請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86239完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林中天(Chung-Tien Lin) | |
| dc.contributor.author | Man-Ha Chan | en |
| dc.contributor.author | 陳敏霞 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:44:10Z | - |
| dc.date.copyright | 2022-09-05 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-31 | |
| dc.identifier.citation | Ali, Y., Lehmussaari, K., 2006. Industrial perspective in ocular drug delivery. Advanced Drug Delivery Reviews 58, 1258-1268. Ang, M., Konstantopoulos, A., Goh, G., Htoon, H.M., Seah, X., Lwin, N.C., Liu, X., Chen, S., Liu, L., Mehta, J.S., 2016. Evaluation of a micro-optical coherence tomography for the corneal endothelium in an animal model. Scientific Reports 6, 1-7. Bachu, R.D., Chowdhury, P., Al-Saedi, Z.H., Karla, P.K., Boddu, S.H., 2018. Ocular drug delivery barriers—role of nanocarriers in the treatment of anterior segment ocular diseases. Pharmaceutics 10, 28. Barabino, S., Chen, W., Dana, M.R., 2004. Tear film and ocular surface tests in animal models of dry eye: uses and limitations. Experimental Eye Research 79, 613-621. Boiko, E.V., Pozniak, A.L., Maltsev, D.S., Suetov, A.A., Nuralova, I.V., 2014. High frequency of latent conjunctival C. trachomatis, M. hominis, and U. urealyticum infections in young adults with dry eye disease. Journal of Ophthalmology 2014. Cavet, M.E., Harrington, K.L., Vollmer, T.R., Ward, K.W., Zhang, J.-Z., 2011. Anti-inflammatory and anti-oxidative effects of the green tea polyphenol epigallocatechin gallate in human corneal epithelial cells. Molecular Vision 17, 533. Chang, C.-Y., Wang, M.-C., Miyagawa, T., Chen, Z.-Y., Lin, F.-H., Chen, K.-H., Liu, G.-S., Tseng, C.-L., 2017. Preparation of arginine–glycine–aspartic acid-modified biopolymeric nanoparticles containing epigalloccatechin-3-gallate for targeting vascular endothelial cells to inhibit corneal neovascularization. International Journal of Nanomedicine 12, 279. Chen, H., Jin, Y., Sun, L., Li, X., Nan, K., Liu, H., Zheng, Q., Wang, B., 2018. Recent developments in ophthalmic drug delivery systems for therapy of both anterior and posterior segment diseases. Colloid and Interface Science Communications 24, 54-61. Chen, S., Liu, X., Wang, N., Wang, X., Xiong, Q., Bo, E., Yu, X., Chen, S., Liu, L., 2017. Visualizing micro-anatomical structures of the posterior cornea with micro-optical coherence tomography. Scientific Reports 7, 1-10. Choi, K.-E., Song, J.-S., Kang, B., Eom, Y., Kim, H.-M., 2017. Immediate effect of 3% diquafosol ophthalmic solution on tear MUC5AC concentration and corneal wetting ability in normal and experimental keratoconjunctivitis sicca rat models. Current Eye Research 42, 666-671. Choi, W.J., Pepple, K.L., Zhi, Z., Wang, R.K., 2015. Optical coherence tomography based microangiography for quantitative monitoring of structural and vascular changes in a rat model of acute uveitis in vivo: a preliminary study. Journal of Biomedical Optics 20, 016015. Contreras-Ruiz, L., Ghosh-Mitra, A., Shatos, M., Dartt, D., Masli, S., 2013. Modulation of conjunctival goblet cell function by inflammatory cytokines. Mediators of Inflammation 2013. Daull, P., Feraille, L., Barabino, S., Cimbolini, N., Antonelli, S., Mauro, V., Garrigue, J.-S., 2016. Efficacy of a new topical cationic emulsion of cyclosporine A on dry eye clinical signs in an experimental mouse model of dry eye. Experimental Eye Research 153, 159-164. de Paiva, C.S., Schwartz, C.E., Gjörstrup, P., Pflugfelder, S.C., 2012. Resolvin E1 (RX-10001) reduces corneal epithelial barrier disruption and protects against goblet cell loss in a murine model of dry eye. Cornea 31, 1299-1303. Dursun, D., Wang, M., Monroy, D., Li, D.-Q., Lokeshwar, B.L., Stern, M.E., Pflugfelder, S.C., 2002. A mouse model of keratoconjunctivitis sicca. Investigative Ophthalmology & Visual Science 43, 632-638. Elena, P.-P., Cimbolini, N., Antonelli, S., Feraille, L., Barabino, S., Margaron, P., 2013. Comparison of two rodent models of dry eye induced by Scopolamine. Investigative Ophthalmology & Visual Science 54, 6002-6002. Elzoghby, A.O., 2013. Gelatin-based nanoparticles as drug and gene delivery systems: reviewing three decades of research. Journal of Controlled Release 172, 1075-1091. Fabiani, C., Barabino, S., Rashid, S., Dana, M.R., 2009. Corneal epithelial proliferation and thickness in a mouse model of dry eye. Experimental Eye Research 89, 166-171. Fakih, D., Zhao, Z., Nicolle, P., Reboussin, E., Joubert, F., Luzu, J., Labbé, A., Rostène, W., Baudouin, C., Mélik Parsadaniantz, S., 2019. Chronic dry eye induced corneal hypersensitivity, neuroinflammatory responses, and synaptic plasticity in the mouse trigeminal brainstem. Journal of Neuroinflammation 16, 1-20. Gaudana, R., Ananthula, H.K., Parenky, A., Mitra, A.K., 2010. Ocular drug delivery. The AAPS Journal 12, 348-360. Gipson, I., Yankauckas, M., Spurr-Michaud, S., Tisdale, A., Rinehart, W., 1992. Characteristics of a glycoprotein in the ocular surface glycocalyx. Investigative Ophthalmology & Visual Science 33, 218-227. Gonzalez, G.G., de la Rubia, P.G., Gallar, J., Belmonte, C., 1993. Reduction of capsaicin-induced ocular pain and neurogenic inflammation by calcium antagonists. Investigative Ophthalmology & Visual Science 34, 3329-3335. Grieve, K., Dubois, A., Simonutti, M., Paques, M., Sahel, J., Le Gargasson, J.-F., Boccara, C., 2005. In vivo anterior segment imaging in the rat eye with high speed white light full-field optical coherence tomography. Optics Express 13, 6286-6295. Guillaumie, F., Furrer, P., Felt‐Baeyens, O., Fuhlendorff, B.L., Nymand, S., Westh, P., Gurny, R., Schwach‐Abdellaoui, K., 2010. Comparative studies of various hyaluronic acids produced by microbial fermentation for potential topical ophthalmic applications. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 92, 1421-1430. Gökçe, E.H., Sandri, G., Eğrilmez, S., Bonferoni, M.C., Güneri, T., Caramella, C., 2009. Cyclosporine A-loaded solid lipid nanoparticles: ocular tolerance and in vivo drug release in rabbit eyes. Current Eye Research 34, 996-1003. Hagigit, T., Abdulrazik, M., Valamanesh, F., Behar-Cohen, F., Benita, S., 2012. Ocular antisense oligonucleotide delivery by cationic nanoemulsion for improved treatment of ocular neovascularization: an in-vivo study in rats and mice. Journal of Controlled Release 160, 225-231. Haider, A.S., Grabarek, J., Eng, B., Pedraza, P., Ferreri, N.R., Balazs, E.A., Darzynkiewicz, Z., 2003. In vitro model of “wound healing” analyzed by laser scanning cytometry: accelerated healing of epithelial cell monolayers in the presence of hyaluronate. Cytometry Part A: The Journal of the International Society for Analytical Cytology 53, 1-8. Hathout, R.M., Omran, M.K., 2016. Gelatin-based particulate systems in ocular drug delivery. Pharmaceutical Development and Technology 21, 379-386. HS Boddu, S., Gupta, H., Patel, S., 2014. Drug delivery to the back of the eye following topical administration: an update on research and patenting activity. Recent Patents on Drug Delivery & Formulation 8, 27-36. Huang, H.-Y., Wang, M.-C., Chen, Z.-Y., Chiu, W.-Y., Chen, K.-H., Lin, I.-C., Yang, W.-C.V., Wu, C.-C., Tseng, C.-L., 2018. Gelatin–epigallocatechin gallate nanoparticles with hyaluronic acid decoration as eye drops can treat rabbit dry-eye syndrome effectively via inflammatory relief. International Journal of Nanomedicine 13, 7251. Iester, M., Orsoni, G.J., Gamba, G., Taffara, M., Mangiafico, P., Giuffrida, S., Rolando, M., 2000. Improvement of the ocular surface using hypotonic 0.4% hyaluronic acid drops in keratoconjunctivitis sicca. Eye 14, 892-898. Jeong, D., Kang, S., Shim, J., Lee, E., Jeong, Y., Seo, K., 2022. Evaluation of ocular surface parameters in dogs with and without meibomian gland dysfunction. Veterinary Record, e1682. Jiang, G., Ke, Y., Sun, D., Li, H., Ihnen, M., Jumblatt, M.M., Foulks, G., Wang, Y., Bian, Y., Kaplan, H.J., 2009. A new model of experimental autoimmune keratoconjunctivitis sicca (KCS) induced in Lewis rat by the autoantigen Klk1b22. Investigative Ophthalmology & Visual Science 50, 2245-2254. Jiao, H., Hill, L.J., Downie, L.E., Chinnery, H.R., 2019. Anterior segment optical coherence tomography: its application in clinical practice and experimental models of disease. Clinical and Experimental Optometry 102, 208-217. Joossen, C., Lanckacker, E., Zakaria, N., Koppen, C., Joossens, J., Cools, N., De Meester, I., Lambeir, A.-M., Delputte, P., Maes, L., 2016. Optimization and validation of an existing, surgical and robust dry eye rat model for the evaluation of therapeutic compounds. Experimental Eye Research 146, 172-178. Kapturczak, M., Meier-Kriesche, H., Kaplan, B., 2004. Pharmacology of calcineurin antagonists, In: Transplantation proceedings, pp. S25-S32. Kaswan, R., Pappas, C., Wall, K., Hirsh, S.G., 1998. Survey of canine tear deficiency in veterinary practice, In: Lacrimal Gland, Tear Film, and Dry Eye Syndromes 2. Springer, pp. 931-939. Kim, C.-S., Jo, K., Lee, I.-S., Kim, J., 2016. Topical application of apricot kernel extract improves dry eye symptoms in a unilateral exorbital lacrimal gland excision mouse. Nutrients 8, 750. Kim, D.W., Lee, S.H., Ku, S.K., Lee, J.E., Cha, H.J., Youn, J.K., Kwon, H.Y., Park, J.H., Park, E.Y., Cho, S.-W., 2015. The effects of PEP-1-FK506BP on dry eye disease in a rat model. BMB Reports 48, 153. Lal, C., Alexandrov, S., Rani, S., Zhou, Y., Ritter, T., Leahy, M., 2020. Nanosensitive optical coherence tomography to assess wound healing within the cornea. Biomedical Optics Express 11, 3407-3422. Lal, C., McGrath, J., Subhash, H., Rani, S., Ritter, T., Leahy, M., 2016. Quantitative assessment of rat corneal thickness and morphology during stem cell therapy by high-speed optical coherence tomography, In: Ophthalmic Technologies XXVI, pp. 189-195. Lee, H.S., Chauhan, S.K., Okanobo, A., Nallasamy, N., Dana, R., 2011. Therapeutic efficacy of topical epigallocatechin gallate (EGCG) in murine dry eye. Cornea 30, 1465. Li, Z., Woo, J.M., Chung, S.W., Kwon, M.-Y., Choi, J.-S., Oh, H.-J., Yoon, K.-C., 2013. Therapeutic effect of topical adiponectin in a mouse model of desiccating stress–induced dry eye. Investigative Ophthalmology & Visual Science 54, 155-162. Lin, C.-T., Wu, S.-Y., 2002. Diagnosis and Medical Management of Keratoconjunctivitis Sicca (KCS) in the Dog. Taiwan Veterinary Journal 28, 99-105. Lin, Z., Liu, X., Zhou, T., Wang, Y., Bai, L., He, H., Liu, Z., 2011. A mouse dry eye model induced by topical administration of benzalkonium chloride. Molecular Vision 17, 257. Liu, C.-C., Lin, C.-S., Chuang, T.-F., Lin, C.-T., 2014a. Investigation of 201 Cases of Canine Keratoconjunctivitis Sicca in Taiwan. Taiwan Veterinary Journal 40, 89-94. Liu, L., Tiffany, J., Dang, Z., Dart, J.K., Watson, S.L., Daniels, J.T., Geerling, G., 2009. Nourish and nurture: development of a nutrient ocular lubricant. Investigative Ophthalmology & Visual Science 50, 2932-2939. Liu, S.H., Prendergast, R., Silverstein, A.M., 1987. Experimental autoimmune dacryoadenitis. I. Lacrimal gland disease in the rat. Investigative Ophthalmology & Visual Science 28, 270-275. Liu, S.H., Zhou, D.-H., 1992. Experimental autoimmune dacryoadenitis: purification and characterization of a lacrimal gland antigen. Investigative Ophthalmology & Visual Science 33, 2029-2036. Liu, Y.-C., Lwin, N.C., Chan, N.S.W., Mehta, J.S., 2014b. Use of anterior segment optical coherence tomography to predict corneal graft rejection in small animal models. Investigative Ophthalmology & Visual Science 55, 6736-6741. Luo, L., Li, D.-Q., Doshi, A., Farley, W., Corrales, R.M., Pflugfelder, S.C., 2004. Experimental dry eye stimulates production of inflammatory cytokines and MMP-9 and activates MAPK signaling pathways on the ocular surface. Investigative Ophthalmology & Visual Science 45, 4293-4301. Luo, L., Li, D.-Q., Pflugfelder, S.C., 2007. Hyperosmolarity-induced apoptosis in human corneal epithelial cells is mediated by cytochrome c and MAPK pathways. Cornea 26, 452-460. López-Miguel, A., Tesón, M., Martín-Montañez, V., Enríquez-de-Salamanca, A., Stern, M.E., González-García, M.J., Calonge, M., 2016. Clinical and Molecular Inflammatory Response in Sjögren Syndrome–Associated Dry Eye Patients Under Desiccating Stress. American Journal of Ophthalmology 161, 133-141. e132. Marner, K., Møller, P.M., Dillon, M., Rask‐Pedersen, E., 1996. Viscous carbomer eye drops in patients with dry eyes: efficacy and safety. A randomized, open, cross‐over, multicentre study. Acta Ophthalmologica Scandinavica 74, 249-252. Mecum, N.E., Cyr, D., Malon, J., Demers, D., Cao, L., Meng, I.D., 2019. Evaluation of corneal damage after lacrimal gland excision in male and female mice. Investigative Ophthalmology & Visual Science 60, 3264-3274. Mecum, N.E., Demers, D., Sullivan, C.E., Denis, T.E., Kalliel, J.R., Meng, I.D., 2020. Lacrimal gland excision in male and female mice causes ocular pain and anxiety-like behaviors. Scientific Reports 10, 1-14. Nelson, J.D., Wright, J.C., 1984. Conjunctival goblet cell densities in ocular surface disease. Archives of Ophthalmology 102, 1049-1051. Norn, M., 1970. Micropunctate fluorescein vital staining of the cornea. Acta Ophthalmologica 48, 108-118. Peirce, V., Harmer, E., Williams, D., Prevalence of keratoconjunctivitis in the canine population: Shirmer tear tests in one thousand normal dogs. Veterinary Journal Submitted. Pflugfelder, S.C., Tseng, S.C., Yoshino, K., Monroy, D., Felix, C., Reis, B.L., 1997. Correlation of goblet cell density and mucosal epithelial membrane mucin expression with rose bengal staining in patients with ocular irritation. Ophthalmology 104, 223-235. Qaddoumi, M.G., Ueda, H., Yang, J., Davda, J., Labhasetwar, V., Lee, V.H., 2004. The characteristics and mechanisms of uptake of PLGA nanoparticles in rabbit conjunctival epithelial cell layers. Pharmaceutical Research 21, 641-648. Rahman, M.M., Kim, D.H., Park, C.-K., Kim, Y.H., 2021. Experimental Models, Induction Protocols, and Measured Parameters in Dry Eye Disease: Focusing on Practical Implications for Experimental Research. International Journal of Molecular Sciences 22, 12102. Santoro, M., Tatara, A.M., Mikos, A.G., 2014. Gelatin carriers for drug and cell delivery in tissue engineering. Journal of Controlled Release 190, 210-218. Sartori, R., Peruccio, C., 2020. A Case of Sebaceous Adenitis and Concurrent Meibomian Gland Dysfunction in a Dog. Veterinary Sciences 7, 37. Schaefer, K., George, M.A., Abelson, M.B., Garofalo, C., 1994. A scanning electron micrographic comparison of the effects of two preservative-free artificial tear solutions on the corneal epithelium as compared to a phosphate buffered saline and a 0.02% benzalkonium chloride control, In: Lacrimal Gland, Tear Film, and Dry Eye Syndromes. Springer, pp. 459-464. Schuman, J.S., 2008. Spectral domain optical coherence tomography for glaucoma (an AOS thesis). Transactions of the American Ophthalmological Society 106, 426-458. She, Y., Li, J., Xiao, B., Lu, H., Liu, H., Simmons, P.A., Vehige, J.G., Chen, W., 2015. Evaluation of a novel artificial tear in the prevention and treatment of dry eye in an animal model. Journal of Ocular Pharmacology and Therapeutics 31, 525-530. Shimmura, S., Goto, E., Shimazaki, J., Tsubota, K., 1998. Viscosity-dependent fluid dynamics of eyedrops on the ocular surface. American Journal of Ophthalmology 125, 386-388. Shinomiya, K., Ueta, M., Kinoshita, S., 2018. A new dry eye mouse model produced by exorbital and intraorbital lacrimal gland excision. Scientific Reports 8, 1-10. Simmons, P.A., Vehige, J.G., 2007. Clinical performance of a mid-viscosity artificial tear for dry eye treatment. Cornea 26, 294-302. Skrzypecki, J., Tomasz, H., Karolina, C., 2019. Variability of dry eye disease following removal of lacrimal glands in rats, In: Medical Science and Research. Springer, pp. 109-115. Smith, R.S., John, S.W., Nishina, P.M., Sundberg, J.P., 2001. Systematic evaluation of the mouse eye: anatomy, pathology, and biomethods. CRC press. Stern, M.E., Pflugfelder, S.C., 2004. Inflammation in dry eye. The Ocular Surface 2, 124-130. Stevenson, W., Chen, Y., Lee, S.-M., Lee, H.S., Hua, J., Dohlman, T., Shiang, T., Dana, R., 2014. Extraorbital lacrimal gland excision: a reproducible model of severe aqueous tear-deficient dry eye disease. Cornea 33, 1336-1341. Torchilin, V.P., Trubetskoy, V.S., 1995. Which polymers can make nanoparticulate drug carriers long-circulating? Advanced Drug Delivery Reviews 16, 141-155. Tsai, C.-H., Wang, P.-Y., Lin, I.-C., Huang, H., Liu, G.-S., Tseng, C.-L., 2018. Ocular drug delivery: Role of degradable polymeric nanocarriers for ophthalmic application. International Journal of Molecular Sciences 19, 2830. Tseng, C.-L., Chen, K.-H., Su, W.-Y., Lee, Y.-H., Wu, C.-C., Lin, F.-H., 2013. Cationic gelatin nanoparticles for drug delivery to the ocular surface: in vitro and in vivo evaluation. Journal of Nanomaterials 2013. Urtti, A., 2006. Challenges and obstacles of ocular pharmacokinetics and drug delivery. Advanced Drug Delivery Reviews 58, 1131-1135. Williams, D., Middleton, S., Fattahian, H., Moridpour, R., 2012. Comparison of hyaluronic acid-containing topical eye drops with carbomer-based topical ocular gel as a tear replacement in canine keratoconjunctivitis sicca: A prospective study in twenty five dogs, In: Veterinary Research Forum, p. 229. Wilson, G., Ren, H., Laurent, J., 1995. Corneal epithelial fluorescein staining. Journal of the American Optometric Association 66, 435-441. Yoon, K.-C., Ahn, K.-Y., Choi, W., Li, Z., Choi, J.-S., Lee, S.-H., Park, S.-H., 2011. Tear production and ocular surface changes in experimental dry eye after elimination of desiccating stress. Investigative Ophthalmology & Visual Science 52, 7267-7273. You, I.C., Li, Y., Jin, R., Ahn, M., Choi, W., Yoon, K.C., 2018. Comparison of 0.1%, 0.18%, and 0.3% hyaluronic acid eye drops in the treatment of experimental dry eye. Journal of Ocular Pharmacology and Therapeutics 34, 557-564. Zhao, J., Nagasaki, T., 2003. Lacrimal gland as the major source of mouse tear factors that are cytotoxic to corneal keratocytes. Experimental Eye Research 77, 297-304. Zhou, T.E., Sayah, D.N., Noueihed, B., Mazzaferri, J., Costantino, S., Brunette, I., Chemtob, S., 2017. Preventing corneal calcification associated with xylazine for longitudinal optical coherence tomography in young rodents. Investigative Ophthalmology & Visual Science 58, 461-469. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86239 | - |
| dc.description.abstract | 乾眼症為犬隻常見的眼科疾病,主要可以分為淚水品質不良與淚水產量不足這兩 大類。無論是哪一種乾眼症,人工淚液都是主要的治療方向之一,能夠有效地減緩 乾眼症所帶來的症狀與不適。人工淚液的成分有很多類別,當中含玻尿酸的人工淚 液曾經被證實有更好的效果。除了人工淚液與傳統的點眼治療外,近年也有開始發 展出奈米顆粒,其能夠突破眼睛構造的障蔽、增加藥物作用、增加藥物停留時間以 及降低眼藥點藥頻率的特性使得奈米顆粒的使用越來越普遍,當中也包含結合奈 米顆粒與玻尿酸兩者的特性所製造的產品。此實驗希望透過在大鼠摘除眼眶外與 眼眶內的兩個淚腺組織來誘導大鼠的乾眼症模型,並比較不同種類的的人工淚液 與奈米藥物明膠兒茶素奈米顆粒包覆玻尿酸對於乾眼症大鼠角膜之影響。除了較 常用的檢查工具包括眼裂睜開程度、淚液量測試、螢光染色與裂隙燈檢查外,此實 驗也成功納入較先進之檢測儀器,包括光學同調斷層掃描(OCT)與眼表綜合分析 儀(Ocular Surface Analyzer-VET)進行追蹤與評估。實驗結果顯示,透過摘除兩個 淚腺組織成功建立大鼠的乾眼症模型,在術後有明顯較低的淚液量,較小的眼裂, 較短的非侵入性淚膜破開時間,較高程度的角膜不平整性與染色下觀察到較嚴重 的角膜病變。人工淚液與奈米顆粒組都顯示出相較於乾眼症組有較好的臨床表現, 當中奈米顆粒組相較於乾眼症組有較大的眼裂,較長的非侵入性淚膜破開時間與 較低程度的角膜不平整性。組別之間的角膜上皮厚度沒有明顯差異,不過奈米顆粒 組、含聚合物之人工淚液組和和聚合物與玻尿酸之人工淚液組的角膜基質厚度隨 著時間過去沒有顯著的改變。相較於其他人工淚液使用一天三次,奈米顆粒組在這 次實驗只需點一天兩次也能夠達到比人工淚液相似或是更好的效果。在乾眼症的 病患除了可以使用人工淚液改善症狀外,未來可以納入奈米顆粒作為治療選項之 一。 | zh_TW |
| dc.description.abstract | Keratoconjunctivitis sicca (KCS), also known as dry eye syndrome, is a disorder commonly presented in dogs. It is categorized into two main types: qualitative and quantitative KCS. Regardless of the type of KCS, artificial tears are commonly used to relieve KCS-related symptoms. Among different types of artificial tears, those containing hyaluronic acid (HA) has been proved to be of better performance in different objective tests. Other than traditional medical treatment options, the use of nanoparticles has been increasingly more popular as it can overcome certain barriers of drug delivery of traditional eyedrop applications, prolong drug retention time on the cornea and reduce frequency of use. HA is one of the applicable ingredients that can improve performances of nanoparticles. In this experiment, a KCS rat model was established through excision of extraorbital lacrimal gland (ELG) and infraorbital lacrimal gland (ILG). Commercial artificial tears containing different main active ingredients (hyaluronic acid-containing tears, carbomer-containing tears and hyaluronic acid-carbomer-containing tears) were applied to KCS-induced rats. In addition, an antioxidant epigallocatechin gallate, in combination with gelatin and hyaluronic acid, were used to produce nanoparticle eye drops. The efficacy of the artificial tears and gelatin-epigallocatechin gallate with hyaluronic acid nanoparticle (GEH) on the cornea in the KCS rat models was evaluated. In addition to common ophthalmic assessments including palpebral opening, Schirmer’s tear test (STT), fluorescein staining and slit-lamp biomicroscopic examination, advanced tools such as Optical Coherence Tomography (OCT) and Ocular Surface Analyzer-VET (OSA-VET) were also adopted for evaluation of treatment outcomes, which resulted in successful imaging in this experiment. Results showed that KCS rat model was successfully established through excision of ELG+ILG, with significantly lower postsurgery STT values, smaller palpebral opening, shorter non-invasive tear break-up time, higher degrees of corneal irregularity and more severe corneal lesions by fluorescein staining compared to pre-surgery. Treatment groups showed more favorable results compared to KCS group in different examinations. Specifically, GEH group had significantly larger palpebral opening, longer non-invasive break-up time, less corneal irregularity compared to KCS group. While all groups had no significant changes on corneal epithelial thickness observed under OCT, only GEH group, carbomer-containing tears group and hyaluronic acid-carbomer containing tears group showed no significant changes on corneal stromal thickness along time. Even though GEH was only used two times per day other than three times a day in artificial tear groups, the outcome was similar or even better compared to artificial tear groups. It is concluded that other than the use of commercial artificial tears, nanoparticles may be utilized for future treatment options on KCS patients. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:44:10Z (GMT). No. of bitstreams: 1 U0001-2608202219155100.pdf: 20674195 bytes, checksum: 4c21683b3fb6c2307e03996f95237b21 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | Master’s thesis acceptance certificate # Acknowledgement i Abstract (Chinese) ii Abstract (English) iii Table of Contents v List of Figures vii List of Tables ix Chapter 1 Background and Literature review 1 1.1 Keratoconjunctivitis sicca in veterinary practice 1 1.2 Hyaluronic acid application in artificial tears 3 1.3 Nanoparticles application in eye drops 4 1.4 Epigallocatechin gallate (EGCG) application on KCS 5 1.5 Optical Coherence Tomography (OCT) on corneal imaging in rats 6 1.6 Ocular Surface Analyser on corneal imaging in rats 7 Chapter 2 Aim of study 8 Chapter 3 Rationale of methods of choice 9 3.1 Establishment of KCS model 9 3.2 Choice of artificial tears 10 Chapter 4 Materials and methods 11 4.1 Experimental plans 11 4.2 Flow chart of experiment plan 12 4.3 Production of nanoparticles 13 4.4 Animals of the experiment 14 4.5 Establishment of an induced KCS rat model 15 4.6 Clinical ophthalmic exams of induced KCS rat models 16 4.6.1 Palpebral opening 17 4.6.2 Schirmer’s tear test (STT) 17 4.6.3 OSA-VET evaluations - Corneal irregularity assessment 18 4.6.4 OSA-VET evaluations - Non-invasive break-up time (NIBUT) 18 4.6.5 Fluorescein staining 19 4.6.6 Slit-lamp biomicroscope 19 4.6.7 OCT evaluations 19 4.7 Application of GEH NPs and artificial tears on induced KCS rat models 20 4.8 Histopathological characterization of cornea and conjunctiva 21 4.9 Data interpretation and statistical analysis of results 21 Chapter 5 Results 22 5.1 Characterization of nanoparticles 22 5.2 Results of clinical examinations 23 5.2.1 Establishment of a KCS rat model 23 5.2.2 Palpebral opening 23 5.2.3 Schirmer’s tear test (STT) 25 5.2.4 OSA-VET evaluation - Corneal irregularity 26 5.2.5 OSA-VET evaluation – Non-invasive break-up time (NIBUT) 28 5.2.6 OCT evaluation – Corneal stromal thickness 29 5.2.7 OCT evaluation – Corneal epithelial thickness 32 5.2.8 Fluorescein score 33 5.3 Histopathological evaluation 35 5.3.1 Histopathological characteristics of cornea on Day 14 35 5.3.2 Histopathological characteristics of conjunctiva on Day 14 38 Chapter 6 Discussion 42 6.1 Establishment of KCS rat model 42 6.2 The use of OCT and OSA-VET in clinical assessments in rats 43 6.3 Clinical and histopathological outcomes of treatment on KCS rats 44 6.4 Limitations of the study 49 6.5 Conclusion 50 Chapter 7 References 51 | |
| dc.language.iso | en | |
| dc.subject | 人工淚液 | zh_TW |
| dc.subject | 奈米顆粒 | zh_TW |
| dc.subject | 兒茶素 | zh_TW |
| dc.subject | 大鼠模式 | zh_TW |
| dc.subject | 乾眼症 | zh_TW |
| dc.subject | epigallocatechin gallate | en |
| dc.subject | keratoconjunctivitis sicca | en |
| dc.subject | dry eye | en |
| dc.subject | artificial tears | en |
| dc.subject | nanoparticles | en |
| dc.subject | rat model | en |
| dc.title | 研究比較明膠兒茶素奈米顆粒披覆玻尿酸和市售人工淚液對大鼠乾眼症及角膜病變的效果 | zh_TW |
| dc.title | Investigation and comparison of the efficacy of gelatinepigallocatechin gallate nanoparticles with hyaluronic acid coating and commercial artificial tears on keratoconjunctivitis sicca associated keratopathy in rats | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 曾靖孋(Ching-Li Tsang),林荀龍(Shiun-Long Lin),黃威翔(Wei-Hsiang Huang) | |
| dc.subject.keyword | 乾眼症,人工淚液,奈米顆粒,兒茶素,大鼠模式, | zh_TW |
| dc.subject.keyword | keratoconjunctivitis sicca,dry eye,artificial tears,nanoparticles,epigallocatechin gallate,rat model, | en |
| dc.relation.page | 61 | |
| dc.identifier.doi | 10.6342/NTU202202872 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-08-31 | |
| dc.contributor.author-college | 獸醫專業學院 | zh_TW |
| dc.contributor.author-dept | 臨床動物醫學研究所 | zh_TW |
| dc.date.embargo-lift | 2024-08-30 | - |
| 顯示於系所單位: | 臨床動物醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2608202219155100.pdf | 20.19 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
