Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86272
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳復國zh_TW
dc.contributor.advisorFuh-Kuo Chenen
dc.contributor.author謝明諺zh_TW
dc.contributor.authorMing-Yen Hsiehen
dc.date.accessioned2023-03-19T23:46:09Z-
dc.date.available2024-01-03-
dc.date.copyright2022-09-05-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citationM. Mueller. (2016). Timeline: A Path to Lightweight Materials in Cars and Trucks[Online]. Directory: www.energy.gov/eere/articles/timeline-path-lightweight-materials-cars-and-trucks.
M. Shi, X. Chen, “Prediction of Stretch Flangeability Limits of Advanced High Strength Steels using the Hole Expansion Test,” SAE Technical Paper, Jan. 2007.
H. Kim, J. Shang, J. Dykeman, A. Samant, and C. Hoschouer, “Practical Evaluation and Prediction of Edge Cracking in Forming Advanced High Strength Steels (AHSS),” SAE Technical Paper, Jan. 2017.
富鈞,“先進高強度鋼沖壓成形邊緣破裂現象之研究,” 國立台灣機械工程研究所碩士論文, July 2020.
ISO/TC 164/SC 2, ISO/TS 16630:2017 Metallic Materials - Sheet And Strip - Hole Expanding Test, Switzerland, 2017.
F. Shen, H. Wang, Z. Liu, W. Liu, M. Konemann, G. Yuan, G. Wang, S. Münstermann, and J. Lian, “Local Formability of Medium-Mn Steel ,” Journal of Materials Processing Technology, vol. 299, Jan. 2022.
F. Hisker, R. Thiessen, and T. Heller, “Influence of Microstructure on Damage in Advanced High Strength Steels,” Materials Science Forum, vol. 706-709, pp. 925-930, Jan. 2012.
O.R. Terrazas, K.O. Findley, and C.J. Van Tyne, “Influence of Martensite Morphology on Sheared-Edge Formability of Dual-Phase Steels,” ISIJ International, vol. 57, no. 5, pp. 937–944, May 2017.
N. Pathak, C. Buther, M. J. Worswick, E. Bellhouse, and J. Gao, “Damage Evolution in Complex-Phase and Dual-Phase Steels during Edge Stretching,” Materials, vol. 10, Mar. 2017.
K. Wang, M. Luo, and T. Wierzbicki, “Experiments and Modeling of Edge Fracture for an AHSS Sheet,” International Journal of Fracture, vol. 187, pp. 245-268, Mar. 2014.
M. Feistle, R. Golle, and W. Volk, “Edge Crack Test Methods for AHSS Steel Grades: A Review and Comparisons,” Journal of Materials Processing Technology, vol. 302, Apr. 2022.
L. Xu, F. Barlat, M. G. Lee, K. S. Choi, and X. Sun, “Hole Expansion of Dual Phase Steels,” in Proc. High Performance Structures and Materials VI, vol.124, June 2012, pp. 75-83.
K. Wang, L. Greve, and T. Wierzbicki, “FE Simulation of Edge Fracture Considering Pre-Damage from Blanking Process,” International Journal of Solids and Structures, vol. 71, pp. 206-218, Oct. 2015.
B. Levy and C. J. Van Tyne, “Review of the Shearing Process for Sheet Steels and Its Effect on Sheared-Edge Stretching,” Journal of Materials Engineering and Performance, vol. 21, no. 5, pp. 1205-1213, 2012.
李炳坤, “370MPa~590MPa熱軋高強度鋼擴孔性研究,” 中國鋼鐵公司產品應用研究室, Apr. 2005.
N. Pathak, C. Butcher, and M. Worswick, “Assessment of the Critical Parameters Influencing the Edge Stretch Ability of Advanced High-Strength Steel Sheet,” Journal of Materials Engineering and Performance, vol. 25, pp. 4919-4932, Sep. 2016.
K. Hasegawa, K. Kawamura, T. Urabe, and Y. Hosoya, “Effects of Microstructure on Stretch-flange-formability of 980 MPa Grade Cold-rolled Ultra High Strength Steel Sheets,” ISIJ International, vol. 44, pp. 603-609, Jan. 2004.
賴威丞, “沖切邊緣特徵對板金沖壓成形邊緣破裂現象影響之研究,”國立台灣大學機械工程研究所碩士論文. July 2021.
A. Konieczny and T. Henderson, “On Formability Limitations in Stamping Involving Sheared Edge Stretching,” SAE Technical Paper, Jan. 2007.
H. C. Shih, C. Chiriac, and M. F. Shi, “The Effects of AHSS Shear Edge Conditions on Edge Fracture,” in Proc. ASME 2010 International Manufacturing Science and Engineering Conference, Oct. 2010.
J. Gu, L. Zoller, and H. Kim, “A New Testing Method to Evaluate Edge Cracking with Considerations of the Shear Clearance and Press Speed,” SAE Technical Paper, Apr. 2020.
C. Chiriac and M. F. Shi, “The Effects of AHSS Shear Edge Conditions on Edge Fracture,” SAE Technical Paper, Jan. 2013.
J. R. Cahoon, W. H. Broughton, and A. R. Kutzak, “The Determination of Yield Strength from Hardness Measurements,” Metallurgical Transactions, vol. 2, pp. 1979-1983, July 1971.
P. Zhang, S.X. Li, Z.F. Zhang, “General Relationship between Strength and Hardness,” Materials Science and Engineering: A, vol. 529, pp. 62-73, Nov. 2011.
張育銘, “高厚徑比多道次沖孔成形之研究,” 國立台灣大學機械工程研究所碩士論文. July. 2011.
A.M. Freudenthal, The Inelastic Behaviour of Engineering Materials and Structure, New York: John Wiley & Sons Inc, 1950.
M.G. Cockcroft and D.J. Latham, “Ductility and Workability of Metals,” Journal of the Institute of Metals, pp. 33-39, 1966.
S.I. Oh, C.C. Chen, and S. Kobayashi, “Ductile Fracture in Axisymmetric Extrusion and Drawing—Part 2: Workability in Extrusion and Drawing,” Journal of Engineering for Industry, vol. 101, pp. 36-44, 1979.
P. Brozzo, B. Deluca, and R. Rendina, “A New Method for the Prediction of Formability Limits in Metal Sheets, Sheet Metal Forming and Formability,” in Proc. Proceeding of the Seventh Biennial Conference of the IDDRG, Amsterdam, Netherlands, 1972.
M. Ayada, T. Higashino, K. Mori, “Central Bursting in Extrusion of Inhomogeneous Materials,” in Proc. 2nd ICTP, vol. 1, Stuttgart, 1987, pp. 553-558.
F.A. McClintock, “A Criterion for Ductile Fracture by the Growth of Holes,” Journal of Applied Mechanics, vol. 35, pp. 363-371, 1968.
J.R. Rice and D.M. Tracey, “On the Ductile Enlargement of Voids in Triaxial Stress Fields,” Journal of the Mechanics and Physics of Solids, vol. 17, pp. 201, 1969.
H. Kim, A.R. Bandar, Y-P. Yang, J.H Sung, and R.H. Wagoner, “Failure Analysis of Advanced High Strength Steels (AHSS) During Draw Bending” in Proc. International Deep Drawing Research Group, vol.1-3, Golden, CO, USA , June. 2009, pp.450-460.
P. Sartkulvanich, B. Kroenauer, R. Golle, A. Konieczny, T. Altan, “Finite Element Analysis of the Effect of Blanked Edge Quality upon Stretch Fanging of AHSS,” CIRP Annals - Manufacturing Technology, vol. 59, pp. 279-282, 2010.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86272-
dc.description.abstract隨著科技進步以及對環保的重視,汽車生產時對車體結構的要求日益提升,同時也對汽車安全考量的逐漸重視,因此各大車廠將增加車體強度與降低車體重量作為努力的目標。其中先進高強度鋼具有較高的強度及良好的塑性,且已被廣泛應用於汽車結構件。然而先進高強度鋼在沖壓成形上容易產生邊緣破裂,其尚難以透過有限元素法模擬進行預測,且目前用於預測沖壓板材是否發生破裂現象的成形極限曲線無法有效預測邊緣破裂發生。因此為了解決邊緣破裂現象,本論文將透過實驗分析方法探討沖切斷面特徵對邊緣破裂的影響。
本論文首先針對邊緣破裂的成因進行文獻收集與歸納,了解影響邊緣破裂時機的原因非常複雜,其中先進高強度鋼在微觀結構上容易產生微孔破壞且板材邊緣在不同沖切製程下,將有不同的邊緣破裂現象。此外,也得知擴孔試驗與圓孔拉伸試驗的局部成形性可有效對應到邊緣破裂的變形機制,藉由本論文所進行的一系列相關實驗,後續可透過圓孔拉伸試驗建立破壞準則的探討。
在圓孔拉伸試驗以及有限元素法模擬模型建立,本論文已獲得不同材料在不同沖孔條件下的最大主應變,並將其定義為破壞準則,同時也確定了不同沖孔條件下局部成形性的趨勢。在沖孔實驗中,分別觀察不同材料沖切斷面特徵的趨勢,同時與圓孔拉伸試驗所得的局部成形性趨勢進行比較,已得知斷面邊緣的硬度差與局部成形性呈現負相關,最後透過硬度與應力的正比關係,在建立的沖孔模擬模型也可觀察到應力有相同的變化趨勢。未來可透過本論文所建立的破壞準則與模擬模型,預測實際載具邊緣破裂的時機以及作為改善沖切製程的參考。
zh_TW
dc.description.abstractWith the advancement of technology and concern for environmental protection, the requirements for fuel-efficient and lightweight automotive structures and the attention to automotive safety have been increasing. Therefore, increasing the strength and reducing the weight of the car body has become the goal that manufacturers put effort into. Advanced high-strength steel has an excellent combination of strength and plasticity and has been widely used in automotive structural parts. However, advanced high-strength steels are prone to the occurrence of edge cracks during stamping, which is still difficult to be predicted through finite element method simulation. The forming limit curve that is usually used to predict forming failure cannot effectively predict edge cracking. Therefore, in order to understand the phenomenon of edge cracking, this thesis will explore the influence of the sheared cross-section characteristics on edge cracking through the experimental analysis method.
This thesis starts by collecting the documents on the causes of edge cracking and summarizes that the mechanism which affects the timing is complicated. In addition to the micro-structures that are prone to generating micro-voids in AHSS, the edge of the sheet will have different timings of edge cracking under different shearing processes. Furthermore, it is also known that the local formability of the hole tensile test and the hole expansion test can correspond to each other effectively, so that the failure criterion can be established through the hole tensile test. The related experiments are conducted in this thesis.
By the establishment of the experiment and finite element method simulation model of hole tensile test, this thesis has obtained the maximum principal strain of different materials under different punching conditions and defined the maximum principal strain as the failure criterion, which also determined the local formability under different punching conditions. In the punching experiment, the trend of punching cross-section characteristics of different materials was observed respectively, which are compared with the trend of local formability obtained by the hole tensile test. It is known that the hardness difference of shear-affected zone has negative correlation with the local formability. Through the proportional relationship between hardness and stress, it can be observed that the stress has the same changing trend in the established punching simulation model. In the future, the failure criterion and simulation model established in this thesis can predict the timing of edge crack happening on real-case stamped part and also become a reference for improving the punching process.
en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:46:09Z (GMT). No. of bitstreams: 1
U0001-1908202213243600.pdf: 11273646 bytes, checksum: 3788588ffe1c6228cb5829d41627aa58 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents目錄 v
圖目錄 viii
表目錄 xvii
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 4
1.3 文獻回顧 5
1.4 研究方法與步驟 16
1.5 論文總覽 19
第二章 邊緣破裂之實驗規劃 21
2.1 實驗規劃之材料選用 21
2.2 圓孔拉伸試驗之實驗規劃 27
2.2.1 拉伸之負荷-位移曲線 29
2.2.2 最大主應變 32
2.3 沖孔實驗之實驗規劃 33
2.3.1 巨觀沖切斷面 34
2.3.2 斷面硬度 37
2.3.3 微觀金相組織 39
2.4 實際實驗規劃 40
2.5 小結 42
第三章 圓孔拉伸試驗之實驗結果分析 43
3.1 實驗結果 43
3.1.1 MTS機台拉伸結果 44
3.1.2 DIC量測結果 47
3.2 建立圓孔拉伸模擬 52
3.3 小結 64
第四章 沖孔實驗建立及實驗結果分析 65
4.1實驗流程 65
4.1.1 巨觀沖切斷面 68
4.1.2 微觀金相組織 70
4.1.3 斷面硬度 70
4.1.4 沖孔邊緣狀態 72
4.2 實驗結果 75
4.2.1 巨觀沖切斷面 75
4.2.2 微觀金相組織 80
4.2.3 斷面硬度 86
4.3 與邊緣局部成形性之關聯 93
4.3.1 巨觀沖切斷面與局部成形性之比較 93
4.3.2 斷面硬度與局部成形性之比較 99
4.4小結 103
第五章 沖孔邊緣硬度與應力之關係 104
5.1 沖孔邊緣剪切影響區域之硬度分布 104
5.1.1剪切影響區域(SAZ)之硬度分布 105
5.1.2硬度與應力之關係 111
5.2延性破壞準則之基本介紹 112
5.3 建立沖孔模擬 117
5.4 硬度與應力之比較 120
5.5 小結 128
第六章 結論 129
參考文獻 131
-
dc.language.isozh_TW-
dc.subject斷面特徵zh_TW
dc.subject硬度差zh_TW
dc.subject最大主應變zh_TW
dc.subject圓孔拉伸試驗zh_TW
dc.subject局部成形性zh_TW
dc.subject邊緣破裂zh_TW
dc.subject先進高強度鋼板zh_TW
dc.subjecthardness differenceen
dc.subjectadvanced high strength steelen
dc.subjectedge crackingen
dc.subjecthole tension testen
dc.subjectmaximum principal strainen
dc.subjectcross-section characteristicen
dc.subjectlocal formabilityen
dc.title沖切斷面特徵對沖壓成形邊緣破裂影響之實驗分析zh_TW
dc.titleExperimental Analysis of the Sheared Cross-section Characteristic Effect on Edge Cracking in Sheet Metal Stamping Processen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃永茂;林恆勝;李炳坤;林義凱zh_TW
dc.contributor.oralexamcommitteeYeong-Maw Hwang;Heng-Sheng Lin;Bing-Kun Li;Yi-Kai Linen
dc.subject.keyword先進高強度鋼板,邊緣破裂,圓孔拉伸試驗,最大主應變,斷面特徵,局部成形性,硬度差,zh_TW
dc.subject.keywordadvanced high strength steel,edge cracking,hole tension test,maximum principal strain,cross-section characteristic,local formability,hardness difference,en
dc.relation.page135-
dc.identifier.doi10.6342/NTU202202583-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2022-08-29-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-lift2022-08-29-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf11.01 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved