Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86249
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳紀聖(Jeffrey Chi-Sheng Wu)
dc.contributor.authorYu-Guan Leeen
dc.contributor.author李榆觀zh_TW
dc.date.accessioned2023-03-19T23:44:44Z-
dc.date.copyright2022-09-02
dc.date.issued2022
dc.date.submitted2022-08-30
dc.identifier.citation1. Fujishima, A.; Honda, K., Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238 (5358), 37-38. 2. Chen, S.; Takata, T.; Domen, K., Particulate photocatalysts for overall water splitting. Nature Reviews Materials 2017, 2 (10), 1-17. 3. Mu, L.; Zhao, Y.; Li, A.; Wang, S.; Wang, Z.; Yang, J.; Wang, Y.; Liu, T.; Chen, R.; Zhu, J.; Fan, F.; Li, R.; Li, C., Enhancing charge separation on high symmetry SrTiO3 exposed with anisotropic facets for photocatalytic water splitting. Energy & Environmental Science 2016, 9 (7), 2463-2469. 4. Takata, T.; Jiang, J.; Sakata, Y.; Nakabayashi, M.; Shibata, N.; Nandal, V.; Seki, K.; Hisatomi, T.; Domen, K., Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 2020, 581 (7809), 411-414. 5. Kato, H.; Kobayashi, M.; Hara, M.; Kakihana, M., Fabrication of SrTiO3 exposing characteristic facets using molten salt flux and improvement of photocatalytic activity for water splitting. Catalysis Science & Technology 2013, 3 (7), 1733. 6. Takata, T.; Domen, K., Defect Engineering of Photocatalysts by Doping of Aliovalent Metal Cations for Efficient Water Splitting. The Journal of Physical Chemistry C 2009, 113 (45), 19386-19388. 7. Zhao, Z.; Goncalves, R. V.; Barman, S. K.; Willard, E. J.; Byle, E.; Perry, R.; Wu, Z.; Huda, M. N.; Moulé, A. J.; Osterloh, F. E., Electronic structure basis for enhanced overall water splitting photocatalysis with aluminum doped SrTiO3 in natural sunlight. Energy & Environmental Science 2019, 12 (4), 1385-1395. 8. Ham, Y.; Hisatomi, T.; Goto, Y.; Moriya, Y.; Sakata, Y.; Yamakata, A.; Kubota, J.; Domen, K., Flux-mediated doping of SrTiO3 photocatalysts for efficient overall water splitting. Journal of Materials Chemistry A 2016, 4 (8), 3027-3033. 9. Goto, Y.; Hisatomi, T.; Wang, Q.; Higashi, T.; Ishikiriyama, K.; Maeda, T.; Sakata, Y.; Okunaka, S.; Tokudome, H.; Katayama, M.; Akiyama, S.; Nishiyama, H.; Inoue, Y.; Takewaki, T.; Setoyama, T.; Minegishi, T.; Takata, T.; Yamada, T.; Domen, K., A Particulate Photocatalyst Water-Splitting Panel for Large-Scale Solar Hydrogen Generation. Joule 2018, 2 (3), 509-520. 10. Zhao, Z.; Willard, E. J.; Li, H.; Wu, Z.; Castro, R. H. R.; Osterloh, F. E., Aluminum enhances photochemical charge separation in strontium titanate nanocrystal photocatalysts for overall water splitting. Journal of Materials Chemistry A 2018, 6 (33), 16170-16176. 11. Lyu, H.; Hisatomi, T.; Goto, Y.; Yoshida, M.; Higashi, T.; Katayama, M.; Takata, T.; Minegishi, T.; Nishiyama, H.; Yamada, T., An Al-doped SrTiO3 photocatalyst maintaining sunlight-driven overall water splitting activity for over 1000 h of constant illumination. Chemical science 2019, 10 (11), 3196-3201. 12. Qin, Y.; Fang, F.; Xie, Z.; Lin, H.; Zhang, K.; Yu, X.; Chang, K., La, Al-Codoped SrTiO3 as a Photocatalyst in Overall Water Splitting: Significant Surface Engineering Effects on Defect Engineering. ACS Catalysis 2021, 11 (18), 11429-11439. 13. Yu, J.; Kudo, A., Effects of structural variation on the photocatalytic performance of hydrothermally synthesized BiVO4. Advanced Functional Materials 2006, 16 (16), 2163-2169. 14. Yang, J.; Wang, D.; Zhou, X.; Li, C., A theoretical study on the mechanism of photocatalytic oxygen evolution on BiVO4 in aqueous solution. Chemistry–A European Journal 2013, 19 (4), 1320-1326. 15. Zhang, Q.; Liu, M.; Zhou, W.; Zhang, Y.; Hao, W.; Kuang, Y.; Liu, H.; Wang, D.; Liu, L.; Ye, J., A novel Cl-modification approach to develop highly efficient photocatalytic oxygen evolution over BiVO4 with AQE of 34.6%. Nano Energy 2021, 81, 105651. 16. Zhou, B.; Zhao, X.; Liu, H.; Qu, J.; Huang, C., Visible-light sensitive cobalt-doped BiVO4 (Co-BiVO4) photocatalytic composites for the degradation of methylene blue dye in dilute aqueous solutions. Applied Catalysis B: Environmental 2010, 99 (1-2), 214-221. 17. Jiang, Z.; Liu, Y.; Jing, T.; Huang, B.; Zhang, X.; Qin, X.; Dai, Y.; Whangbo, M.-H., Enhancing the Photocatalytic Activity of BiVO4 for Oxygen Evolution by Ce Doping: Ce3+ Ions as Hole Traps. The Journal of Physical Chemistry C 2016, 120 (4), 2058-2063. 18. Zhao, Z.; Li, Z.; Zou, Z., Electronic structure and optical properties of monoclinic clinobisvanite BiVO4. Physical Chemistry Chemical Physics 2011, 13 (10), 4746. 19. Zhang, G.; Lan, Z.-A.; Lin, L.; Lin, S.; Wang, X., Overall water splitting by Pt/g-C3N4 photocatalysts without using sacrificial agents. Chemical Science 2016, 7 (5), 3062-3066. 20. Ohno, T.; Bai, L.; Hisatomi, T.; Maeda, K.; Domen, K., Photocatalytic Water Splitting Using Modified GaN:ZnO Solid Solution under Visible Light: Long-Time Operation and Regeneration of Activity. Journal of the American Chemical Society 2012, 134 (19), 8254-8259. 21. Yoshida, M.; Takanabe, K.; Maeda, K.; Ishikawa, A.; Kubota, J.; Sakata, Y.; Ikezawa, Y.; Domen, K., Role and Function of Noble-Metal/Cr-Layer Core/Shell Structure Cocatalysts for Photocatalytic Overall Water Splitting Studied by Model Electrodes. The Journal of Physical Chemistry C 2009, 113 (23), 10151-10157. 22. Wang, M.; Shen, S.; Li, L.; Tang, Z.; Yang, J., Effects of sacrificial reagents on photocatalytic hydrogen evolution over different photocatalysts. Journal of materials science 2017, 52 (9), 5155-5164. 23. Kudo, A.; Miseki, Y., Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews 2009, 38 (1), 253-278. 24. Kudo, A., Z-scheme photocatalyst systems for water splitting under visible light irradiation. MRS bulletin 2011, 36 (1), 32-38. 25. Yu, S.-C.; Huang, C.-W.; Liao, C.-H.; Wu, J. C. S.; Chang, S.-T.; Chen, K.-H., A novel membrane reactor for separating hydrogen and oxygen in photocatalytic water splitting. Journal of Membrane Science 2011, 382 (1-2), 291-299. 26. Nath, D.; Singh, F.; Das, R., X-ray diffraction analysis by Williamson-Hall, Halder-Wagner and size-strain plot methods of CdSe nanoparticles-a comparative study. Materials Chemistry and Physics 2020, 239, 122021. 27. Patterson, A. L., The Scherrer Formula for X-Ray Particle Size Determination. Physical Review 1939, 56 (10), 978-982. 28. Watts, J. F.; Wolstenholme, J., An introduction to surface analysis by XPS and AES. John Wiley & Sons: 2019. 29. 張立信, 表面化學分析技術. 國家奈米元件實驗室-奈米通訊 2012, 19 (4), 17-23. 30. Joy, Scanning Electron Microscopy and X-Ray Microanalysis. 2017. 31. 汪建民, 材料分析. 中國材料科學會 2013. 32. Ngo, P. D., Energy Dispersive Spectroscopy. Springer US: 1999; pp 205-215. 33. Makuła, P.; Pacia, M.; Macyk, W., How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV–Vis Spectra. The Journal of Physical Chemistry Letters 2018, 9 (23), 6814-6817. 34. Vargas, W. E.; Niklasson, G. A., Applicability conditions of the Kubelka–Munk theory. Applied optics 1997, 36 (22), 5580-5586. 35. Apopei, P.; Catrinescu, C.; Teodosiu, C.; Royer, S., Mixed-phase TiO2 photocatalysts: Crystalline phase isolation and reconstruction, characterization and photocatalytic activity in the oxidation of 4-chlorophenol from aqueous effluents. Applied Catalysis B: Environmental 2014, 160, 374-382. 36. Cruz, D.; Chang, J.; Showalter, S.; Gelbard, F.; Manginell, R.; Blain, M., Microfabricated thermal conductivity detector for the micro-ChemLab™. Sensors and Actuators B: Chemical 2007, 121 (2), 414-422. 37. Goswami, A.; Acharya, A.; Pandey, A., Study of self-diffusion of monovalent and divalent cations in Nafion-117 ion-exchange membrane. The Journal of Physical Chemistry B 2001, 105 (38), 9196-9201. 38. Doyle, M.; Lewittes, M. E.; Roelofs, M. G.; Perusich, S. A.; Lowrey, R. E., Relationship between ionic conductivity of perfluorinated ionomeric membranes and nonaqueous solvent properties. Journal of Membrane Science 2001, 184 (2), 257-273. 39. Fuge, R.; Johnson, C. C., Iodine and human health, the role of environmental geochemistry and diet, a review. Applied Geochemistry 2015, 63, 282-302. 40. Cook, W.; Olive, R., Pourbaix diagrams for iron, nickel, and chromium in sub-critical and supercritical water. 2010. 41. Kireev, S. V.; Shnyrev, S. L., Study of molecular iodine, iodate ions, iodide ions, and triiodide ions solutions absorption in the UV and visible light spectral bands. Laser Physics 2015, 25 (7), 075602. 42. Sasaki, Y.; Kato, H.; Kudo, A., [Co(bpy)3]3+/2+ and [Co(phen)3]3+/2+ electron mediators for overall water splitting under sunlight irradiation using Z-scheme photocatalyst system. Journal of the American Chemical Society 2013, 135 (14), 5441-5449. 43. Lo, C.-C.; Huang, C.-W.; Liao, C.-H.; Wu, J. C., Novel twin reactor for separate evolution of hydrogen and oxygen in photocatalytic water splitting. International Journal of Hydrogen Energy 2010, 35 (4), 1523-1529. 44. Yu, S.-H.; Chiu, C.-W.; Wu, Y.-T.; Liao, C.-H.; Nguyen, V.-H.; Wu, J. C., Photocatalytic water splitting and hydrogenation of CO2 in a novel twin photoreactor with IO3−/I− shuttle redox mediator. Applied Catalysis A: General 2016, 518, 158-166.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86249-
dc.description.abstract在全球暖化和能源危機的衝擊下,研發替代石油的永續能源是刻不容緩的議題。氫能因其具備永續發展的應用潛力被廣為研究,其中光催化水分解所產生的氫氣更是屬於零碳排的綠色氫能。在此過程中光觸媒受到太陽光激發將水分解為氫氣與氧氣,進行光能與化學能的轉換與儲存。 本研究將光觸媒鈦酸鍶(SrTiO3)及釩酸鉍(BiVO4)納入設計,並使用雙胞光反應器構成Z型系統,達到高光催化活性、高穩定性、高效率分離的光催化水分解。產氫研究方面,吾人利用熔鹽法合成出一系列鈦酸鍶光觸媒並進行光催化探討與材料分析。其中以氯化鍶水合物作為熔鹽在攝氏1150度進行鍛燒合成出的鈦酸鍶,搭載光沉積的銠鉻金屬粒子後達到最高的278 μmol h-1 g-1氫氣產率。產氧研究方面,吾人利用水熱法以不同環境及條件進行釩酸鉍光觸媒合成,以探討水熱環境與光催化活性的交互作用。其中在pH 2水熱10小時及混摻5 mol%鈷金屬的合成條件下,可以達到最高的493 μmol h-1 g-1氧氣產率。 在雙胞光反應器中吾人利用鈦酸鍶搭載銠鉻金屬粒子做為產氫光觸媒,釩酸鉍混摻鈷金屬作為產氧光觸媒。以鐵/亞鐵離子系統作為電子媒介及Nafion陽離子交換薄膜隔離兩種光觸媒以組成雙胞反應器。此Z-scheme的雙胞反應器成功達到在光催化水分解生產氣體並同時分離氫氣與氧氣。不僅避免氫氣與氧氣再結合,更減低額外的分離成本與爆炸風險。本研究成果帶進光觸媒在實際應用上的價值。zh_TW
dc.description.abstractWith global warming and the energy crisis deteriorating, it is an urgent issue to develop alternative energy sources to fossil fuels. Hydrogen has been widely studied as sustainable energy with broad application potential. Moreover, the hydrogen generated by photocatalytic water splitting is known as green hydrogen, producing zero-carbon emissions. In this process, photocatalyst could absorb sunlight and decompose water into hydrogen and oxygen, i.e., convert solar energy into chemical energy. In this work, photocatalysts, including strontium titanate (SrTiO3) and bismuth vanadate (BiVO4), were studied and then further applied in a twin photoreactor to comprise the Z-scheme system. So photocatalytic water splitting achieved high photocatalytic activity, high stability, and high-efficiency separation of gaseous products. For the hydrogen evolution, a series of SrTiO3 were synthesized by the flux molten-salt method and carried out their characterization and photoreaction. The results showed SrTiO3 synthesized using SrCl2·6H2O as molten salt at 1150°C calcination and loaded with cocatalyst, RhxCr2-xO3, by the photodeposition showed the highest hydrogen-evolution rate of 278 μmol h-1 g-1. For oxygen evolution, a series of BiVO4 were synthesized by the hydrothermal method under different situations to evaluate the correlation between photoactivity and the hydrothermal conditions. The results showed that Co-doped BiVO4 synthesized at a pH value of 2 and a period of 10 hours reached the highest oxygen-evolution rate of 493 μmol h-1 g-1. In the twin photoreactor, RhxCr2-xO3/SrTiO3 was used as the hydrogen-evolution photocatalyst, and BiVO4 was used as the oxygen-evolution photocatalyst. Ferric/Ferrous ions served as electron media, and a cation-exchanged Nafion membrane divided the two photocatalysts in the twin photoreactor. As a result, the Z-system of the twin photoreactor can separate hydrogen and oxygen simultaneously during photocatalytic water splitting, thus not only avoiding the recombination of hydrogen and oxygen but also reducing additional separation costs and explosion risk. This research brings in the value of photocatalysts in practical applications.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:44:44Z (GMT). No. of bitstreams: 1
U0001-2908202214041100.pdf: 7569356 bytes, checksum: 1a7ba679f954f52bb9238b8ecb243157 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents誌謝 i 摘要 ii Abstract iii 目錄 iv 圖目錄 viii 表目錄 xii 代號說明 xiii 第1章 緒論 1 1.1. 背景 1 1.2. 動機 2 1.3. 目的 2 第2章 文獻回顧2 3 2.1. 光觸媒(Photocatalyst) 4 2.1.1. 鈦酸鍶(SrTiO3) 5 2.1.2. 利用熔鹽法(Molten salt method)合成高結晶度鈦酸鍶 10 2.1.3. 釩酸鉍(BiVO4) 11 2.2. 共觸媒(Cocatalyst) 14 2.3. 以犧牲試劑輔助(Sacrificial reagent)進行水分解 16 2.4. Z型系統(Z-scheme system) 17 2.5. 雙胞光反應器(Twin photoreactor) 25 18 第3章 研究方法 19 3.1. 化學藥品及儀器設備 19 3.1.1. 藥品 19 3.1.2. 氣體 20 3.1.3. 儀器 20 3.2. 光觸媒合成 22 3.2.1. 以熔鹽法進行鈦酸鍶的合成 22 3.2.2. 以水熱法進行釩酸鉍的合成 22 3.3. 共觸媒的搭載 23 3.3.1. 濕式含浸法(Wet-impregnation) 23 3.3.2. 光沉積法(Photodeposition) 23 3.4. 觸媒材料特性分析原理 24 3.4.1. X光繞射儀(X-ray diffraction, XRD)26 24 3.4.2. X光光電子能譜儀(X-ray photoelectron spectroscopy, XPS) 26 3.4.3. 場發掃描式電子顯微鏡(Field Emission-Scanning Electron Microscope, FESEM) 28 3.4.4. 能量分散光譜儀(Energy dispersive spectrometer, EDS) 30 3.4.5. 紫外線-可見光光譜儀(UV-visible spectrometer, UV-vis)33 31 3.4.6. 紫外光電子能譜學(Ultraviolet photoelectron spectroscopy, UPS) 33 3.5. 氣相層析法分析原理 34 3.6. 氣相層檢量線製作 36 3.6.1. 氫氣檢量線的製作 36 3.6.2. 氧氣及氮氣檢量線的製作 37 3.7. 離子交換膜前處理 39 3.8. 光反應活性測試 40 3.8.1. 可見光燈源及其光譜 40 3.8.2. 光催化水分解反應系統 41 第4章 觸媒材料分析與討論 42 4.1. XRD晶面與晶向分析 42 4.1.1. 鈦酸鍶系列 42 4.1.2. 釩酸鉍系列 45 4.2. XPS表面元素分析 47 4.2.1. 光觸媒分析 47 4.2.2. 共觸媒分析 50 4.3. SEM電子顯微鏡分析 51 4.3.1. 鈦酸鍶在顯微鏡下的表面形貌 51 4.3.2. 釩酸鉍在顯微鏡下的表面形貌 55 4.4. EDS能量分散光譜分析 57 4.5. UV-vis紫外光可見光光譜分析 60 4.6. UPS紫外光電子能譜分析 62 第5章 光催化水分解實驗與討論 65 5.1. 以鈦酸鍶進行產氫實驗 67 5.1.1. 以RhxCr2-xO3/SrTiO3系列光觸媒進行光催化全水分解 67 5.1.2. 共觸媒沉積方法之探討 70 5.1.3. 以碘離子作為犧牲試劑系統進行光催化產氫反應 72 5.1.4. 以鐵離子作為犧牲試劑系統進行產氫反應 74 5.2. 以釩酸鉍進行產氧實驗 76 5.2.1. 產氧反應犧牲試劑系統 77 5.2.2. 釩酸鉍合成條件系統的最適化 78 5.2.3. 釩酸鉍沉積共觸媒之探討 80 5.2.4. BV及BVC觸媒混摻金屬之產氧活性測試 81 5.2.5. BV及BVC觸媒混摻鈷金屬之產氧活性測試 83 5.2.6. 以UV-vis吸收光譜進行犧牲試劑IO4-的消耗分析 85 5.3. 離子型電子媒介 88 5.3.1. 鐵離子系統 89 5.3.2. 碘離子系統 90 5.3.3. 錯離子系統 91 5.4. 以鈦酸鍶及釩酸鉍於雙胞光反應器中進行光催化水分解 92 5.4.1. 於雙胞光反應器中進行光催化水分解 92 5.4.2. 雙胞反應器效率與文獻比較 94 第6章 結論 96 參考文獻 97 附錄 101 個人小傳 107
dc.language.isozh-TW
dc.subject釩酸鉍(BiVO4)zh_TW
dc.subject鈦酸鍶(SrTiO3)zh_TW
dc.subject光催化水分解zh_TW
dc.subject氫能zh_TW
dc.subject雙胞光反應器zh_TW
dc.subjectStrontium titanate (SrTiO3)en
dc.subjectHydrogenen
dc.subjectPhotocatalytic water splittingen
dc.subjectTwin photoreactoren
dc.subjectBismuth vanadate (BiVO4)en
dc.title以雙胞光反應器利用鈦酸鍶與釩酸鉍進行光催化水分解並同時分離氫氣及氧氣zh_TW
dc.titlePhotocatalytic Water Splitting with Strontium Titanate and Bismuth Vanadate in Twin Photoreactor Achieving Simultaneous Separation of H2 and O2en
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee游文岳(Wen-Yueh Yu),林欣瑜(Hsin-yu Lin)
dc.subject.keyword光催化水分解,鈦酸鍶(SrTiO3),釩酸鉍(BiVO4),氫能,雙胞光反應器,zh_TW
dc.subject.keywordPhotocatalytic water splitting,Strontium titanate (SrTiO3),Bismuth vanadate (BiVO4),Hydrogen,Twin photoreactor,en
dc.relation.page107
dc.identifier.doi10.6342/NTU202202926
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-08-30
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
dc.date.embargo-lift2022-09-02-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
U0001-2908202214041100.pdf7.39 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved