Studies in Oceanography, 104, 267-290. De Smet, B., van Oevelen, D., Vincx, M., Vanaverbeke, J., & Soetaert, K. (2016). Lanice conchilega structures carbon flows in soft-bottom intertidal areas. Marine Ecology Progress Series, 552, 47-60. de Stigter, H. C., Boer, W., de Jesus Mendes, P. A., Jesus, C. C., Thomsen, L., van den Bergh, G. D., & van Weering, T. C. (2007). Recent sediment transport and deposition in the Nazaré Canyon, Portuguese continental margin. Marine Geology, 246(2-4), 144-164. Del Giorgio, P. A., & Cole, J. J. (1998). Bacterial growth efficiency in natural aquatic systems. Annual Review of Ecology and Systematics, 29(1), 503-541. Deming, J. W., & Carpenter, S. D. (2008). Factors influencing benthic bacterial abundance, biomass, and activity on the northern continental margin and deep basin of the Gulf of Mexico. Deep Sea Research Part II: Topical Studies in Oceanography, 55(24-26), 2597-2606. Donato, D. C., Kauffman, J. B., Murdiyarso, D., Kurnianto, S., Stidham, M., & Kanninen, M. (2011). Mangroves among the most carbon-rich forests in the tropics. Nature geoscience, 4(5), 293-297. Drazen, J. C., Reisenbichler, K. R., & Robison, B. H. (2007). A comparison of absorption and assimilation efficiencies between four species of shallow-and deep-living fishes. Marine biology, 151(4), 1551-1558. Duke, N. C., Meynecke, J. O., Dittmann, S., Ellison, A. M., Anger, K., Berger, U., Canniccik, S., Diele, K., Ewel, C. D., Field, C. D., Koedam, N., Lee, S. Y., Marchand, C., Nordhaus, I., & Dahdouh-Guebas, F. (2007). A world without mangroves?. Science, 317(5834), 41-42. Eleftheriou, A. (Ed.). (2013). Methods for the study of marine benthos. John Wiley & Sons. Epping, E., van der Zee, C., Soetaert, K., & Helder, W. (2002). On the oxidation and burial of organic carbon in sediments of the Iberian margin and Nazaré Canyon (NE Atlantic). Progress in Oceanography, 52(2-4), 399-431. Fath, B. D., & Patten, B. C. (1999). Review of the foundations of network environ analysis. Ecosystems, 2(2), 167-179. Fenchel, T. (1982). Ecology of heterotrophic microflagellates. 11. Bioenergetics and growth.Marine ecology progress series, 8(22523), 1. Finn, J. T. (1976). Measures of ecosystem structure and function derived from analysis of flows. Journal of theoretical Biology, 56(2), 363-380. Fleeger, J. W., & Palmer, M. A. (1982). Secondary Production of the Estuarine, Meiobenthic Copepod Microarthridion littorale. Marine ecology progress series. Oldendorf, 7(2), 157-162. Fodrie, F. J., Levin, L. A., & Rathburn, A. E. (2009). High densities and depth-associated changes of epibenthic megafauna along the Aleutian margin from 2000–4200 m. Journal of the Marine Biological Association of the United Kingdom, 89(8), 1517-1527. Forster, S., & Graf, G. (1995). Impact of irrigation on oxygen flux into the sediment: intermittent pumping by Callianassa subterranea and “piston-pumping” by Lanice conchilega. Marine Biology, 123(2), 335-346. Gage, J. D., & Tyler, P. A. (1991). Deep-sea biology: a natural history of organisms at the deep-sea floor. Cambridge University Press. Galy, V., France-Lanord, C., Beyssac, O., Faure, P., Kudrass, H., & Palhol, F. (2007). Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system. Nature, 450(7168), 407-410. Garcia, R., Koho, K. A., De Stigter, H. C., Epping, E., Koning, E., & Thomsen, L. (2007). Distribution of meiobenthos in the Nazare canyon and adjacent slope (western Iberian Margin) in relation to sedimentary composition. Marine Ecology Progress Series, 340, 207-220. Gaudin, M., Berné, S., Jouanneau, J. M., Palanques, A., Puig, P., Mulder, T., Cirac, P., Rabineau, M., & Imbert, P. (2006). Massive sand beds attributed to deposition by dense water cascades in the Bourcart canyon head, Gulf of Lions (northwestern Mediterranean Sea). Marine Geology, 234(1-4), 111-128. Gavey, R., Carter, L., Liu, J. T., Talling, P. J., Hsu, R., Pope, E., & Evans, G. (2017). Frequent sediment density flows during 2006 to 2015, triggered by competing seismic and weather events: Observations from subsea cable breaks off southern Taiwan. Marine Geology, 384, 147-158. Giering, S. L., Sanders, R., Martin, A. P., Henson, S. A., Riley, J. S., Marsay, C. M., & Johns, D. G. (2017). Particle flux in the oceans: Challenging the steady state assumption. Global Biogeochemical Cycles, 31(1), 159-171. Glud, R. N. (2008). Oxygen dynamics of marine sediments. Marine Biology Research, 4(4), 243-289. Glud, R. N., Gundersen, J. K., Røy, H., & Jørgensen, B. B. (2003). Seasonal dynamics of benthic O2 uptake in a semienclosed bay: Importance of diffusion and faunal activity. Limnology and Oceanography, 48(3), 1265-1276. Graf, G., & Rosenberg, R. (1997). Bioresuspension and biodeposition: a review. Journal of Marine Systems, 11(3-4), 269-278. Greene, C. H., Wiebe, P. H., Burczynski, J., & Youngbluth, M. J. (1988). Acoustical detection of high-density krill demersal layers in the submarine canyons off Georges Bank. Science, 241(4863), 359-361. Hall, R. A., & Carter, G. S. (2011). Internal tides in Monterey submarine canyon. Journal of Physical Oceanography, 41(1), 186-204. Hammond, D. E., & Fuller, C. (1979). The use of radon-222 to estimate benthic exchange and atmospheric exchange rates in San Francisco Bay. Hansell, D. A., & Carlson, C. A. (2001). Marine dissolved organic matter and the carbon cycle. Oceanography, 14(4), 41-49. Harris, P. T., & Whiteway, T. (2011). Global distribution of large submarine canyons: Geomorphic differences between active and passive continental margins. Marine Geology, 285(1-4), 69-86. Hecker, B. (1994). Unusual megafaunal assemblages on the continental slope off Cape Hatteras. Deep Sea Research Part II: Topical Studies in Oceanography, 41(4-6), 809-834. Herman, P. M. J., Heip, C., & Vranken, G. (1983). The production of Cyprideis torosa Jones 1850 (Crustacea, Ostracoda). Oecologia, 58(3), 326-331. Herman, P. M., & Heip, C. (1985). Secondary production of the harpacticoid copepod Paronychocamptus nanus in a brackish‐water habitat. Limnology and oceanography, 30(5), 1060-1066. Hessler, R. R., & JuMARS, P. A. (1974, March). Abyssal community analysis from replicate box cores in the central North Pacific. In Deep Sea Research and Oceanographic Abstracts (Vol. 21, No. 3, pp. 185-209). Elsevier. Holling, C. S. (1966). The functional response of invertebrate predators to prey density. The Memoirs of the Entomological Society of Canada, 98(S48), 5-86. Hsu, F. H., Su, C. C., Wang, C. H., Lin, S., Liu, J., & Huh, C. A. (2014). Accumulation of terrestrial organic carbon on an active continental margin offshore southwestern Taiwan: Source-to-sink pathways of river-borne organic particles. Journal of Asian Earth Sciences, 91, 163-173. Hsu, H. H., Liu, C. S., Yu, H. S., Chang, J. H., & Chen, S. C. (2013). Sediment dispersal and accumulation in tectonic accommodation across the Gaoping Slope, offshore Southwestern Taiwan. Journal of Asian Earth Sciences, 69, 26-38. Hsu, S. K., Kuo, J., Chung-Liang, L., Ching-Hui, T., Doo, W. B., Ku, C. Y., & Sibuet, J. C. (2008). Turbidity currents, submarine landslides and the 2006 Pingtung earthquake off SW Taiwan. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 19(6), 7. Huang, T. H., Fu, Y. H., Pan, P. Y., & Chen, C. T. A. (2012). Fluvial carbon fluxes in tropical rivers. Current Opinion in Environmental Sustainability, 4(2), 162-169. Huffard, C. L., Durkin, C. A., Wilson, S. E., McGill, P. R., Henthorn, R., & Smith Jr, K. L. (2020). Temporally-resolved mechanisms of deep-ocean particle flux and impact on the seafloor carbon cycle in the northeast Pacific. Deep Sea Research Part II: Topical Studies in Oceanography, 173, 104763. Huh, C. A., Lin, H. L., Lin, S., & Huang, Y. W. (2009). Modern accumulation rates and a budget of sediment off the Gaoping (Kaoping) River, SW Taiwan: a tidal and flood dominated depositional environment around a submarine canyon. Journal of Marine Systems, 76(4), 405-416. Ikehara, K., Usami, K., & Kanamatsu, T. (2020). Repeated occurrence of surface-sediment remobilization along the landward slope of the Japan Trench by great earthquakes. Earth, Planets and Space, 72(1), 1-9. Ingels, J., Kiriakoulakis, K., Wolff, G. A., & Vanreusel, A. (2009). Nematode diversity and its relation to the quantity and quality of sedimentary organic matter in the deep Nazaré Canyon, Western Iberian Margin. Deep Sea Research Part I: Oceanographic Research Papers, 56(9), 1521-1539. Jahnke, R. A. (1996). The global ocean flux of particulate organic carbon: Areal distribution and magnitude. Global Biogeochemical Cycles, 10(1), 71-88. Jan, S., Lien, R. C., & Ting, C. H. (2008). Numerical study of baroclinic tides in Luzon Strait. Journal of Oceanography, 64(5), 789-802. Jørgensen, B. B., Glud, R. N., & Holby, O. (2005). Oxygen distribution and bioirrigation in Arctic fjord sediments (Svalbard, Barents Sea). Marine Ecology Progress Series, 292, 85-95. Kallmeyer, J., Smith, D. C., Spivack, A. J., & D'Hondt, S. (2008). New cell extraction procedure applied to deep subsurface sediments. Limnology and Oceanography: Methods, 6(6), 236-245. Kao, S. J., Hilton, R. G., Selvaraj, K., Dai, M., Zehetner, F., Huang, J. C., Hsu, S.C., Sparkes, R., Liu, J.T., Lee, T.Y., Yang, J.Y.T., Galy, A., Xu, X., & Hovius, N. (2014). Preservation of terrestrial organic carbon in marine sediments offshore Taiwan: mountain building and atmospheric carbon dioxide sequestration. Earth Surface Dynamics, 2(1), 127-139. Keller, G. H., Lambert, D., Rowe, G., & Staresinic, N. (1973). Bottom currents in the Hudson Canyon. Science, 180(4082), 181-183. Kones, J. K., Soetaert, K., van Oevelen, D., & Owino, J. O. (2009). Are network indices robust indicators of food web functioning? A Monte Carlo approach. Ecological Modelling, 220(3), 370-382. Kones, J. K., Soetaert, K., van Oevelen, D., Owino, J. O., & Mavuti, K. (2006). Gaining insight into food webs reconstructed by the inverse method. Journal of Marine Systems, 60(1-2), 153-166. Koopmans, M., Martens, D., & Wijffels, R. H. (2010). Growth efficiency and carbon balance for the sponge Haliclona oculata. Marine biotechnology, 12(3), 340-349. Krause-Jensen, D., & Duarte, C. M. (2016). Substantial role of macroalgae in marine carbon sequestration. Nature Geoscience, 9(10), 737-742. Latham II, L. G., & Scully, E. P. (2002). Quantifying constraint to assess development in ecological networks. Ecological Modelling, 154(1-2), 25-44. Lee, I. H., Lien, R. C., Liu, J. T., & Chuang, W. S. (2009). Turbulent mixing and internal tides in Gaoping (Kaoping) submarine canyon, Taiwan. Journal of Marine Systems, 76(4), 383-396. Li, M., Peng, C., Wang, M., Xue, W., Zhang, K., Wang, K., Shi, G. & Zhu, Q. (2017). The carbon flux of global rivers: a re-evaluation of amount and spatial patterns. Ecological Indicators, 80, 40-51. Li, S. B., Chen, P. H., Huang, J. S., Hsueh, M. L., Hsieh, L. Y., Lee, C. L., & Lin, H. J. (2018). Factors regulating carbon sinks in mangrove ecosystems. Global change biology, 24(9), 4195-4210. Liao, J. X., Chen, G. M., Chiou, M. D., Jan, S., & Wei, C. L. (2017). Internal tides affect benthic community structure in an energetic submarine canyon off SW Taiwan. Deep Sea Research Part I: Oceanographic Research Papers, 125, 147-160. Liao, J. X., Wei, C. L., & Yasuhara, M. (2020). Species and Functional Diversity of Deep-Sea Nematodes in a High Energy Submarine Canyon. Frontiers in Marine Science, 591. Lichtschlag, A., Donis, D., Janssen, F., Jessen, G. L., Holtappels, M., Wenzhöfer, F., F., Mazlumyan, S., Sergeeva, N., Waldmann, C., & Boetius, A. (2015). Effects of fluctuating hypoxia on benthic oxygen consumption in the Black Sea (Crimean shelf). Biogeosciences, 12(16), 5075-5092. Liu, J. T., & Lin, H. L. (2004). Sediment dynamics in a submarine canyon: a case of river–sea interaction. Marine Geology, 207(1-4), 55-81. Liu, J. T., Hsu, R. T., Hung, J. J., Chang, Y. P., Wang, Y. H., Rendle-Bühring, R. H., Lee, C. L., Huh, C. A. & Yang, R. J. (2016). From the highest to the deepest: The Gaoping River–Gaoping Submarine Canyon dispersal system. Earth-Science Reviews, 153, 274-300. Liu, J. T., Kao, S. J., Huh, C. A., & Hung, C. C. (2013). Gravity flows associated with flood events and carbon burial: Taiwan as instructional source area. Annual Review of Marine Science, 5, 47-68. Liu, J. T., Lin, H. L., & Hung, J. J. (2006). A submarine canyon conduit under typhoon conditions off Southern Taiwan. Deep Sea Research Part I: Oceanographic Research Papers, 53(2), 223-240. Liu, J. T., Liu, K. J., & Huang, J. C. (2002). The influence of a submarine canyon on river sediment dispersal and inner shelf sediment movements: a perspective from grain-size distributions. Marine Geology, 181(4), 357-386. Lochte, K., & Turley, C. M. (1988). Bacteria and cyanobacteria associated with phytodetritus in the deep sea. Nature, 333(6168), 67-69. Lohrer, A. M., Thrush, S. F., & Gibbs, M. M. (2004). Bioturbators enhance ecosystem function through complex biogeochemical interactions. Nature, 431(7012), 1092-1095. Loo, L. O., & Rosenberg, R. (1996). Production and energy budget in marine suspension feeding populations: Mytilus edulis, Cerastoderma edule, Mya arenaria and Amphiura filiformis. Journal of Sea Research, 35(1-3), 199-207. Loreau, M. (2008). Biodiversity and ecosystem functioning: the mystery of the deep sea. Current Biology, 18(3), R126-R128. Mahaut, M. L., Sibuet, M., & Shirayama, Y. (1995). Weight-dependent respiration rates in deep-sea organisms. Deep Sea Research Part I: Oceanographic Research Papers, 42(9), 1575-1582. Marchio Jr, D. A., Savarese, M., Bovard, B., & Mitsch, W. J. (2016). Carbon sequestration and sedimentation in mangrove swamps influenced by hydrogeomorphic conditions and urbanization in Southwest Florida. Forests, 7(6), 116. Mare, M. F. (1942). A study of a marine benthic community with special reference to the micro-organisms. Journal of the Marine Biological Association of the United Kingdom, 25(3), 517-554. Masson, D. G., Huvenne, V. A. I., De Stigter, H. C., Wolff, G. A., Kiriakoulakis, K., Arzola, R. G., & Blackbird, S. (2010). Efficient burial of carbon in a submarine canyon. Geology, 38(9), 831-834. Maycas, E. R., Bourdillon, A., Macquart-Moulin, C., Passelaigue, F., & Patriti, G. (1999). Diel variations of the bathymetric distribution of zooplankton groups and biomass in Cap-Ferret Canyon, France. Deep Sea Research Part II: topical studies in oceanography, 46(10), 2081-2099. McClain, C. R., & Rex, M. A. (2015). Toward a conceptual understanding of β-diversity in the deep-sea benthos. Annual review of ecology, evolution, and systematics, 46, 623-642. McClain, C. R., Allen, A. P., Tittensor, D. P., & Rex, M. A. (2012). Energetics of life on the deep seafloor. Proceedings of the National Academy of Sciences, 109(38), 15366-15371. McClain, C. R., and Barry, J. P. (2010). Habitat heterogeneity, disturbance, and productivity work in concert to regulate biodiversity in deep submarine canyons. Ecology, 91(4), 964-976. Meade, R. H., & Moody, J. A. (2010). Causes for the decline of suspended‐sediment discharge in the Mississippi River system, 1940–2007. Hydrological Processes: An International Journal, 24(1), 35-49. Meile, C., Koretsky, C. M., & Cappellen, P. V. (2001). Quantifying bioirrigation in aquatic sediments: an inverse modeling approach. Limnology and oceanography, 46(1), 164-177. Meyer-Reil, L. A. (1983). Benthic response to sedimentation events during autumn to spring at a shallow water station in the Western Kiel Bight. Marine Biology, 77(3), 247-256. Meyers, P. A. (1994). Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical geology, 114(3-4), 289-302. Montagna, P. A., Baguley, J. G., Hsiang, C. Y., & Reuscher, M. G. (2017). Comparison of sampling methods for deep‐sea infauna. Limnology and Oceanography: Methods, 15(2), 166-183. Moodley, L., Heip, C. H., & Middelburg, J. J. (1998). Benthic activity in sediments of the northwestern Adriatic Sea: sediment oxygen consumption, macro-and meiofauna dynamics. Journal of Sea Research, 40(3-4), 263-280. Mukherjee, J., Karan, S., Chakrabarty, M., Banerjee, A., Rakshit, N., & Ray, S. (2019). An approach towards quantification of ecosystem trophic status and health through ecological network analysis applied in Hooghly-Matla estuarine system, India. Ecological Indicators, 100, 55-68. Mulder, T., Weber, O., Anschutz, P., Jorissen, F., & Jouanneau, J. M. (2001). A few months-old storm-generated turbidite deposited in the Capbreton Canyon (Bay of Biscay, SW France). Geo-Marine Letters, 21(3), 149-156. Navarro, E., Iglesias, J. I. P., Ortega, M. M., & Larretxea, X. (1994). The basis for a functional response to variable food quantity and quality in cockles Cerastoderma edule (Bivalvia, Cardiidae). Physiological zoology, 67(2), 468-496. Nielsen, A. M., Eriksen, N. T., Iversen, J. L., & Riisgård, H. U. (1995). Feeding, growth and respiration in the polychaetes Nereis diversicolor (facultative filter-feeder) and N. virens (omnivorous)-a comparative study. Marine Ecology Progress Series, 125, 149-158. Nittrouer, C. A., & Wright, L. D. (1994). Transport of particles across continental shelves. Reviews of Geophysics, 32(1), 85-113. Odum, E. P. (1969). The Strategy of Ecosystem Development: An understanding of ecological succession provides a basis for resolving man's conflict with nature. science, 164(3877), 262-270. Ogura, N. (1972). Rate and extent of decomposition of dissolved organic matter in surface seawater. Marine Biology, 13(2), 89-93. Oliveira, A., Santos, A. I., Rodrigues, A., & Vitorino, J. (2007). Sedimentary particle distribution and dynamics on the Nazaré canyon system and adjacent shelf (Portugal). Marine Geology, 246(2), 105-122. Pape, E., van Oevelen, D., Moodley, L., Soetaert, K., & Vanreusel, A. (2013). Nematode feeding strategies and the fate of dissolved organic matter carbon in different deep-sea sedimentary environments. Deep Sea Research Part I: Oceanographic Research Papers, 80, 94-110. Polidoro, B. A., Carpenter, K. E., Collins, L., Duke, N. C., Ellison, A. M., Ellison, J. C., Farnsworth, E. J., Fernando, E. S., Kathiresan, K., Koedam, N. E., Livingstone, S. R., Miyagi, T., Moore, G. E., Nam, V. N., Ong, J. E., Primavera, J. H., Salmo III, S. G., Sanciangco, J. C., Sukardjo, S., Wang Y. & Yong, J. W. H. (2010). The loss of species: mangrove extinction risk and geographic areas of global concern. PloS one, 5(4), e10095. Puig, P., Palanques, A., Orange, D. L., Lastras, G., & Canals, M. (2008). Dense shelf water cascades and sedimentary furrow formation in the Cap de Creus Canyon, northwestern Mediterranean Sea. Continental Shelf Research, 28(15), 2017-2030. Pusceddu, A., Bianchelli, S., Canals, M., Sanchez-Vidal, A., De Madron, X. D., Heussner, S., Lykousis, V., de Stigter, H., Trincardi, F., & Danovaro, R. (2010). Organic matter in sediments of canyons and open slopes of the Portuguese, Catalan, Southern Adriatic and Cretan Sea margins. Deep Sea Research Part I: Oceanographic Research Papers, 57(3), 441-457. R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. Rabouille, C., Caprais, J. C., Lansard, B., Crassous, P., Dedieu, K., Reyss, J. L., & Khripounoff, A. (2009). Organic matter budget in the Southeast Atlantic continental margin close to the Congo Canyon: In situ measurements of sediment oxygen consumption. Deep Sea Research Part II: Topical Studies in Oceanography, 56(23), 2223-2238. Rabouille, C., Gaillard, J. F., Relexans, J. C., Tréguer, P., & Vincendeau, M. A. (1998). Recycling of organic matter in Antarctic sediments: A transect through the polar front in the Southern Ocean (Indian Sector). Limnology and Oceanography, 43(3), 420-432. Ramalho, S. P., Adão, H., Kiriakoulakis, K., Wolff, G. A., Vanreusel, A., & Ingels, J. (2014). Temporal and spatial variation in the Nazaré Canyon (Western Iberian margin): Inter-annual and canyon heterogeneity effects on meiofauna biomass and diversity. Deep Sea Research Part I: Oceanographic Research Papers, 83, 102-114. Ramirez‐Llodra, E., Company, J. B., Sarda, F., & Rotllant, G. (2010). Megabenthic diversity patterns and community structure of the Blanes submarine canyon and adjacent slope in the Northwestern Mediterranean: a human overprint?. Marine Ecology, 31(1), 167-182. Rex, M. A., Etter, R. J., Morris, J. S., Crouse, J., McClain, C. R., Johnson, N. A., Stuart, C.T., Deming, J.W., Thies, R., & Avery, R. (2006). Global bathymetric patterns of standing stock and body size in the deep-sea benthos. Marine Ecology Progress Series, 317, 1-8. Rowe, G. T. (1971). Observations on bottom currents and epibenthic populations in Hatteras Submarine Canyon. In Deep Sea Research and Oceanographic Abstracts (Vol. 18, No. 6, pp. 569-581). Elsevier. Rowe, G. T. (1983). Biomass and production of the deep-sea macrobenthos. The sea, 8, 97-121. Rowe, G. T., Sibuet, M., Deming, J., Tietjen, J., & Khripounoff, A. (1990). Organic carbon turnover time in deep-sea benthos. Progress in oceanography, 24(1-4), 141-160. Rowe, G. T., Wei, C., Nunnally, C., Haedrich, R., Montagna, P., Baguley, J. G., Bernhard, J. M., Wicksten, M., Ammons, A., Briones, E. E., Soliman, Y., & Deming, J. W. (2008). Comparative biomass structure and estimated carbon flow in food webs in the deep Gulf of Mexico. Deep Sea Research Part II: Topical Studies in Oceanography, 55(24-26), 2699-2711. Rowe, G., Sibuet, M., Deming, J., Khripounoff, A., Tietjen, J., Macko, S., & Theroux, R. (1991). 'Total'sediment biomass and preliminary estimates of organic carbon residence time in deep-sea benthos. Marine Ecology Progress Series, 99-114. Schlacher, T. A., Schlacher-Hoenlinger, M. A., Williams, A., Althaus, F., Hooper, J. N., & Kloser, R. (2007). Richness and distribution of sponge megabenthos in continental margin canyons off southeastern Australia. Marine Ecology Progress Series, 340, 73-88. Schroeder, L. A. (1981). Consumer growth efficiencies: their limits and relationships to ecological energetics. Journal of Theoretical Biology, 93(4), 805-828. Shepard, F. P. (1973). Submarine geology (No. 551.4 SHE). Shepard, F. P. (1981). Submarine canyons: multiple causes and long-time persistence. AAPG bulletin, 65(6), 1062-1077. Shepard, F. P., Dill, R. F., & Dill, R. F. (1966). Submarine canyons and other sea valleys. Rand McNally. Sibuet, M. (1977). Répartition et diversité des Echinodermes (Holothurides-Astérides) en zone profonde dans le Golfe de Gascogne. Deep Sea Research, 24(6), 549-563. Smallwood, B. J., Wolff, G. A., Bett, B. J., Smith, C. R., Hoover, D., Gage, J. D., & Patience, A. (1999). Megafauna can control the quality of organic matter in marine sediments. Naturwissenschaften, 86(7), 320-324. Smith Jr, K. L. (1987). Food energy supply and demand: A discrepancy between particulate organic carbon flux and sediment community oxygen consumption in the deep ocean 1. Limnology and Oceanography, 32(1), 201-220. Smith Jr, K. L., & Kaufmann, R. S. (1999). Long-term discrepancy between food supply and demand in the deep eastern North Pacific. Science, 284(5417), 1174-1177. Smith, C. R., De Leo, F. C., Bernardino, A. F., Sweetman, A. K., & Arbizu, P. M. (2008). Abyssal food limitation, ecosystem structure and climate change. Trends in Ecology & Evolution, 23(9), 518-528. Smith, K. L., Huffard, C. L., Sherman, A. D., & Ruhl, H. A. (2016). Decadal change in sediment community oxygen consumption in the abyssal northeast Pacific. Aquatic geochemistry, 22(5), 401-417. Snelgrove, P. V., Soetaert, K., Solan, M., Thrush, S., Wei, C. L., Danovaro, R., Fulweiler, R.W., Kitazato, H., Ingole, B., Norkko, A., Parkes, R.J., & Volkenborn, N. (2018). Global carbon cycling on a heterogeneous seafloor. Trends in Ecology & Evolution, 33(2), 96-105. Snelgrove, P. V., Thrush, S. F., Wall, D. H., & Norkko, A. (2014). Real world biodiversity–ecosystem functioning: a seafloor perspective. Trends in ecology & evolution, 29(7), 398-405. Sobarzo, M., Figueroa, M., & Djurfeldt, L. (2001). Upwelling of subsurface water into the rim of the Biobıo submarine canyon as a response to surface winds. Continental Shelf Research, 21(3), 279-299. Soetaert, K., & Herman, P. M. (2009). A practical guide to ecological modelling: using R as a simulation platform (Vol. 7, No. 7). New York: Springer. Soetaert, K., & van Oevelen, D. (2009). Modeling food web interactions in benthic deep-sea ecosystems: a practical guide. Oceanography, 22(1), 128-143. Steinberg, D. K., Van Mooy, B. A., Buesseler, K. O., Boyd, P. W., Kobari, T., & Karl, D. M. (2008). Bacterial vs. zooplankton control of sinking particle flux in the ocean's twilight zone. Limnology and Oceanography, 53(4), 1327-1338. Stratmann, T., Lins, L., Purser, A., Marcon, Y., Rodrigues, C. F., Ravara, A., Cunha, M. R., Simon-Lledó, E., Jones, D. O. B., Sweetman, A. K., Köser, K., & Van Oevelen, D. (2018). Abyssal plain faunal carbon flows remain depressed 26 years after a simulated deep-sea mining disturbance. Biogeosciences, 15(13), 4131-4145. Stratmann, T., Soetaert, K., Wei, C.-L., and van Oevelen, D.: The role of benthos in the global marine carbon cycle, Global Biogeochem. Cy., unpublished. Su, C. C., Tseng, J. Y., Hsu, H. H., Chiang, C. S., Yu, H. S., Lin, S., & Liu, J. T. (2012). Records of submarine natural hazards off SW Taiwan. Geological Society, London, Special Publications, 361(1), 41-60. Talling, P. J., Paull, C. K., & Piper, D. J. (2013). How are subaqueous sediment density flows triggered, what is their internal structure and how does it evolve? Direct observations from monitoring of active flows. Earth-Science Reviews, 125, 244-287. Tyler, P. A., Grant, A., Pain, S. L., & Gage, J. D. (1982). Is annual reproduction in deep-sea echinoderms a response to variability in their environment?. Nature, 300(5894), 747-750. Ulanowicz, R. E. (1980). An hypothesis on the development of natural communities. Journal of theoretical Biology, 85(2), 223-245. Ulanowicz, R. E. (1986). A phenomenological perspective of ecological development. ASTM International. Ulanowicz, R. E. (2004). Quantitative methods for ecological network analysis. Computational biology and chemistry, 28(5-6), 321-339. Ulanowicz, R.E., (1997). Ecology the ascendent perspective. In: Allen, T.F.H., Roberts, D.W. (Eds.), Complexity in Ecological Systems Series. Columbia University Press, New York Van den Meersche, K., Soetaert, K., & Van Oevelen, D. (2009). xsample (): an R function for sampling linear inverse problems. Journal of Statistical Software, 30, 1-15. Van Duyl, F. C., & Kop, A. J. (1994). Bacterial production in North Sea sediments: clues to seasonal and spatial variations. Marine Biology, 120(2), 323-337. Van Oevelen, D., Soetaert, K., Garcia, R., De Stigter, H. C., Cunha, M. R., Pusceddu, A., & Danovaro, R. (2011). Canyon conditions impact carbon flows in food webs of three sections of the Nazaré canyon. Deep Sea Research Part II: Topical Studies in Oceanography, 58(23-24), 2461-2476. Van Oevelen, D., Soetaert, K., Middelburg, J. J., Herman, P. M., Moodley, L., Hamels, I., ... & Heip, C. H. (2006). Carbon flows through a benthic food web: Integrating biomass, isotope and tracer data. Journal of Marine Research, 64(3), 453-482. Van Oevelen, D., Van den Meersche, K., Meysman, F. J., Soetaert, K., Middelburg, J. J., & Vézina, A. F. (2010). Quantifying food web flows using linear inverse models. Ecosystems, 13(1), 32-45. Van Santen, P., Augustinus, P. G. E. F., Janssen-Stelder, B. M., Quartel, S., & Tri, N. H. (2007). Sedimentation in an estuarine mangrove system. Journal of Asian Earth Sciences, 29(4), 566-575. Verdugo, P., Alldredge, A. L., Azam, F., Kirchman, D. L., Passow, U., & Santschi, P. H. (2004). The oceanic gel phase: a bridge in the DOM–POM continuum. Marine Chemistry, 92(1-4), 67-85. Vetter, E. W., & Dayton, P. K. (1998). Macrofaunal communities within and adjacent to a detritus-rich submarine canyon system. Deep Sea Research Part II: Topical Studies in Oceanography, 45(1-3), 25-54. Vetter, E. W., & Dayton, P. K. (1999). Organic enrichment by macrophyte detritus, and abundance patterns of megafaunal populations in submarine canyons. Marine Ecology Progress Series, 186, 137-148. Vézina, A. F., & Platt, T. (1988). Food web dynamics in the ocean. 1. Best-estimates of flow networks using inverse methods. Marine ecology progress series. Oldendorf, 42(3), 269-287. Walsh, J. P., Alexander, C. R., Gerber, T., Orpin, A. R., & Sumners, B. W. (2007). Demise of a submarine canyon? Evidence for highstand infilling on the Waipaoa River continental margin, New Zealand. Geophysical Research Letters, 34(20). Wang, Y. H., Lee, I. H., & Liu, J. T. (2008). Observation of internal tidal currents in the Kaoping Canyon off southwestern Taiwan. Estuarine, Coastal and Shelf Science, 80(1), 153-160. Warwick, R. M., & Gee, J. M. (1984). Community structure of estuarine meiobenthos. Marine Ecology Progress Series, 18, 97-111. Wei, C. L., Rowe, G. T., Escobar-Briones, E., Boetius, A., Soltwedel, T., Caley, M. J., Soliman, Y., Huettmann, F., Qu, F., Yu, Z., Pitcher, C.R., Haedrich, R.L., Wicksten, M.K., Rex, M.A., Baguley, J.G., Sharma, J., Danovaro, R., MacDonald, I.R., Nunnally, C.C., Deming, J.W., Montagna, P., Lévesque, M., Marcin Weslawski, Jan, Wlodarska-Kowalczuk, Maria, Ingole, B.S., Bett, B.J., Billett, D.S.M., Yool, A., Bluhm, B.A., Iken, K., & Narayanaswamy, B. E. (2010). Global patterns and predictions of seafloor biomass using random forests. PloS one, 5(12), e15323. Wei, C. L., Rowe, G. T., Escobar-Briones, E., Nunnally, C., Soliman, Y., & Ellis, N. (2012). Standing stocks and body size of deep-sea macrofauna: Predicting the baseline of 2010 Deepwater Horizon oil spill in the northern Gulf of Mexico. Deep Sea Research Part I: Oceanographic Research Papers, 69, 82-99. Wenzhöfer, F., & Glud, R. N. (2002). Benthic carbon mineralization in the Atlantic: a synthesis based on in situ data from the last decade. Deep Sea Research Part I: Oceanographic Research Papers, 49(7), 1255-1279. Wenzhöfer, F., & Glud, R. N. (2004). Small‐scale spatial and temporal variability in coastal benthic O2 dynamics: Effects of fauna activity. Limnology and Oceanography, 49(5), 1471-1481. Yamamoto, N., & Lopez, G. (1985). Bacterial abundance in relation to surface area and organic content of marine sediments. Journal of Experimental Marine Biology and Ecology, 90(3), 209-220. Yoklavich, M. M., Greene, H. G., Cailliet, G. M., Sullivan, D. E., Lea, R. N., & Love, M. S. (2000). Habitat associations of deep-water rockfishes in a submarine canyon: an example of a natural refuge. Fishery Bulletin, 98(3), 625-625. Yu, H. S., Chiang, C. S., & Shen, S. M. (2009). Tectonically active sediment dispersal system in SW Taiwan margin with emphasis on the Gaoping (Kaoping) Submarine Canyon. Journal of Marine Systems, 76(4), 369-382. Zhang, L. J., Wang, L., Cai, W. J., Liu, D. M., & Yu, Z. G. (2013). Impact of human activities on organic carbon transport in the Yellow River. Biogeosciences, 10(4), 2513-2524. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86282 | - |
| dc.description.abstract | 雖然台灣西南海域高屏海底峽谷的地質和生物群落結構已被廣泛研究,然而我們對沉積物的碳循環和棲地對底棲生態系統功能性的影響仍不清楚。本研究透過量化底棲食物網的碳循環以了解與山溪型河川對接的海底峽谷生態系統功能。本研究使用2014年至2020年共12個航次的沉積物樣本來估算高屏峽谷頭(簡稱GC1)和相鄰斜坡(簡稱GS1)中的生物和非生物的碳存量,並檢驗其中是否存在季節性差異。接著,我結合不同食階的生地化數據來構建線性逆推模型(Linear Inverse Model; LIM)並比較兩地食物網中的碳流量。最後,我使用網路指數檢驗兩棲地食物網的生態系統功能。
本研究結果顯示生物以及沉積物的碳存量並無顯著季節性差異,然而不同棲地之間生物以及沉積物的碳存量則顯著不同。除了細菌的碳存量在峽谷頭較高之外,相鄰斜坡的生物以及非生物(沉積物)的碳存量都顯著高於峽谷頭。峽谷中相對較低的生物多樣性和生物碳存量顯示峽谷頭生態系受到劇烈物理擾動,其中峽谷的大型(Macrofauna)與中型(Meiofauna)底棲無脊椎生物的碳存量遠低於斜坡,然而沉積物群落耗氧量在兩棲地之間並沒有顯著差異,顯示了峽谷頭中細菌可能貢獻了絕大部分的耗氧量。相比之下,相鄰斜坡上生物對於碳循環的貢獻較高,為相對成熟的生態系統。LIM結果顯示兩棲地之間的碳流量大小和分佈有巨大差異。峽谷頭和相鄰斜坡分別需要131.08 mg C/ m2/ d 和 78.95 mg C/ m2/ d 的有機碳通量來支持其生物系統。峽谷頭較高的碳埋藏率顯示高屏峽谷不僅將沉積物輸送到南海深處,也在碳封存中扮演重要角色。網絡指數分析顯示,峽谷頭的總系統通量(Total system throughput ; T..)和總系統穿流量(Total system through flow ; TST)相當高,代表流經峽谷系統的碳流量較大。而峽谷的芬恩循環指數(Finn Cycling Index; FCI)邊緣顯著低於相鄰斜坡,意味著高比例的碳未被利用而直接被埋藏,因此在系統中的分佈效率低下。 本研究是第一個量化高屏峽谷及相鄰斜坡底棲食物網碳流量的研究。透過LIM與網路指數分析,我們更理解海底峽谷的生態系統功能。未來山溪型河川的洪水強度跟頻度可能受氣候變遷的影響而增加,並且更頻繁地引發海底峽谷的地質災害。研究海洋環境中的物質和能量轉移將有助於我們了解生態系統功能以及其儲存碳的能力,而透過模擬高屏峽谷底棲生態系統的碳循環,我們或許能夠將本研究建構的模式運用在預測氣候變遷或人類活動對深海生態系統的影響。 | zh_TW |
| dc.description.abstract | The Gaoping Submarine Canyon (GPSC) off Southwest Taiwan has been extensively studied for its geology and biological community structure. However, the carbon cycle across the sediment-water interface and the environmental control on benthic ecosystem functioning remained unclear. This study attempts to contribute knowledge gap in the benthic food web by quantifying the carbon cycling in this small mountain river (SMR)-fed submarine canyon ecosystem.
First, biotic and abiotic carbon stocks in the upper GPSC (GC1) and adjacent slope (GS1) were estimated and examined for the seasonal difference. Then, I combined biological and geochemical data from 2014 to 2020 with literature data to construct linear inverse models (LIM) and compared the carbon food webs between GC1 and GS1. Finally, I used selected network indices to examine the ecosystem function and food web characteristics between the canyon and slope habitats. The analyses did not find seasonal differences in organic carbon stocks. However, except for the bacteria stocks, the biotic and abiotic carbon stocks in the GS1 were significantly higher than in GC1. The relatively lower biodiversity and faunal carbon stocks in the canyon show that the GC1 was a fragile ecosystem under severe physical perturbation. Nevertheless, despite the drastic difference in fauna stocks, the sediment community oxygen consumption (SCOC) rates were similar between habitats, indicating the relatively higher microbial carbon remineralization in the GC1 than in GS1. By contrast, the higher fauna contribution to carbon processing in the GS1 suggests that the slope may be a relatively more mature ecosystem than the canyon. The LIM food web results showed that the magnitude and distribution of the carbon flows differed between GC1 and GS1. The GC1 required 131.08 mg C/ m2/ d, and GS1 needed 78.95 mg C/ m2/ d of total organic carbon (TOC) flux to support the biological systems. The higher carbon burial rate in GC1 indicates that the GPSC not only transports sediment to the deep South China Sea but contributes considerably to carbon sequestration. Moreover, two network indices, the total system throughput (T..) and total system through flow (TST), were markedly higher in GC1, indicating greater energy flowing through the system. The Finn Cycling Index (FCI) was marginally lower in the canyon, revealing that a large fraction of carbon is buried, and the remaining carbon were distributed inefficiently in the system. This study presents the first food web model to examine carbon cycling in the GPSC and on the adjacent slope. Moreover, it is the first study that applied the LIM technique in Taiwan. The LIM model results provided a rare opportunity to study how the canyon affects food web structure compared to the slope habitat. Moreover, the LIM model offered an insight into the ecosystem functioning of the submarine canyon from the aspect of energy flows and food web characteristics such as total system throughput, energy recycling, and food web maturity. Due to the ongoing climate change, the geohazards in the submarine canyons might become more frequent owing to new weather systems with a higher intensity of flooding in SMRs. Studying matter and energy transfer in the submarine canyon will help us determine the capacity of deep ecosystems to capture and store carbon. By better understanding carbon cycling in GPSC, we may be able to predict the impact of climate change or human influence on deep-sea ecosystems. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:46:44Z (GMT). No. of bitstreams: 1 U0001-2908202211484900.pdf: 4020737 bytes, checksum: 8e2f30f4fe49c8c3c72b4e5af46ec734 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 論文口試委員審定書 i
Acknowledgement ii 摘要 iii Abstract v Content viii List of figures xiv 1 Introduction 1 1.1 Submarine canyon 1 1.2 Compare GPSC with GS in terms of physical conditions and community structure 5 1.3 Carbon flows and food webs in the deep-sea environment 9 1.4 Related food web studies in submarine canyons 13 1.5 Aim of this study 15 2 Materials and Methods 17 2.1 Studying sites 17 2.2 Definition of OC stocks 17 2.3 Sampling procedures of living component of OC 18 2.3.1 Prokaryote biomass 18 2.3.2 Meiofauna biomass 19 2.3.3 Macrofauna biomass 21 2.4 Sampling procedures of non-living component of OC 22 2.4.1 Detrital organic carbon 22 2.5 Sediment community oxygen consumption (SCOC) 23 2.6 Statistical analysis 25 2.7 Rain of POC 25 2.8 Burial rates of organic carbon 26 2.9 Linear inverse model formulation 26 2.9.1 Structure 27 2.9.2 Mass balances 27 2.9.3 Constraints 29 2.10 Model Solution: Likelihood method 32 2.11 Network indices of ecosystems 33 3 Results 37 3.1 Environment data 37 3.1.1 CTD 37 3.2 Stock of the non-living component of OC 37 3.2.1 Detrital organic carbon 37 3.3 Stocks of the living component of OC 38 3.3.1 Prokaryote biomass 38 3.3.2 Meiofauna biomass 39 3.3.3 Macrofauna biomass 40 3.4 Oxygen utilization 41 3.5 Model results 42 3.5.1 LIM result of GC1 44 3.5.2 LIM result of GS1 45 3.6 Turnover rates 46 3.7 Network indices results 47 4 Discussion 49 4.1 Carbon stock in different compartments 49 4.2 Implemented constraints and model limitations 51 4.3 Carbon demand from the benthic community 58 4.4 Network characteristics 59 4.5 Burial efficiency and carbon sequestration in the GPSC 63 5 Conclusion 67 6 Reference 69 Table 85 Figure 98 | - |
| dc.language.iso | en | - |
| dc.subject | 食物網 | zh_TW |
| dc.subject | 高屏峽谷 | zh_TW |
| dc.subject | 網路指數 | zh_TW |
| dc.subject | 線性逆推模型 | zh_TW |
| dc.subject | 碳流量 | zh_TW |
| dc.subject | 深海生態系 | zh_TW |
| dc.subject | 高屏峽谷 | zh_TW |
| dc.subject | 網路指數 | zh_TW |
| dc.subject | 深海生態系 | zh_TW |
| dc.subject | 食物網 | zh_TW |
| dc.subject | 線性逆推模型 | zh_TW |
| dc.subject | 碳流量 | zh_TW |
| dc.subject | Deep-sea ecosystem | en |
| dc.subject | Deep-sea ecosystem | en |
| dc.subject | Network indices | en |
| dc.subject | Carbon flows | en |
| dc.subject | Linear inverse model | en |
| dc.subject | Food web | en |
| dc.subject | Gaoping Submarine Canyon | en |
| dc.subject | Food web | en |
| dc.subject | Linear inverse model | en |
| dc.subject | Carbon flows | en |
| dc.subject | Network indices | en |
| dc.subject | Gaoping Submarine Canyon | en |
| dc.title | 高屏峽谷之底棲生物食物網中的碳循環 | zh_TW |
| dc.title | Carbon Cycling in Benthic Food Web of the Gaoping Submarine Canyon | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 110-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.author-orcid | 0000-0001-6486-6709 | |
| dc.contributor.oralexamcommittee | 林玉詩;謝志豪 | zh_TW |
| dc.contributor.oralexamcommittee | Yu-Shih Lin;Chih-Hao Hsieh | en |
| dc.subject.keyword | 高屏峽谷,食物網,線性逆推模型,碳流量,網路指數,深海生態系, | zh_TW |
| dc.subject.keyword | Gaoping Submarine Canyon,Food web,Linear inverse model,Carbon flows,Network indices,Deep-sea ecosystem, | en |
| dc.relation.page | 113 | - |
| dc.identifier.doi | 10.6342/NTU202202914 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2022-08-29 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 海洋研究所 | - |
| dc.date.embargo-lift | 2025-08-31 | - |
| 顯示於系所單位: | 海洋研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-110-2.pdf | 3.93 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
