Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86269
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳彥仰(Mike Yen Chen)
dc.contributor.authorChingYi Tsaien
dc.contributor.author蔡青邑zh_TW
dc.date.accessioned2023-03-19T23:45:58Z-
dc.date.copyright2022-08-30
dc.date.issued2022
dc.date.submitted2022-08-26
dc.identifier.citation[1] T. Amemiya, H. Ando, and T. Maeda. Lead-me interface for a pulling sensation from hand-held devices. ACM Trans. Appl. Percept., 5(3), Sept. 2008. [2] I. S. Arianto, N. Nuri, and A. Yulianto. Effect of the pull and diameter string of badminton racket based on coeffisient of restitution value. Journal Of Natural Sciences And Mathematics Research, 2(1):85–90, 2017. [3] C. Attig, N. Rauh, T. Franke, and J. Krems. System latency guidelines then and now–is zero latency really considered necessary? In D. Harris, editor, Engineering Psychology and Cognitive Ergonomics: Cognition and Design, pages 3–14, Vancouver, BC, Canada, 05 2017. Springer International Publishing. [4] Y. Ban, T. Narumi, T. Fujii, S. Sakurai, J. Imura, T. Tanikawa, and M. Hirose. Augmented endurance: Controlling fatigue while handling objects by affecting weight perception using augmented reality. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’13, page 69–78, New York, NY, USA, 2013. Association for Computing Machinery. [5] Y. Ban and Y. Ujitoko. Hit-stop in vr: Combination of pseudo-haptics and vibration enhances impact sensation. In 2021 IEEE World Haptics Conference (WHC), pages 991–996, Montreal, QC, Canada, 2021. IEEE, IEEE. [6] E. Baumgardt and B. Hillmann. Duration and size as determinants of peripheral retinal response. JOSA, 51(3):340–344, 1961. [7] T. Belli, M. S. Misuta, P. P. R. de Moura, T. D. S. Tavares, R. A. Ribeiro, Y. Y. S. Dos Santos, K. J. Sarro, and L. R. Galatti. Reproducibility and validity of a stroke effectiveness test in table tennis based on the temporal game structure. Frontiers in psychology, 10:427–427, Feb 2019. https://pubmed.ncbi.nlm.nih.gov/30890981, https://doi.org/10.3389/fpsyg.2019.00427,30890981[pmid],PMC6413726[pmcid] . [8] E. Blomstrand and M. Demant. Simulation of a badminton racket-a parametric study of racket design parameters using fea. Master’s thesis, Chalmers University of Technology, 2017. [9] H. Brody. The physics of tennis. iii. the ball–racket interaction. American Journal of Physics, 65(10):981–987, 1997. [10] T. Companion. Tennis racquet weight, balance & swingweight explained, 2020. [11] R. Cross. Impact behavior of hollow balls. American Journal of Physics, 82(3):189–195, 2014. [12] R. Cross. Impact of sports balls with striking implements. Sports Engineering, 17(1):3–22, 2014. [13] R. Cross. Impact of a ping-pong ball. Physics Education, 52(3):033002, 2017. [14] M. Di Luca and A. Mahnan. Perceptual limits of visual-haptic simultaneity in virtual reality interactions. In 2019 IEEE World Haptics Conference (WHC), pages 67–72, New York, NY, USA, 2019. IEEE, IEEE. [15] J. Diedrichsen, T. Verstynen, A. Hon, Y. Zhang, and R. Ivry. Illusions of force perception: The role of sensori-motor predictions, visual information, and motor errors. Journal of neurophysiology, 97:3305–13, 06 2007. [16] G. Ekman. Temporal integration of brightness. Vision research, 6(11-12):683–688, 1966. [17] S. English. What is a forehand shot in badminton?, April 2020. [18] F. Farbiz, Z. H. Yu, C. Manders, and W. Ahmad. An electrical muscle stimulation haptic feedback for mixed reality tennis game. In ACM SIGGRAPH 2007 Posters, SIGGRAPH ’07, page 140–es, New York, NY, USA, 2007. Association for Computing Machinery. [19] M. A. Gomez, A. S. Leicht, F. Rivas, and P. Furley. Long rallies and next rally performances in elite men's and women's badminton. PLOS ONE, 15(3):1–16, 03 2020. [20] J. Gong, D.-Y. Huang, T. Seyed, T. Lin, T. Hou, X. Liu, M. Yang, B. Yang, Y. Zhang, and X.