請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86253完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張國鎮 | zh_TW |
| dc.contributor.advisor | Kuo-Chun Chang | en |
| dc.contributor.author | 許巧臻 | zh_TW |
| dc.contributor.author | Chiao-Chen Hsu | en |
| dc.date.accessioned | 2023-03-19T23:44:58Z | - |
| dc.date.available | 2025-09-01 | - |
| dc.date.copyright | 2023-07-11 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | [1] 中央氣象局,地震測報中心 [2] JB Pendry. Negative refraction makes a perfect lens. Physical Review Letters 2000; 85(18): 3966-3969. [3] C.H., Wilcox Theory of Bloch waves. J. Anal. Math. 33, 146–167 (1978). [4] C. Conca, J. Planchard, and M. Vanninathan, Fluids and Periodic Structures, John Wiley & Sons, New York, NY, USA, 1995. [5] J. Gazalet, S. Dupont, J.C. Kastelik, Q. Rolland, B. Djafari-Rouhani, A tutorial survey on waves propagating in periodicmedia: Electronic, photonic and phononic crystals. Perception of the Bloch theorem in both real and Fourier domains.Wave Motion 50 (2013) . [6] W. Witarto, "Periodic materials for seismic base isolation: theory and applications to small modular reactors," PhD diss., University of Houston, 2018. [7] S. Brûlé, E. Javelaud, S. Enoch, and S. Guenneau, “Experiments on seismic metamaterials: molding surface waves,” Physical review letters, vol. 112, no. 13, p. 133901, 2014. [8] Y. Achaoui, T. Antonakakis, S. Brule, R. Craster, S. Enoch, S. Guenneau, “Clamped seismic metamaterials: ultra-low frequency stop bands,” New Journal of Physics, vol. 19, no. 063022, 2017. [9] Liu ZY, XX, Mao YW, Zhu YY, Yang ZY, Chan CT, Sheng P. Locally resonant sonic materials. Science 2000; 289(5485): 1734-1736. [10] H., Huang, C., Sun, and G., Huang, “On the negative effective mass density in acoustic metamaterials,” International Journal of Engineering Science, Vol. 47, No. 4, pp. 610-617(2009). [11] A. Colombi, D. Colquitt, P. Roux, S. Guenneau, RV. Craster, “A seismic metamaterial: the resonant metawedge. ” Scientific Reports 2016; 6(1): 27717. [12] Kittel, Charles. Introduction to Solid State Physics. 8th ed., John Wiley & Sons, 2004. [13] P. Fraundorf, own work https://commons.wikimedia.org/w/index.php?title=File:Brillouin-zone_construction_by_300keV_electrons.jpg&oldid=477996144 [14] 吳逸軒、汪向榮、張國鎮、陳東陽,多類型複合地震超結構之寬頻帶設計與分析,中國木水利工程學刊,31卷1期,pp.103-118,2019 [15] 中國科學技術大學課程講義 http://staff.ustc.edu.cn/~gzwang/Crystal_Structure_4.pdf http://staff.ustc.edu.cn/~gzwang/Energy%20Band_1.pdf http://staff.ustc.edu.cn/~gzwang/Energy%20Band_3.pdf http://staff.ustc.edu.cn/~gzwang/Energy%20Band_4.pdf [16] 簡廷字、黃瑜、吳逸軒、李冠慈、翁崇寧、陳東陽,新型態外部隔減震技術-地震超材料之設計與分析,中國土木水利工程學刊,31卷4期,p.395-410 ,2019. [17] Y. Achaoui, B. Ungureanu, S. Enoch, S. Brûlé, and S.Guenneau, “seismic waves damping with arrays of inertial resonators, ” Extreme Mechanics Letters, vol.8, pp. 30-38, 2016. [18] M. Miniaci, A. Krushynska, F. Bosia, and N. M. Pugno, "Large scale mechanical metamaterials as seismic shields," New Journal of Physics, vol. 18, no. 8, p.083041,2016. [19] Pu, X., Meng, Q., and Shi, Z., “Experimental studies on surface-wave isolation by periodic wave barriers”, Soil Dynamics and Earthquake Engineering, 130, (2020), 106000 [20] Y. Chen, F. Qian, F. Scarpa, L. Zuo, and X. Zhuang, “Harnessing multi-layered soil to design seismic metamaterials with ultralow frequency band gaps,” Materials and Design, vol. 175, no. 107813, 2019. [21] Y Zeng, Y Xu, K Deng, P Peng, H Yang, M Muzamil, Q Du, “A broadband seismic metamaterial plate with simple structure and easy realization,” Journal of Applied Physics, vol.125, no. 224901, 2019 [22] 李宇軒,有限元素法於樁型地震超材料之數值模擬,國立台灣大學土木工程學系碩士論文,2020 [23] 羅川琇,樁型地震超材料與共振筒單元之可行性研究分析,國立台灣大學土木工程學系碩士論文,2021 [24] Du, Q., Zeng, Y., Huang, G., and Yang, H. (2017). Elastic Metamaterial-Based Seismic Shield for Both Lamb and Surface Waves. AIP Adv. 7 (7), 075015. [25] P. Mandal, S.N. Somala, 2020. “Periodic Pile-Soil System as A Barrier for Seismic Surface Waves”, SN Applied Sciences 2, 1-8 [26] H.G. Harris, G.M. Sabnis, “Structural Modeling and Experimental Techniques”, CRC Press, 1999. [27] COMSOL manual Low-Reflecting Boundary https://doc.comsol.com/5.5/doc/com.comsol.help.sme/sme_ug_theory.06.57.html Perfectly Matched Layer https://doc.comsol.com/5.5/doc/com.comsol.help.aco/aco_ug_pressure.05.106.html Frequency Domain Study https://doc.comsol.com/5.5/doc/com.comsol.help.aco/aco_ug_study_types.15.04.html [28] 水性壓克力樹脂黏著劑http://www.nanya-adhesive.com/flooring-adhesive.html [29] 雙液型環氧樹脂接著劑 https://www.perma.com.tw/zh-tw/product-447650/%E9%9B%99%E6%B6%B2%E7%92%B0%E6%B0%A7%E6%A8%B9%E8%84%82%E6%8E%A5%E8%91%97%E5%8A%91%E5%BF%AB%E9%80%9F%E5%9E%8B-911.html [30] MI Hussein, MJ Leamy, M. Ruzzene “Dynamics of phononic materials and structures: Historical origins, recent progress, and future outlook. ”Applied Mechanics Reviews, 2014; 66(4): 040802. [31] 翁作新、陳家漢、彭立先、李偉誠,「大型振動台剪力盒土壤液化試驗(II)-大型砂試體之準備與振動台初期試驗」,國家地震工程研究中心研究報告(報告編號:NCREE-03-042),2003. [32] Lindley, P.B., "Engineering design with natural rubber", NZ Technical Bulletin. The Malaysian Rubber Producer's Research Association, Hertfordshire, England. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86253 | - |
| dc.description.abstract | 近年來地震工程領域開始關注與探討「地震超材料結構(seismic metamaterial structure)」的研發與應用。從左手材料與光子晶體之概念做為起點,延伸到聲子晶體與彈性波傳上的應用,以人造方式(man-made)設計超材料結構中之單元結構,透過週期性排列,以及採用幾何形狀與材料等參數進行設計,當晶體進入頻率帶隙產生局部共振以阻隔特定頻率的入射波,避免結構物與地震波產生共振而破壞。因此地震超材料在並非採用新穎材料的方式下,即可輕易改變超材料所表現之行為,達到控制波傳或能量傳遞之效果,與傳統的地震工程技術相比,既不用進行複雜的建模與動力分析,保護對象也從單一建築物進一步到可以變成指定的範圍。 本論文主要利用有限元素分析軟體COMSOL進行研究與分析。前半部分藉由前人模型的重現,釐清與驗證單元晶格的相關參數分析和理論,以及確立數值模型的建模細節,方能進行樁型單元晶格的設計,以達到地震波最具有破壞力的目標帶隙0-10 Hz。又由頻散圖上超材料共振頻率之解析解顯示了不同頻率下的波傳遞減幅度,且單元晶格發展到全域模型存在有邊界條件無法完全一致的問題,因此針對設計完的超材料分別進行二維及三維的排數分析,作為實驗設計的參考依據。 因地震超材料結構之模擬方式與頻散曲線之計算與過往傳統實驗相比較為特殊,在有限元素軟體中的模擬可能過於理想,缺乏與實際實驗數據之驗證,且從單元晶格發展到全域模型、二維數值模擬發展至三維,處處都有模擬上的灰色地帶。因此論文後半部,希望透過實驗的設計與進行,除了能更加瞭解模擬與實驗上邊界條件與接觸面之設置差異、驗證超材料在縮尺的行為上是否有可信的結果外,探討超材料在工程上的可行性。另外為了能確認樁型超材料的帶隙表現能從二維發展到三維,實驗也針對不同的樁深度,探討並量化其隔減振之效益。並在實驗結束後,提出實驗試體製作與流程之優化建議。 | zh_TW |
| dc.description.abstract | In recent years, scholars have begun to focus and do research on the developments and applications of seismic metamaterial structures which are composed of common material and purposely designed to shield waves at a certain range of frequencies. Compared with traditional seismic engineering technology, it protects a single structure and also designated area from serious structural damage caused by earthquakes. Local resonance occurs when waves at frequencies around and within the band gap propagate to metamaterials, which prevents the propagation of waves and dissipates energy. By reproducing the model results of previous research using finite element analysis software COMSOL, we can verify the related parameter analysis and theory about unit cell and also establish the numerical modeling detail. When we try to apply designed unit cells to the global numerical model, however, it is observed that the boundary conditions of them are partially inconsistent. Moreover, the numerical simulation model might be too ideal and lack practical verification; thus, aiming to understand when and how the mechanism is triggered and the difference of applied boundary conditions of the unit cell and global model, pile-type seismic metamaterials with different height will be tested in a lab-scale experiment under different planned sweeping sinusoidal input motions. The experimental results demonstrate that responses at frequencies within the designed bandgap are significantly reduced up to 80%-90%, which proved the effectiveness and validity of the pile-type seismic metamaterials structure in attenuating pressure waves. More importantly, the prediction accuracy of the numerical simulation results can be further verified, and full-scale model and field test will be further discussed and schemed. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:44:58Z (GMT). No. of bitstreams: 1 U0001-1809202216262600.pdf: 13865455 bytes, checksum: ccd916cd56f867767f611acbe0fa1fb9 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 誌謝 i 摘要 ii Abstract iii 目錄 iv 圖目錄 vii 表目錄 xv 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究流程與研究目標 3 1.3 論文架構 4 第二章 文獻回顧 6 2.1 地震超材料的起源與發展歷程 6 2.2 超材料背景理論 10 2.2.1 晶體結構 10 2.2.2 倒晶格(reciprocal lattice) 12 2.2.3 布里淵區 13 2.2.4 布洛赫定理 15 2.2.5 週期性邊界 16 2.2.6 頻散曲線 17 2.3 樁型地震超材料單元之研究回顧 18 2.4 文獻回顧之啟發 30 第三章 研究方法 31 3.1 COMSOL軟體簡介 31 3.2 樁型單元晶格數值模型基本設定與分析方法 32 3.2.1 樁型單元晶格二維模型基本設定與邊界條件 32 3.2.1.1 元素種類與網格尺寸 34 3.2.1.2 單元晶格掃頻分析 35 3.2.2 樁型單元晶格三維模型基本設定與邊界條件 38 3.2.2.1 元素種類與網格尺寸 38 3.2.2.2 相同深度之單元晶格掃頻分析 40 3.3 參數分析 43 3.3.1 縮尺因子 43 3.3.2 橡膠楊氏模數 45 3.3.3 內外核含量比 46 3.3.4 深度因子 47 3.3.5 小結 48 第四章 縮尺試驗數值模型 52 4.1 縮尺數值模型之建立 52 4.1.1 模型建立 52 4.1.2 動力分析之邊界條件 53 4.1.2.1 固定端 53 4.1.2.2 低反射邊界 54 4.1.2.3 面波 55 4.1.2.4 自由端 55 4.1.2.5 頻率域分析與結果 59 4.2 隔減振效益之量化方法 61 4.3 排數分析 62 4.3.1 二維排數分析 64 4.3.1.1 實尺模型基本設定與邊界條件 64 4.3.1.2 元素種類與網格尺寸 65 4.3.1.3 頻率域分析結果與帶隙 67 4.3.2 三維排數分析 74 4.3.2.1 縮尺模型基本設定與邊界條件 74 4.3.2.2 元素種類與網格尺寸 75 4.3.2.3 時間域分析結果與帶隙 77 4.3.3 排數分析結果討論與比較 90 第五章 縮尺試驗 91 5.1 試驗目的 91 5.2 試驗規劃 91 5.2.1 試驗配置 91 5.2.2 試驗準備流程 96 5.2.3 低反射邊界條件設置與材料選擇 109 5.2.4 量測儀器與監測點設置 110 5.2.5 試驗程序與試驗組別設計 115 第六章 試驗結果與數值模型討論與比較 122 6.1 試驗結果 122 6.1.1 鋼製容器敲擊試驗 125 6.1.2 超材料試體掃頻試驗 127 6.1.3 純砂土掃頻試驗 143 6.1.4 邊界條件之效應 150 6.1.5 深度效應之實驗結果 150 6.1.6 理論帶隙與縮尺試驗之帶隙結果比較 153 6.2 試驗建議 154 第七章 結論與建議 157 7.1 結論 157 7.2 建議與未來展望 159 參考文獻 161 附錄A. 鋼製容器設計圖 165 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 局部共振 | zh_TW |
| dc.subject | 帶隙 | zh_TW |
| dc.subject | 地震超材料 | zh_TW |
| dc.subject | 縮尺試驗 | zh_TW |
| dc.subject | 有限元素法 | zh_TW |
| dc.subject | finite element analysis | en |
| dc.subject | band gap | en |
| dc.subject | scaled structural systems | en |
| dc.subject | local resonant | en |
| dc.subject | Seismic metamaterial | en |
| dc.subject | numerical simulation | en |
| dc.title | 樁型地震超材料的隔減振效益:單元晶格分析、設計與試驗 | zh_TW |
| dc.title | Effectiveness of Vibration Reduction by Using Pile-type Seismic Metamaterials: Analysis, Design and Experiments | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 110-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 吳東諭;汪向榮;陳東陽;陳家漢 | zh_TW |
| dc.contributor.oralexamcommittee | Tung-Yu Wu;Shiang-Jung Wang;Tung-Yang Chen;Chia-Ham Chen | en |
| dc.subject.keyword | 地震超材料,局部共振,有限元素法,帶隙,縮尺試驗, | zh_TW |
| dc.subject.keyword | Seismic metamaterial,local resonant,finite element analysis,band gap,scaled structural systems,numerical simulation, | en |
| dc.relation.page | 165 | - |
| dc.identifier.doi | 10.6342/NTU202203527 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2022-09-29 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2025-09-01 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1809202216262600.pdf | 13.54 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
