Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86280
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊國鑫(Kuo-Hsin Yang)
dc.contributor.authorHuan-Yu Changen
dc.contributor.author張洹瑜zh_TW
dc.date.accessioned2023-03-19T23:46:37Z-
dc.date.copyright2022-08-30
dc.date.issued2022
dc.date.submitted2022-08-29
dc.identifier.citationBallard, J. C., Yonatan, P. H., Rattley, M. J., & Griffiths, A. (2014). Rock berm restraint of an untrenched pipeline on soft clay. Proc. Offshore Pipeline Technology Conference, Amsterdam, The Netherlands. Chang, K. T., Kang, Y. M., Ge, L., & Cheng, M. C. (2015). Mechanical properties of gravel deposits evaluated by nonconventional methods. Journal of Materials in Civil Engineering, 27(11), 04015032. Clayton, C. R., Woods, R. I., & Milititsky, J. (2014). Earth pressure and earth-retaining structures. CRC press. Clough, G. W. & Denby, G. M. (1977). Stabilizing berm design for temporary walls in clay. J. Geotech. Engng Div., ASCE 103, No. GT2, 75-90 Daly, M. P., & Powrie, W. (2001). Undrained analysis of earth berms as temporary supports for embedded retaining walls. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 149(4), 237-248. Duncan, J. M., & Buchignani, A. L. (1976). An Engineering Manual for Settlement Studies: By JM Duncan and AL Buchignani. Department of Civil Engineering, University of California. Fleming, K., Weltman, A., Randolph, M., & Elson, K. (2008). Piling engineering. CRC press. Gaba, A., Hardy, S., Doughty, L., Powrie, W., & Selemetas, D. (2017). Guidance on embedded retaining wall design. London, UK: Ciria. Hsiung, B. C. B., & Hwang, R. (2009). Correction of inclinometer readings for movements at tips. Geotechnical Engineering, SEAGS, 40(2), 39-48. Hsiung, B. C. B., & Hwang, R. N. (2009). Evaluating performance of diaphragm walls by wall deflection paths. Special Issue on Excavation and Tunneling in Geotechnical Engineering, 81-90. Hsiung, B. C. B., Yang, K. H., Aila, W., & Ge, L. (2018). Evaluation of the wall deflections of a deep excavation in Central Jakarta using three-dimensional modeling. Tunnelling and Underground Space Technology, 72, 84-96. Hsiung, B. C. B., Yang, K. H., Aila, W., & Hung, C. (2016). Three-dimensional effects of a deep excavation on wall deflections in loose to medium dense sands. Computers and Geotechnics, 80, 138-151. Khoiri, M., & Ou, C. Y. (2013). Evaluation of deformation parameter for deep excavation in sand through case histories. Computers and Geotechnics, 47, 57-67. Khoiri, M., Ou, C. Y., & Teng, F. C. (2014). A comprehensive evaluation of strength and modulus parameters of a gravelly cobble deposit for deep excavation analysis. Engineering geology, 174, 61-72. Li, A., Zhou, M., Tian, Y., & Yang, S. (2020). Effect of rockfill berm on the stability of large geotextile mat dikes on soft clay. Computers and Geotechnics, 128, 103839. Lim, A., Ou, C. Y., & Hsieh, P. G. (2010). Evaluation of clay constitutive models for analysis of deep excavation under undrained conditions. Journal of GeoEngineering, 5(1), 9-20. Lin, S. Y., Lin, P. S., Luo, H. S., & Juang, C. H. (2000). Shear modulus and damping ratio characteristics of gravelly deposits. Canadian Geotechnical Journal, 37(3), 638-651. NAVFAC (1986). Design manual 7.02: Foundations and Earth Structures. Alexandria, Va, US Naval Facilities Engineering Command. Ou, C. Y. (2014). Deep excavation: Theory and practice. CRC Press. Ou, C. Y., Shiau, B. Y., & Wang, I. W. (2000). Three-dimensional deformation behavior of the Taipei National Enterprise Center (TNEC) excavation case history. Canadian Geotechnical Journal, 37(2), 438-448. Plaxis 2D Reference Manual CONNECT Edition V20 Potts, D. M., Addenbrooke, T. I., & Day, R. A. (1993). The use of soil berms for temporary support of retaining walls. Retaining structures, 440-447. Thomas Telford Publishing. Powrie, W., & Daly, M. P. (2002). Centrifuge model tests on embedded retaining walls supported by earth berms. Geotechnique, 52(2), 89-106. Simpson, B., & Powrie, W. (2002). Embedded retatining walls: theory, practice and understanding. Proceedings of the International Conference on Soil Mechanics and Geotechnical Engineering (Vol. 4, pp. 2505-2526). AA BALKEMA PUBLISHERS. Smethurst, J. A., & Powrie, W. (2008). Effective-stress analysis of berm-supported retaining walls. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 161(1), 39-48. Terzaghi, K., Peck, R. B., & Mesri, G. (1996). Soil mechanics in engineering practice. John Wiley & Sons. TORSA3 User Manual Williams, B. P., & Waite, D. (1993). The design and construction of sheet-piled cofferdams (No. 95). 三力技術工程顧問股份有限公司 (2020),「安全觀測系統週報告書」。 大地工程學會 (2016),「建築物基礎開挖工程監測準則」,中華民國大地工程學會。 大地工程學會、 國家地震工程研究中心 (2020),「地工產學合作計畫期中簡報」。 大陸工程公司 (2020),「大面積卵礫石層深開挖模擬-以台中市區建案為例」。 行政院勞工委員會勞工安全衛生研究所 (1997),「卵礫石地區開挖安全問題之探討」。 行政院勞工委員會勞工安全衛生研究所 (2002),「開挖擋土支撐種類」。 吳健鈞 (2019),「台中卵礫石層深開挖之三維有限元素法分析」。 林亦郎 (2010),「地中壁對黏土層開挖變形影響之研究」,國立台灣科技大學營建工程研究所博士論文。 社團法人中華民國大地工程學會 (2020),「臺中勤美之森案地工研究計畫」。 施國欽 (1996),「大地工程學(一)」,文笙書局,臺灣。 張光宗、 陳宥序、鄭敏杰 (2014),「以數值方法探討卵礫石層的力學行為」,中華水土保持學報,第45(2)期,第95-102頁。 張吉佐、陳逸駿、嚴世傑、蔡宜璋 (1996),「台灣地區中北部卵礫石層工程性質及施工探討」,地工技術,第55期,第35-46頁。 陳建勝 (2010),「深開挖有限土體引致之土壓力分析與應用」,國立台灣科技大學營建工程研究所碩士論文。 富國技術工程 (2018),「臺中勤美之森地質調查報告」。 董家鈞、黃安斌 (1996),「礫石材料之力學試驗現況與展望」,地工技術,第55期。 熊彬成 (2010),「砂質地盤深開挖引致應力與壁體變位路徑之三維分析」。 褚炳麟、潘進明、張國雄 (1996),「台灣西部卵礫石層現地之大地工程性質」,地工技術,第55期,第47-58頁。 劉添富 (2017),「擋土柱作業災害預防研討」,營造業中區勞工安全促進會。 歐章煜 (2002),「深開挖工程分析設計理論與實務」, 科技圖書。 歐章煜 (2017),「進階深開挖工程分析與設計」,科技圖書。 歐章煜、謝百鉤、邱達昌 (1992),「開挖引致之地表沉陷與建物之容許沉陷量」,地工技術,第40期,第9-24頁。 鄧屬予 (1996),「台灣卵礫石層的地質背景」,地工技術,第55期,第5-24頁。 謝旭昇、王崑瑞 (1996),「卵礫石層深開挖案例」, 地工技術,第55期,第81-88頁。 謝百鉤、 歐章煜 (1996),「以經驗公式預測台北盆地深開挖引致之地表沉陷」,地工技術,第53期,第5-14頁。 顏君行 (2017),「台中卵礫石層改良型人工擋土柱施工淺談」,台中捷運烏日文心北屯線成果發表會論文集,第248-256頁。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86280-
dc.description.abstract在工區範圍較大,形狀規則,且周遭環境較不複雜等前提下,土堤可做為開挖時的輔助工法,並且可以隨著永久工程的進行而在短時間內分區與分階移除,或在永久工程已經可以提供足夠支撐的階段下進行移除,因此在某些情況下,它們提供了在某些條件下降低成本與時間之方案。深開挖可使用土堤作為臨時支撐,其目的在幫助穩定擋土牆,並減少位移量,但目前針對設置土堤之設計仍以經驗工法為主。 目前工程中常使用輔助軟體TORSA進行開挖設計,但TORSA現有條件未提供模擬土堤之功能,故無法直接預測具有土堤狀況之擋土壁變位。為探討模擬土堤的合理力學機制,本研究以明挖斜坡土堤開挖為背景進行研究,由於土堤的規劃將直接影響開挖安全性與引致變位的大小,因此土堤留設形狀/體積大小與其所能提供之支撐性變成是相對重要的課題,可以看出土堤在黏土中開挖所能提供的效益較大,這可能是因為相對堅硬的土壤(如礫石層)本身自立性佳,開挖引致的側向變位並不大,較難看出土堤所能提供的效果。相對地,軟弱黏土開挖所產生的變位較大,土堤所達到的成效就益發明顯。 本研究首先利用有限元素法軟體PLAXIS進行反算分析,再運用TORSA現有功能針對不同條件下進行模型驗證,最後建立了三種簡化的分析方法來考慮土堤支撐擋土壁的情況,分別為:側向土壓力法、折減覆土載重與土壤參數法以及等值開挖深度法等方法。研究利用現地案例驗證結果與參數分析結果發現以折減覆土載重與土壤參數法假設土堤,可得較為合理的結果,使用此方法所得之最大誤差值遠小於其他方法。而使用側向土壓力法則對壁體變位結果很敏感,如果無法準確預估側向土壓力的值,容易有高估或低估變位的結果,且側向土壓力法與等值開挖深度法對於土堤有效面積之折減因子RA非常敏感,亦會有高估或低估壁體變位的情況,於黏土層中影響更顯著。zh_TW
dc.description.abstractUnder the condition that the area is large, the shape is regular and the surroundings are less complex, earth berm can be used as an auxiliary method in excavation, can be partitioned and removed in a short period simultaneously with the permanent work in progress. Alternatively, it can be removed once the permanent structure can provide sufficient support. Thus, in some cases, the option of using earth berm can possibly reduce costs and time under certain conditions. Earth berm in deep excavation is recognized as temporary support, which helps to stabilize retaining walls and reduce displacement, but the current design details for the assumption of earth berm are still mainly based on empirical methods. The earth berm could be possibly selected as additional temporary support measure to stabilize retaining walls and reduce related displacement. The commercial beam-spring model software TORSA is a widely used tool to simulate deep excavations. However, it could not include the function of berm in the analysis so the lateral wall displacement of retaining structure could not be predicted successfully herein. To explore the reasonable mechanism of earth berm, Cases of open cut with additional earth berm are selected for further studies. Details of the berm directly affect the safety of excavation and the magnitude of the deformation, retention of the shape/volume of soil berm and its performance become relatively important issues. From this study, it confirms that the use of berm could reduce the displacement caused by the excavation, especially for the clay layer. In contrast, the berm might not contribute significant impacts for excavation in gravel. As the gravel is relatively hard, the displacement caused by excavation is not as large as the excavation in soft soil and this might connect to the statement above. In this study, the back-analysis using finite element method software PLAXIS was first undertaken and the validations using TORSA under various conditions were carried out. Three simplified analytical methods were established and examined for evaluating the performance of earth berm. Results show the method using reduction of overburden load and soil parameters method could possibly give better results. The lateral earth pressure method is sensitive to the wall displacements. Thus, if the lateral earth pressure cannot be accurately estimated, the displacement may be overestimated or underestimated by using this method. In addition, the lateral earth pressure method and the raised excavation surface method are sensitive to the reduction factor of the effective area of the earth berm RA, the wall displacement may also be overestimated or underestimated, especially in clay layers.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:46:37Z (GMT). No. of bitstreams: 1
U0001-2308202215051100.pdf: 6904234 bytes, checksum: 6f8fe99be6eddf6622deecba573ff2e1 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents致謝 i 摘要 ii Abstract iii 目錄 v 表目錄 viii 圖目錄 ix 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究內容 2 1.3 論文架構 3 第二章 文獻回顧 6 2.1 開挖擋土支撐種類 6 2.1.1 明挖邊坡工法 7 2.1.2 水平支撐工法 8 2.1.3 地錨工法 8 2.1.4 島式工法 9 2.1.5 逆打工法 11 2.2 土堤作為支撐之案例與試驗 11 2.2.1 實際監測案例 12 2.2.2 離心機試驗 16 2.2.3 數值模擬試驗 27 2.3 模擬土堤支撐效果之方法 32 2.3.1 Coulomb 土楔法 33 2.3.2 使用被動土壓 35 2.3.3 FREW模擬方法 36 2.3.4 施加等值超載 40 2.3.5 提高開挖面法 41 第三章 數值分析 43 3.1 數值分析方法 43 3.1.1 分析軟體-PLAXIS 43 3.1.2 分析軟體-TORSA 44 3.1.3 組成律模型 45 3.1.4 彈塑性基礎梁分析 49 3.2 深開挖案例背景說明 50 3.2.1 案例1台中卵礫石層開挖-基地簡介 50 3.2.2 案例1-幾何模型條件及施工順序 55 3.2.3 案例1-材料參數 57 3.2.4 案例2南科黏土層開挖-基地簡介 61 3.2.5 案例2-幾何模型條件及施工順序 66 3.2.6 案例2-材料參數 70 3.3 模擬土堤支撐效果之方法 73 3.3.1 側向土壓力法 75 3.3.2 折減覆土載重與土壤參數法 77 3.3.3 等值開挖深度法 78 第四章 數值結果與驗證 79 4.1 模型驗證結果 79 4.1.1 台中卵礫石層開挖案例 79 4.1.2 南科黏土層開挖案例 82 4.2 土堤中土壓力分布 89 4.3 綜合討論 94 第五章 參數分析 96 5.1 參數分析項目 96 5.2 參數分析模型與結果驗證 98 5.3 參數分析壁體變位趨勢 119 5.4 綜合討論 121 第六章 結論與建議 122 6.1結論 122 6.2建議 124 參考文獻 125
dc.language.isozh-TW
dc.title以TORSA彈塑性基礎梁法模擬開挖土堤的方法探討zh_TW
dc.titleSimulation of Earth Berm in Excavation Based on Elastoplastic Foundation Beam Method Using TORSAen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.coadvisor熊彬成(Bin-Chen Hsiung)
dc.contributor.oralexamcommittee謝旭昇(Hsii-Sheng Hsieh),鄧福宸(Fu-Chen Teng)
dc.subject.keyword深開挖,土堤,有限元素法,TORSA,擋土壁變位,zh_TW
dc.subject.keywordDeep Excavation,Berm,Finite Element Analysis,TORSA,Wall Deflections,en
dc.relation.page127
dc.identifier.doi10.6342/NTU202202700
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-08-29
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
dc.date.embargo-lift2022-08-30-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
U0001-2308202215051100.pdf6.74 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved