請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86275
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 涂熊林(Hsiung-Lin Tu) | |
dc.contributor.author | Tsu-Wang Sun | en |
dc.contributor.author | 孫祖望 | zh_TW |
dc.date.accessioned | 2023-03-19T23:46:19Z | - |
dc.date.copyright | 2022-11-04 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-09-26 | |
dc.identifier.citation | 1. Ruiz-Mirazo, K., Briones, C. & De La Escosura, A. Prebiotic systems chemistry: New perspectives for the origins of life. Chem. Rev. 114, 285–366 (2014). 2. Le Vay, K. & Mutschler, H. The difficult case of an RNA-only origin of life. Emerg. Top. Life Sci. 3, 469–475 (2019). 3. Kitadai, N. & Maruyama, S. Origins of building blocks of life: A review. Geosci. Front. 9, 1117–1153 (2018). 4. Benner, S. A. Defining life. Astrobiology 10, 1021–1030 (2010). 5. Hutchison, C. A. et al. Design and synthesis of a minimal bacterial genome. Science 351, aad6253 (2016). 6. Powell, K. How biologists are creating life-like cells from scratch. Nature 563, 172–175 (2018). 7. Jeong, D. et al. Cell-free synthetic biology platform for engineering synthetic biological circuits and systems. Methods Protoc. 2, 1–25 (2019). 8. Geary, C., Grossi, G., McRae, E. K. S., Rothemund, P. W. K. & Andersen, E. S. RNA origami design tools enable cotranscriptional folding of kilobase-sized nanoscaffolds. Nat. Chem. 13, 549–558 (2021). 9. Robertson, H. D., Altman, S. & Smith, J. D. Purification and Properties of a Specific Escherichia coli Ribonuclease which Cleaves a Tyrosine Transfer Ribonucleic Acid Precursor. J. Biol. Chem. 247, 5243–5251 (1972). 10. Paul, N. & Joyce, G. F. A self-replicating ligase ribozyme. Proc. Natl. Acad. Sci. U. S. A. 99, 12733–12740 (2002). 11. Gilbert, W. Origin of life: The RNA world. Nature 319, 618 (1986). 12. Horning, D. P. & Joyce, G. F. Amplification of RNA by an RNA polymerase ribozyme. Proc. Natl. Acad. Sci. 113, 9786–9791 (2016). 13. Beaudry, A. A. & Joyce, G. F. Directed Evolution of an RNA Enzyme. Science 257, 635–641 (1992). 14. Joyce, G. F. & Szostak, J. W. Protocells and RNA Self-Replication. Cold Spring Harb. Perspect. Biol. 10, a034801 (2018). 15. Lai, Y. & Chen, I. A. Protocells. Curr. Biol. 30, R482–R485 (2020). 16. Yoshizawa, T., Nozawa, R.-S. S., Jia, T. Z., Saio, T. & Mori, E. Biological phase separation: cell biology meets biophysics. Biophys. Rev. 12, 519–539 (2020). 17. Czerniak, T. & Saenz, J. P. Lipid membranes modulate the activity of RNA through sequence-dependent interactions. Proc. Natl. Acad. Sci. 119, e2119235119 (2022). 18. Saha, R., Verbanic, S. & Chen, I. A. Lipid vesicles chaperone an encapsulated RNA aptamer. Nat. Commun. 9, 1–11 (2018). 19. Mizuuchi, R. & Ichihashi, N. Sustainable replication and coevolution of cooperative RNAs in an artificial cell-like system. Nat. Ecol. Evol. 2, 1654–1660 (2018). 20. Black, R. A. et al. Nucleobases bind to and stabilize aggregates of a prebiotic amphiphile, providing a viable mechanism for the emergence of protocells. Proc. Natl. Acad. Sci. U. S. A. 110, 13272–13276 (2013). 21. Kretschmer, S., Ganzinger, K. A., Franquelim, H. G. & Schwille, P. Synthetic cell division via membrane-transforming molecular assemblies. BMC Biology vol. 17 1–10 (2019). 22. Baldauf, L., van Buren, L., Fanalista, F. & Koenderink, G. H. Actomyosin-driven division of a synthetic cell. arXiv (2022). 23. Franquelim, H. G., Khmelinskaia, A., Sobczak, J. P., Dietz, H. & Schwille, P. Membrane sculpting by curved DNA origami scaffolds. Nat. Commun. 9, 1–10 (2018). 24. Kocabey, S. et al. Membrane-Assisted Growth of DNA Origami Nanostructure Arrays. ACS Nano 9, 3530–3539 (2015). 25. Zhang, Z., Yang, Y., Pincet, F., Llaguno, M. C. & Lin, C. Placing and shaping liposomes with reconfigurable DNA nanocages. Nat. Chem. 9, 653–659 (2017). 26. Jahnke, K., Huth, V., Mersdorf, U., Liu, N. & Göpfrich, K. Bottom-Up Assembly of Synthetic Cells with a DNA Cytoskeleton. ACS Nano (2021) doi:10.1021/acsnano.1c10703. 27. Wu, E. et al. Discovery of Plasma Membrane-Associated RNAs through APEX-seq. Cell Biochem. Biophys. 79, 905–917 (2021). 28. Lin, A. et al. The LINK-A lncRNA interacts with PtdIns(3,4,5)P3 to hyperactivate AKT and confer resistance to AKT inhibitors. Nat. Cell Biol. 19, 238–251 (2017). 29. Fazal, F. M. et al. Atlas of Subcellular RNA Localization Revealed by APEX-Seq. Cell 178, 473–490 (2019). 30. Villarroya-Beltri, C. et al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat. Commun. 4, 2980 (2013). 31. Mańka, R., Janas, P., Sapoń, K., Janas, T. & Janas, T. Role of rna motifs in rna interaction with membrane lipid rafts: Implications for therapeutic applications of exosomal rnas. Int. J. Mol. Sci. 22, 9416 (2021). 32. Janas, T., Janas, T. & Yarus, M. Specific RNA binding to ordered phospholipid bilayers. Nucleic Acids Res. 34, 2128–2136 (2006). 33. Janas, T. & Yarus, M. Visualization of membrane RNAs. RNA 9, 1353–1361 (2003). 34. Vlassov, A., Khvorova, A. & Yarus, M. Binding and disruption of phospholipid bilayers by supramolecular RNA complexes. Proc. Natl. Acad. Sci. U. S. A. 98, 7706–7711 (2001). 35. Pannwitt, S., Slama, K., Depoix, F., Helm, M. & Schneider, D. Against Expectations: Unassisted RNA Adsorption onto Negatively Charged Lipid Bilayers. Langmuir 35, 14704–14711 (2019). 36. Suzuki, Y., Endo, M. & Sugiyama, H. Lipid-bilayer-assisted two-dimensional self-assembly of DNA origami nanostructures. Nat. Commun. 6, 1–9 (2015). 37. Gromelski, S. & Brezesinski, G. DNA condensation and interaction with zwitterionic phospholipids mediated by divalent cations. Langmuir 22, 6293–6301 (2006). 38. McManus, J. J., Rädler, J. O. & Dawson, K. A. Does Calcium Turn a Zwitterionic Lipid Cationic? J. Phys. Chem. B 107, 9869–9875 (2003). 39. Schmid, E. M., Richmond, D. L. & Fletcher, D. A. Reconstitution of proteins on electroformed giant unilamellar vesicles. Methods Cell Biol. 128, 319–338 (2015). 40. Li, Q., Wang, X., Ma, S., Zhang, Y. & Han, X. Electroformation of giant unilamellar vesicles in saline solution. Colloids Surfaces B Biointerfaces 147, 368–375 (2016). 41. Chopra, A., Sagredo, S., Grossi, G., Andersen, E. S. & Simmel, F. C. Out-of-plane aptamer Functionalization of RNA three-helix tiles. Nanomaterials 9, 507 (2019). 42. Horcas, I. et al. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705 (2007). 43. Yandrapalli, N., Petit, J., Bäumchen, O. & Robinson, T. Surfactant-free production of biomimetic giant unilamellar vesicles using PDMS-based microfluidics. Commun. Chem. 4, 1–10 (2021). 44. Han, D. et al. Single-stranded DNA and RNA origami. Science 358, (2017). 45. Frank, J. et al. Thermodynamic Parameters To Predict Stability of RNA/DNA Hybrid Duplexes1-Which is more stable between DNA/DNA and RNA/DNA hybrid duplexes depends on its sequence. Calculated thermodynamic values of hybrid formation with the present parameters reproduce the experimental values within reasonable errors. Proc. Natl. Acad. Sci. U.S.A 34, 3746–3750 (1995). 46. Geary, C., Rothemund, P. W. K. & Andersen, E. S. A single-stranded architecture for cotranscriptional folding of RNA nanostructures. Science 345, 799–804 (2014). 47. Popenda, M. et al. Automated 3D structure composition for large RNAs. Nucleic Acids Res. 40, e112–e112 (2012). 48. Antczak, M. et al. New functionality of RNAComposer: application to shape the axis of miR160 precursor structure. Acta Biochim. Pol. 63, 737–744 (2016). 49. Zhang, Y., Wang, J. & Xiao, Y. 3dRNA: 3D Structure Prediction from Linear to Circular RNAs. J. Mol. Biol. 434, 167452 (2022). 50. Pettersen, E. F. et al. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021). 51. Sparvath, S. L., Geary, C. W. & Andersen, E. S. Computer-Aided Design of RNA Origami Structures BT - 3D DNA Nanostructure: Methods and Protocols. in (eds. Ke, Y. & Wang, P.) 51–80 (Springer New York, 2017). doi:10.1007/978-1-4939-6454-3_5. 52. Geary, C. W. & Andersen, E. S. Design Principles for Single-Stranded RNA Origami Structures BT - DNA Computing and Molecular Programming. in (eds. Murata, S. & Kobayashi, S.) 1–19 (Springer International Publishing, 2014). 53. Gruber, A. R., Lorenz, R., Bernhart, S. H., Neuböck, R. & Hofacker, I. L. The Vienna RNA Websuite. Nucleic Acids Res. 36, W70–W74 (2008). 54. Kristoffersen, E. L., Burman, M., Noy, A. & Holliger, P. Rolling circle RNA synthesis catalyzed by RNA. Elife 11, (2022). 55. Portillo, X., Huang, Y. T., Breaker, R. R., Horning, D. P. & Joyce, G. F. Witnessing the structural evolution of an RNA enzyme. Elife 10, 2021.06.22.449496 (2021). 56. Samanta, B. & Joyce, G. F. A reverse transcriptase ribozyme. Elife 6, 1–3 (2017). 57. Liu, D. et al. Branched kissing loops for the construction of diverse RNA homooligomeric nanostructures. Nat. Chem. 2020 123 12, 249–259 (2020). 58. Yu, Y.-S., Wang, M.-C. & Huang, X. Evaporative deposition of polystyrene microparticles on PDMS surface. Sci. Rep. 7, 14118 (2017). 59. Ouellet, J. RNA fluorescence with light-Up aptamers. Front. Chem. 4, 29 (2016). 60. Gonzales, D. T., Yandrapalli, N., Robinson, T., Zechner, C. & Tang, T. Y. D. Cell-Free Gene Expression Dynamics in Synthetic Cell Populations. ACS Synth. Biol. 11, 205–215 (2022). 61. Stein, H., Spindler, S., Bonakdar, N., Wang, C. & Sandoghdar, V. Production of isolated giant unilamellar vesicles under high salt concentrations. Front. Physiol. 8, 63 (2017). 62. Doeven, M. K. et al. Distribution, Lateral Mobility and Function of Membrane Proteins Incorporated into Giant Unilamellar Vesicles. Biophys. J. 88, 1134–1142 (2005). 63. Mueller, P., Chien, T. F. & Rudy, B. Formation and properties of cell-size lipid bilayer vesicles. Biophys. J. 44, 375–381 (1983). 64. Akashi, K., Miyata, H., Itoh, H. & Kinosita, K. Preparation of giant liposomes in physiological conditions and their characterization under an optical microscope. Biophys. J. 71, 3242–3250 (1996). 65. Lefrançois, P., Goudeau, B. & Arbault, S. Electroformation of phospholipid giant unilamellar vesicles in physiological phosphate buffer. Integr. Biol. (Camb) 10, 429–434 (2018). 66. Montes, L. R., Alonso, A., Goñi, F. M. & Bagatolli, L. A. Giant unilamellar vesicles electroformed from native membranes and organic lipid mixtures under physiological conditions. Biophys. J. 93, 3548–3554 (2007). 67. Boban, Z., Mardešić, I., Subczynski, W. K. & Raguz, M. Giant unilamellar vesicle electroformation: What to use, what to avoid, and how to quantify the results. Membranes (Basel). 11, (2021). 68. Horger, K. S., Estes, D. J., Capone, R. & Mayer, M. Films of Agarose Enable Rapid Formation of Giant Liposomes in Solutions of Physiologic Ionic Strength. J. Am. Chem. Soc. 131, 1810–1819 (2009). 69. Weinberger, A. et al. Gel-assisted formation of giant unilamellar vesicles. Biophys. J. 105, 154–164 (2013). 70. Wang, J. & Richards, D. A. Segregation of PIP2 and PIP3 into distinct nanoscale regions within the plasma membrane. Biol. Open 1, 857–862 (2012). 71. Convery, M. A. et al. Crystal structure of an RNA aptamer–protein complex at 2.8 Å resolution. Nat. Struct. Biol. 5, 133–139 (1998). 72. Kolbeck, P. J. et al. Molecular structure, DNA binding mode, photophysical properties and recommendations for use of SYBR Gold. Nucleic Acids Res. 49, 5143–5158 (2021). 73. Kielar, C. et al. On the Stability of DNA Origami Nanostructures in Low-Magnesium Buffers. Angew. Chemie Int. Ed. 57, 9470–9474 (2018). 74. AU - Pillers, M. A. et al. Preparation of Mica and Silicon Substrates for DNA Origami Analysis and Experimentation. JoVE e52972 (2015) doi:doi:10.3791/52972. 75. Dabkowska, A. P. et al. Assembly of RNA nanostructures on supported lipid bilayers. Nanoscale 7, 583–596 (2014). 76. Chien, P. J., Shih, Y. L., Cheng, C. T. & Tu, H. L. Chip assisted formation of phase-separated liposomes for reconstituting spatial protein–lipid interactions. Lab Chip 22, 2540–2548 (2022). 77. Shih, Y.-L. Development of droplet microfluidics for uniform liposome production as a versatile bio-membrane model. (National Taiwan University of Science and Technology, 2021). 78. Last, M. G. F., Deshpande, S. & Dekker, C. pH-Controlled Coacervate-Membrane Interactions within Liposomes. ACS Nano 14, 4487–4498 (2020). 79. Li, M. et al. In vivo production of RNA nanostructures via programmed folding of single-stranded RNAs. Nat. Commun. 9, 1–9 (2018). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86275 | - |
dc.description.abstract | 核醣核酸的多功能性隱含其可能於生命之初的重要性。核醣核酸不只可儲存遺傳訊息,更可在原始生命中處理許多任務,例如:執行催化反應(核酶)與結合分子(適體)。儘管自我複製的核醣核酸常被作為一個似生命的模型,但是整個系統-更特定的來說-細胞的區隔,還是要依賴物理性的擾動如攪拌來達成。在細胞中,分裂依靠與細胞膜有關的生物大分子協調各反應物間的行動。因此,核醣核酸能否與細胞的區隔互動及造成變形顯得相當重要。在先前以去氧核醣核酸摺紙讓膜變形研究中,使用能與膜結合,且可行低聚合作用的重複單體設計。然而,此策略需要多步驟及使用純化的複雜單體組裝過程阻礙了單體於合成細胞中的直接產生。另一方面,共轉錄摺疊的單股核醣核酸摺紙已被證實可藉由分子間結合,做為蛋白質與螢光分子的鷹架。本研究進而以該單股核糖核酸磚塊為基礎,加入了來自非編碼核糖核酸,且具有與磷脂質(磷脂醯肌醇,三、四、五,三磷酸)結合力的二級結構,希望創造一個膜交互作用架構。核醣核酸的折疊以原子力及螢光顯微鏡鑑定。核糖核酸與膜的交互作用藉由將試管內轉錄的產物純化後對由凝膠膨潤法或電滲透法製作之脂質體來驗證。結果顯示具磷脂質親合力之核醣核酸磚塊可在具有二價陽離子溶液中與膜結合。此外,不具有與磷脂質結合結構的核醣核酸磚塊也出乎預期地可以與膜結合,而無磚塊結構之核醣核酸則未發現相似的結合。這顯示了有結構的核醣核酸可能由二價陽離子媒介與磷脂質靜電結合。此膜與核醣核酸的框架供仿生分子設計一個替代方案,也提供基於核醣核酸的最簡人造細胞分裂機制可行方向。 | zh_TW |
dc.description.abstract | The versatility of RNAs implies their plausible dominant role in a prebiotic scenario. Abilities to catalyze reactions (ribozymes) and bind molecules (aptamers) enable RNAs not only to bear genetic information but also to tackle multiple tasks for primitive systems. While self-replicating RNA had been demonstrated to be a life-like model, the division of the whole system, i.e., the compartment, relies on physical disturbance such as agitation. In cells, the division depends on coordinated actions of membrane-associated biomacromolecules. Therefore, it is crucial to examine whether the RNA can interact with surrounding compartments and deform them. In previous DNA origami studies, oligomerization of repetitive membrane-anchoring structures had been reported to deform the membrane. However, the complex monomer assembly process, which requires multiple synthetic and purifying steps, hindered them from being produced directly in synthetic cells. Co-transcriptional folding of single-stranded RNA origami structures, meanwhile, had been demonstrated to be capable of scaffolding molecules, including proteins and fluorophores, by forming intermolecular binding. This study further introduces a membrane-binding motif derived from a non-coding RNA that binds to phospholipid phosphatidylinositol 3,4,5 trisphosphate (PIP3) to a single-stranded RNA scaffold to create a membrane-interacting platform. The design of basic RNA tile structures is based on a previous study and de novo design by the RNA Origami Automated Design software. The folding and the function of the RNA tiles are characterized using atomic force microscopy, confocal microscopy, and fluorescence microscopy. The RNA-membrane interactions are assessed either by incorporating purified RNA or in vitro transcription system in liposomes via microfluidic jetting or by incubating with liposomes made of gel-assisted swelling or electroformation. The results showed that the binding of RNA tiles to the membrane could be achieved in a buffer that contains mainly divalent ions. Intriguingly, unexpected binding of RNA tiles without lipid-binding motif to the membrane are also observed, which implies a divalent cation-mediated electrostatic binding of structured RNA to the membrane, while a random protein-coding RNA did not show similar binding. The membrane-RNA scaffold may provide an alternative way for biomimetic molecule design and shed light on the simplest RNA-based artificial cell dividing mechanism. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T23:46:19Z (GMT). No. of bitstreams: 1 U0001-1209202219095900.pdf: 23099422 bytes, checksum: e3cef07003e3824ecbe413298772ba9d (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | Master’s Thesis Acceptance Certificate i Acknowledgements ii 摘要 iii Abstract iv Contents vi List of Figures viii List of Tables ix List of Abbreviations x Chapter 1 Introduction 1 1.1 The RNA world 1 1.2 Studies on the design of membrane-modulating molecules 2 1.3 RNA-lipid interactions 3 1.4 Specific aim 4 Chapter 2 Material and Methods 5 2.1 Material and Equipment 5 2.1.1 Chemicals 5 2.1.2 Kits and enzymes 6 2.1.3 Equipment 7 2.1.4 Consumables 7 2.1.5 Buffers 8 2.2 Nucleic Acid Experiments 9 2.2.1 Template DNA production 9 2.2.2 RNA production 10 2.2.3 Gel electrophoresis 11 2.2.4 DFHBI measurement 11 2.3 Lipid Experiments 11 2.3.1 Lipid mixture preparation 11 2.3.2 Electroformation 12 2.3.3 Gel-assisted vesicle swelling 12 2.3.4 RNA-lipid binding assay 13 2.4 Microscopy 13 2.4.1 Atomic force microscopy 13 2.4.2 Fluorescence microscopy 14 Chapter 3 Design 15 3.1 Lipid binding RNA motif 15 3.2 Co-transcriptional folding of single-stranded RNA origami 17 3.3 RNA tiles with out-of-plane motifs 18 3.4 Design perspectives 20 Chapter 4 Results 21 4.1 RNA structure 21 4.1.1 Denaturing gel electrophoresis 21 4.1.2 Atomic force microscopy 21 4.1.3 Spinach aptamer as a reporter of RNA tile 23 4.2 Liposome production 24 4.2.1 Electroformation of liposomes 25 4.2.2 Gel-assisted swelling 26 4.2.3 Liposome rupture on the glass surface 27 4.3 RNA-lipid interaction 28 4.3.1 The reconstitution of RNA-lipid binding by electroformation 28 4.3.2 RNA-liposome binding using gel-assisted swelling 29 Chapter 5 Discussion 33 5.1 Possible mechanism for the structural RNA-lipid binding 33 5.2 AFM optimization 35 5.3 Future work 36 5.3.1 RNA-lipid binding measurement 36 5.3.2 Liposome incorporation via microfluidic jetting 36 5.3.3 RNA-lipid interaction quantification 37 5.4 Perspectives 38 Reference 39 | |
dc.language.iso | en | |
dc.title | 開發具有膜親和性之核醣核酸架構 | zh_TW |
dc.title | Development of the membrane-associated RNA scaffolds | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.author-orcid | 0000-0001-9105-6103 | |
dc.contributor.advisor-orcid | 涂熊林(0000-0003-1125-1879) | |
dc.contributor.oralexamcommittee | 江宏仁(Hong-Ren Jiang),黃筱鈞(Hsiao-Chun Huang),賴奕丞(Yei-Chen Lai) | |
dc.contributor.oralexamcommittee-orcid | ,賴奕丞(0000-0002-5723-5412) | |
dc.subject.keyword | 核醣核酸摺紙,核醣核酸-脂質交互作用,核醣核酸世界,區隔化,合成細胞, | zh_TW |
dc.subject.keyword | RNA origami,RNA-lipid interaction,RNA world,compartmentalization,synthetic cell, | en |
dc.relation.page | 46 | |
dc.identifier.doi | 10.6342/NTU202203321 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2022-09-28 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 基因體與系統生物學學位學程 | zh_TW |
dc.date.embargo-lift | 2024-09-30 | - |
顯示於系所單位: | 基因體與系統生物學學位學程 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1209202219095900.pdf | 22.56 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。