-D. Yang. Jetto: Using lateral force feedback for smartwatch interactions. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI ’18, pages 426:1–426:14, New York, NY, USA, 2018. ACM. [21] S. Goodwill, R. Kirk, and S. Haake. Experimental and finite element analysis of a tennis ball impact on a rigid surface. Sports engineering, 8(3):145–158, 2005. [22] H. Gurocak and B. Parrish. Airglove: a force feedback device for virtual reality. In Telemanipulator and Telepresence Technologies VIII, pages 69–77, Boston, MA, United States, 02 2002. SPIE. [23] S. H. Han, M. Song, and J. Kwahk. A systematic method for analyzing magnitude estimation data. International Journal of Industrial Ergonomics, 23(5-6):513–524, 1999. [24] S. Heo, C. Chung, G. Lee, and D. Wigdor. Thor’s hammer: An ungrounded force feedback device utilizing propeller-induced propulsive force. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI ’18, page 1–11, New York, NY, USA, 2018. Association for Computing Machinery. [25] HTC. Vive racket sports set, December 2017. [26] HTC. Vive controller, 2018. [27] HTC. Vive vr ping pong pro, June 2019. [28] IMADA CO.,LTD. Imada zts-20n, 2017. [29] S. Je, M. J. Kim, W. Lee, B. Lee, X.-D. Yang, P. Lopes, and A. Bianchi. Aero-plane: A handheld force-feedback device that renders weight motion illusion on a virtual 2d plane. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology, UIST ’19, page 763–775, New York, NY, USA, 2019. Association for Computing Machinery. [30] S. Je, H. Lee, M. J. Kim, and A. Bianchi. Wind-blaster: A wearable propeller-based prototype that provides ungrounded force-feedback. In ACM SIGGRAPH 2018 Emerging Technologies, SIGGRAPH ’18, New York, NY, USA, 2018. Association for Computing Machinery. [31] L. A. Jones and H. Z. Tan. Application of psychophysical techniques to haptic research. IEEE transactions on haptics, 6(3):268–284, 2012. [32] H. Kambara, D. Shin, T. Kawase, N. Yoshimura, K. Akahane, M. Sato, and Y. Koike. The effect of temporal perception on weight perception. Frontiers in psychology, 4:40, 2013. [33] D. V. KNUDSON. Factors affecting force loading. J Sports Med Phys Fitness, 31:527–31, 1991. [34] K. D. Kryter and K. S. Pearsons. Some effects of spectral content and duration on perceived noise level. The Journal of the Acoustical Society of America, 35(6):866–883, 1963. [35] F. F. Labs. Eleven: Table tennis vr, 2020. [36] A. Lécuyer. Simulating haptic feedback using vision: A survey of research and applications of pseudo-haptic feedback. Presence: Teleoperators and Virtual Environments, 18(1):39–53, 2009. [37] M. R. Leek. Adaptive procedures in psychophysical research. Perception & psychophysics, 63(8):1279–1292, 2001. [38] A. Lim. How to execute a table tennis forehand and backhand?, 2019. [39] S.-H. Liu, P.-C. Yen, Y.-H. Mao, Y.-H. Lin, E. Chandra, and M. Y. Chen. Headblaster: a wearable approach to simulating motion perception using head-mounted air propulsion jets. ACM Transactions on Graphics (TOG), 39(4):84–1, 2020. [40] Y. K. Liu. Mechanical analysis of racket and ball during impact. Medicine and Science in Sports and Exercise, 15(5):388–392, 1983. [41] P. Lopes, A. Ion, and P. Baudisch. Impacto: Simulating physical impact by combining tactile stimulation with electrical muscle stimulation. In Proceedings of the 28th Annual ACM Symposium on User Interface Software Technology, UIST ’15, page 11–19, New York, NY, USA, 2015. Association for Computing Machinery. [42] S. Mack, E. Kandel, T. Jessell, J. Schwartz, S. Siegelbaum, and A. Hudspeth. Principles of Neural Science, Fifth Edition. Principles of Neural Science. McGraw-Hill Education, New York, NY, USA, 2013. [43] L. E. Marks. Magnitude estimation and sensory matching. Perception & Psychophysics, 43(6):511–525, 1988. [44] Mayank. What is the ideal weight for a good badminton racket?, 2019. [45] Nintendo. Nintendo switch pro controller, March 2017. [46] Nintendo. Instant tennis, December 2018. [47] Nintendo. ”top selling title sales unit”, September 2020. [48] P. O’Flynn, S. Maune, P. Clarke, K. Cook, and S. R. Atcherson. Impulse noise: Can hitting a softball harm your hearing? The Scientific World Journal, 2014:702723, 2014. [49] R. Okazaki and H. Kajimoto. Altering distance perception from hitting with a stick by superimposing vibration to holding hand. In International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, pages 112–119, Berlin, Heidelberg, 2014. Springer, Springer Berlin Heidelberg. [50] OptiTrack. Primex-13, 2021. [51] Panasonic. 2sc1384 transistor, 2002. [52] PISCO. Low friction polyurethane tube, ubs, December 2017. [53] M. Rank, Z. Shi, H. J. Müller, and S. Hirche. Perception of delay in haptic telepresence systems. Presence: teleoperators and virtual environments, 19(5):389–399, 2010. [54] J. Rekimoto. Traxion: A tactile interaction device with virtual force sensation. In ACM SIGGRAPH 2014 Emerging Technologies, UIST ’13, page 427–432, New York, NY, USA, 2013. Association for Computing Machinery. [55] E. P. Roetert and M. Kovacs. Tennis anatomy. Human Kinetics, Champaign, Illinois, USA, 2019. [56] J. M. Romano and K. J. Kuchenbecker. The airwand: Design and characterization of a large-workspace haptic device. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, ICRA’09, page 1010–1015, New York, NY, USA, 2009. IEEE Press. [57] M. Samad, E. Gatti, A. Hermes, H. Benko, and C. Parise. Pseudo-haptic weight: Changing the perceived weight of virtual objects by manipulating control-display ratio. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pages 1–13, New York, NY, USA, 2019. Association for Computing Machinery. [58] T. Sasaki, R. S. Hartanto, K.-H. Liu, K. Tsuchiya, A. Hiyama, and M. Inami. Leviopole: mid-air haptic interactions using multirotor. In ACM SIGGRAPH 2018 Emerging Technologies, pages 1–2. Association for Computing Machinery, New York, NY, USA, 2018. [59] J. Shigeyama, T. Hashimoto, S. Yoshida, T. Narumi, T. Tanikawa, and M. Hirose. Transcalibur: A weight shifting virtual reality controller for 2d shape rendering based on computational perception model. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, CHI ’19, page 1–11, New York, NY, USA, 2019. Association for Computing Machinery. [60] S. Shimizu, T. Hashimoto, S. Yoshida, R. Matsumura, T. Narumi, and H. Kuzuoka. Unident: Providing impact sensations on handheld objects via high-speed change of the rotational inertia. In 2021 IEEE Virtual Reality and 3D User Interfaces (VR), pages 11–20, Lisboa, Portugal, 2021. IEEE. [61] M. Sim, R. E. Shaw, and M. Turvey. Intrinsic and required dynamics of a simple batball skill. Journal of Experimental Psychology: Human Perception and Performance, 23(1):101, 1997. [62] M. Stare, U. Žibrat, and A. Filipcic. Stroke effectivness in professional and junior tennis. ISSN, 21, 08 2015. [63] D. Sternad, M. Duarte, H. Katsumata, and S. Schaal. Bouncing a ball: tuning into dynamic stability. Journal of Experimental Psychology: Human Perception and Performance, 27(5):1163, 2001. [64] J. C. Stevens and J. W. Hall. Brightness and loudness as functions of stimulus duration. Perception & Psychophysics, 1(9):319–327, 1966. [65] J. C. Stevens and L. E. Marks. Cross-modality matching functions generated by magnitude estimation. Perception & Psychophysics, 27(5):379–389, 1980. [66] F. W. Teck. Force and torque simulation in virtual tennis. In Proceedings of the Workshop at SIGGRAPH Asia, WASA ’12, page 143–146, New York, NY, USA, 2012. Association for Computing Machinery. [67] F. W. Teck, C. C. Ling, F. Farbiz, and H. Zhiyong. Ungrounded haptic rendering device for torque simulation in virtual tennis. In ACM SIGGRAPH 2012 Emerging Technologies, SIGGRAPH ’12, New York, NY, USA, 2012. Association for Computing Machinery. [68] F. W. Teck, H. Zhiyong, F. Farbiz, C. Jingting, C. C. Ling, and S. Rahardja. Ungrounded handheld device for simulating high-forces of ball impacts in virtual tennis. In SIGGRAPH Asia 2011 Emerging Technologies, SA ’11, New York, NY, USA, 2011. Association for Computing Machinery. [69] Tomaz. Tennis forehand technique–8 steps to a modern, January 2017. [70] C.-Y. Tsai, I.-L. Tsai, C.-J. Lai, D. Chow, L. Wei, L.-P. Cheng, and M. Y. Chen. Airracket: Perceptual design of ungrounded, directional force feedback to improve virtual racket sports experiences. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, CHI ’22, New York, NY, USA, 2022. Association for Computing Machinery. [71] TTC. Ideal weight of a table tennis racket, 2020. [72] M. Turvey and C. Carello. Chapter 11 - dynamic touch. In W. Epstein and S. Rogers, editors, Perception of Space and Motion, Handbook of Perception and Cognition, pages 401–490. Academic Press, San Diego, 1995. [73] Valve, L.L.C. Openvr, 2020. [74] Y.-W. Wang, Y.-H. Lin, P.-S. Ku, Y. Miyatake, Y.-H. Mao, P. Y. Chen, C.-M. Tseng, and M. Y. Chen. Jetcontroller: High-speed ungrounded 3-dof force feedback controllers using air propulsion jets. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, New York, NY, USA, 2021. Association for Computing Machinery. [75] B. G. Witmer and M. J. Singer. Measuring presence in virtual environments: A presence questionnaire. Presence, 7(3):225–240, 1998. [76] M. S. Writer. How long is the average human arm?, 2020. [77] A. Zenner and A. Kruger. Shifty: A weight-shifting dynamic passive haptic proxy to enhance object perception in virtual reality. IEEE Transactions on Visualization and Computer Graphics, 23(4):1285–1294, Apr. 2017.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86269-
dc.description.abstract這篇論文藉由方向性力回饋的感知設計與模型來提升虛擬擊球體驗的體驗。首先,基於高壓空氣裝置,我們為三種受到廣泛歡迎的擊球運動 (乒乓球、羽毛球和網球) 設計對應的非接地式力回饋手持裝置,這些擊球運動於現實中的受力強度涵蓋了極大的範圍 (0-400N)。其次,為突破現今非接地式觸覺力回饋技術輸出力的有限性 (<5N),我們進行了力回饋的感知實驗,並發現了一項新的感知錯覺,即使用者受到的衝擊力時間越長,感知到的衝擊力值越大,平均倍數為 2.57 倍。最後,通過 72 個獨立受試者與一系列形成性與感知性的使用者體驗研究,我們探索了數種不同的感知設計,其中包括透過衝擊力強度的變化和衝擊力時長的變化,以此來擴大感受到力回饋的動態範圍。我們的使用者體驗評估顯示,相對於基於物理原理設計的力回饋體驗,感知設計可以顯著提高體驗的真實性並獲得使用者的偏好。zh_TW
dc.description.abstractWe present AirRacket, perceptual modeling and design of ungrounded, directional force feedback for virtual racket sports. Using compressed air propulsion jets to provide directional impact forces, we iteratively designed for three popular sports that span a wide range of force magnitudes: ping-pong, badminton, and tennis. To address the limited force magnitude of ungrounded force feedback technologies, we conducted a perception study which discovered the novel illusion that users perceive larger impact force magnitudes with longer impact duration, by an average factor of 2.57x. Through a series of formative, perceptual, and user experience studies with a combined total of 72 unique participants, we explored several perceptual designs using force magnitude scaling and duration scaling methods to expand the dynamic range of perceived force magnitude. Our user experience evaluation showed that perceptual designs can significantly improve realism and preference vs. physics-based designs for ungrounded force feedback systems.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:45:58Z (GMT). No. of bitstreams: 1
U0001-1908202220483300.pdf: 9454969 bytes, checksum: 3345b633c9528221339dc556c049ac17 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontentsContents 誌謝 ii 摘要 iv Abstract v 1 Introduction 1 2 Related Work 5 2.1 Perceptual Design of Force Feedback . . . . . . . . . . . . . . . . . . . 5 2.2 Force Feedback for Racket Sports . . . . . . . . . . . . . . . . . . . . . 6 2.3 Ungrounded, Directional Force Feedback . . . . . . . . . . . . . . . . . 7 3 System Design, Implementation, and Validation 9 3.1 Nozzle Layout and Racket Device Design . . . . . . . . . . . . . . . . . 9 3.2 Pneumatic Control System . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.3 Hardware and Software Control . . . . . . . . . . . . . . . . . . . . . . 11 3.4 System Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.4.1 Force Magnitude . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.4.2 Force Rise and Fall Time . . . . . . . . . . . . . . . . . . . . . . 12 3.4.3 Operating Noise . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.4.4 Response Latency . . . . . . . . . . . . . . . . . . . . . . . . . 13 4 Study: Haptic Experience of AirRacket with Physics-based Model 14 4.1 Physics-based Impact Force Design . . . . . . . . . . . . . . . . . . . . 14 4.2 Vibrotactile Feedback Design . . . . . . . . . . . . . . . . . . . . . . . . 16 4.3 Study Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.4 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.5 Procedure and Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5 Study: Perceived Impact Force Magnitude vs. Duration 21 5.1 Procedure, Tasks, and Participants . . . . . . . . . . . . . . . . . . . . . 22 5.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6 Study: Range of Acceptable Impact Duration for Virtual Racket Sports 25 6.1 Procedure, Tasks, and Participants . . . . . . . . . . . . . . . . . . . . . 25 6.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 7 Perceptual Designs of Force Mapping Models 28 7.1 Force Mapping Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 7.2 Minimum Perceivable Force in Force Mapping . . . . . . . . . . . . . . 29 8 Study: User Experience Evaluation of Perceptual Designs 31 8.1 Procedure, Tasks, and Participants . . . . . . . . . . . . . . . . . . . . . 31 8.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 9 Discussion and Future Work 34 9.1 Combining with Visuo-haptic Techniques to Increase Perceived Force Magnitude . . . . . . 34 9.2 Impact Force Feedback on User Performance . . . . . . . . . . . . . . . 34 9.3 Perceptual Design for Other Applications . . . . . . . . . . . . . . . . . 35 9.4 Further Findings on Perceived Impact Magnitude vs. Duration . . . . . . 35 9.5 Handheld Device Designs . . . . . . . . . . . . . . . . . . . . . . . . . . 36 10 Conclusion 38 Bibliography 39 Appendices 48 Supplementary Data on Magnitude Estimation 49 Icon Credits 50 List of Figures 1.1 An overhead racket swing that shows the impact force on the racket resulting in rotational and transitional acceleration, and the multiple muscle groups working together to counter the impact force. . . . . . . . . . . . 2 1.2 AirRacket explores perceptual force feedback design of air propulsion jets to improve the haptic experience of virtual racket sports: ping-pong, badminton, and tennis (note: white smoke added for illustrative purpose only, actual compressed air is invisible). . . . . . . . . . . . . . . . . . . . . . 4 3.1 AirRacket system showing (1) Pneumatic control system: a pressure regulator controlling force magnitude and two solenoid valves controlling force direction, which fits inside a small backpack, and (2) Custom-designed racket devices: for ping-pong, badminton, and tennis, each consisting of a sport-specific handle, a carbon fiber shaft, connectors, nozzle mount, and two nozzles with separate tubing. . . . . . . . . . . . . . . . . . . . . . . 9 3.2 System architecture diagram showing a pressure regulator controlling force magnitude and two solenoid valves controlling 1-DoF force directions, connected to noise-reducing nozzles on one of our custom designed handheld racket devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.3 Evaluation result on device’s performance: a) force magnitude, b) risetime and fall time, c) noise, and d) frequency. . . . . . . . . . . . . . . . 13 4.1 Racket and ball impact modeling: a) motion before the impact; b) freebody diagram of the racket during the impact; c) motion after the impact. 14 4.2 Study setup: a) A linear resonant actuator and the location that it is embedded into each racket device; b) A participant holding a racket in a virtual badminton environment; c) The highlighted target areas for the three sports, which appeared individually during our study; A red highlight indicates a shot missing the target area, whereas a green highlight indicates a shot hitting the target. (We removed the nearest target zone for tennis during the study in Section 6.) . . . . . . . . . . . . . . . . . . . . . . . 17 4.3 User study results for vibration vs. air jet for the three racket sports: (a) average realism rating (with standard error) on a 7-point Likert scale, and (b) preference. (*) denotes p<.01 and (**) denotes p<.05. . . . . . . . . . 19 5.1 Averages and standard deviations for normalized magnitude estimation of different force durations with impact force rendered on the long device length (60cm) and the short device length (20cm). . . . . . . . . . . . . . 21 7.1 Our four types of force mapping models: a) Baseline: based on physics modelling, and clipped at the system maximum, b) Scaled: scaled force magnitude with constant duration, c) Max+Duration: constant, maximum force magnitude with varying duration, d) Scaled+Duration: scaled force magnitude with varying duration. . . . . . . . . . . . . . . . . . . . . . . 29 8.1 Force Mapping Model Evaluation Results: A) The average likert points of each force mapping models for sense of realism. B) Participants’ preference rankings for each mapping methods in three racket sports. . . . . . 32 9.1 Regression analysis showing force duration vs. perceived intensity from our magnitude estimation study follows the power law. . . . . . . . . . . 36 1 Result normalized with the grand arithmetic mean across all force settings for each participant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 **List of Tables** 4.1 Velocities and time intervals between serves for each ball type. . . . . . . 18 5.1 Average normalized magnitude estimation of different force durations withimpact force rendered on the long moment arm (60cm) and short momentarm (20cm) across 12 participants, and their average (AVG) across 5 forcemagnitude settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6.1 Average duration (with standard error) across users from the Impact Du-ration Study, showing the shortest acceptable duration (Shortest), mostrealistic duration, and longest acceptable duration (Longest) chosen forrealistic impact experience for near and far targets for ping-pong, badminton, and tennis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
dc.language.isoen
dc.subject觸覺回饋zh_TW
dc.subject虛擬實境zh_TW
dc.subject感知設計zh_TW
dc.subject擊球運動zh_TW
dc.subjectungrounded force feedbacken
dc.subjectHapticsen
dc.subjectforce perceptionen
dc.subjectperceptual designen
dc.subjectair propulsionen
dc.subjectvirtual realityen
dc.title利用方向性力回饋的感知設計提升虛擬擊球體驗zh_TW
dc.titleAirRacket: Perceptual Design of Ungrounded, Directional Force Feedback to Improve Virtual Racket Sports Experiencesen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.author-orcid0000-0001-5664-6562
dc.contributor.oralexamcommittee鄭龍磻(Lung-Pan Cheng),陳炳宇(Bing-Yu Chen),蔡欣叡(Hsin-Ruey Tsai),余能豪(Neng-Hao Yu)
dc.contributor.oralexamcommittee-orcid鄭龍磻(0000-0002-7712-8622),陳炳宇(0000-0003-0169-7682),蔡欣叡(0000-0003-4764-0139)
dc.subject.keyword觸覺回饋,虛擬實境,感知設計,擊球運動,zh_TW
dc.subject.keywordHaptics,force perception,perceptual design,air propulsion,ungrounded force feedback,virtual reality,en
dc.relation.page50
dc.identifier.doi10.6342/NTU202202605
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-08-29
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊網路與多媒體研究所zh_TW
dc.date.embargo-lift2022-08-30-
顯示於系所單位:資訊網路與多媒體研究所

文件中的檔案:
檔案 大小格式 
U0001-1908202220483300.pdf9.23 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved