Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86229
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor溫進德(Jin-Der Wen)
dc.contributor.authorYu-Nung Huangen
dc.contributor.author黃祐農zh_TW
dc.date.accessioned2023-03-19T23:43:35Z-
dc.date.copyright2022-09-08
dc.date.issued2022
dc.date.submitted2022-08-31
dc.identifier.citationAndreeva, I., Belardinelli, R., & Rodnina, M. V. (2018). Translation initiation in bacterial polysomes through ribosome loading on a standby site on a highly translated mRNA. Proceedings of the National Academy of Sciences, 115(17), 4411-4416. Boni, I. V., Artamonova, V. S., Tzareva, N. V., & Dreyfus, M. (2001). Non-canonical mechanism for translational control in bacteria: synthesis of ribosomal protein S1. The EMBO journal, 20(15), 4222-4232. Boni, I. V., lsaeva, D. M., Musychenko, M. L., & Tzareva, N. V. (1991). Ribosome-messenger recognition: mRNA target sites for ribosomal protein S1. Nucleic acids research, 19(1), 155-162. Braun, V. (1975). Covalent lipoprotein from the outer membrane of Escherichia coli. Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes, 415(3), 335-377. Bycroft, M., Hubbard, T. J., Proctor, M., Freund, S. M., & Murzin, A. G. (1997). The solution structure of the S1 RNA binding domain: A member of an ancient nucleic acid–binding fold. Cell, 88(2), 235-242. Byrgazov, K., Manoharadas, S., Kaberdina, A. C., Vesper, O., & Moll, I. (2012). Direct interaction of the N-terminal domain of ribosomal protein S1 with protein S2 in Escherichia coli. PLoS One, 7(3), e32702. Cifuentes-Goches, J. C., Hernández-Ancheyta, L., Guarneros, G., Oviedo, N., & Hernández-Sánchez, J. (2019). Domains two and three of Escherichia coli ribosomal S1 protein confers 30S subunits a high affinity for downstream A/U-rich mRNAs. The Journal of Biochemistry, 166(1), 29-40. Draper, D. E., & von Hippel, P. H. (1978). Nucleic acid binding properties of Escherichia coli ribosomal protein S1: I. Structure and interactions of binding site I. Journal of molecular biology, 122(3), 321-338. Duval, M., Korepanov, A., Fuchsbauer, O., Fechter, P., Haller, A., Fabbretti, A., . . . Marzi, S. (2013). Escherichia coli ribosomal protein S1 unfolds structured mRNAs onto the ribosome for active translation initiation. PLoS Biol, 11(12), e1001731. doi:10.1371/journal.pbio.1001731 Farwell, M. A., Roberts, M. W., & Rabinowitz, J. C. (1992). The effect of ribosomal protein S1 from Escherichia coli and Micrococcus luteus on protein synthesis in vitro by E. coli and Bacillus subtilis. Molecular microbiology, 6(22), 3375-3383. Komarova, A. V., Tchufistova, L. S., Dreyfus, M., & Boni, I. V. (2005). AU-rich sequences within 5′ untranslated leaders enhance translation and stabilize mRNA in Escherichia coli. Journal of bacteriology, 187(4), 1344-1349. Lu, W.-L. (2021). Functional Characterization of Ribosomal Protein bS1 in Translation Initiation. (Master). National Taiwan Univrersity, Taipei, Taiwan. Mallik, S., Basu, S., Hait, S., & Kundu, S. (2018). Translational regulation of ribosomal protein S15 drives characteristic patterns of protein‐mRNA epistasis. Proteins: Structure, Function, and Bioinformatics, 86(8), 827-832. Portier, C., Philippe, C., Dondon, L., Grunberg-Manago, M., Ebel, J., Ehresmann, B., & Ehresmann, C. (1990). Translational control of ribosomal protein S15. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 1050(1-3), 328-336. Sengupta, J., Agrawal, R. K., & Frank, J. (2001). Visualization of protein S1 within the 30S ribosomal subunit and its interaction with messenger RNA. Proceedings of the National Academy of Sciences, 98(21), 11991-11996. Wu, Y.-J., Wu, C.-H., Yeh, A. Y.-C., & Wen, J.-D. (2014). Folding a stable RNA pseudoknot through rearrangement of two hairpin structures. Nucleic acids research, 42(7), 4505-4515.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86229-
dc.description.abstractbS1是細菌中分子量最大的核醣體蛋白,像一座橋作用於mRNA以及核醣體之間,並且具有解開較弱的mRNA二級結構的能力。有些具有結構的mRNA是需要bS1才能有效進行轉譯。此外bS1對於那些因缺少Shine-Dalgarno序列而與核醣體結合力較弱的mRNA是必不可少的。本研究中,我們藉由細胞外轉譯以及luciferase assay的實驗發現bS1會影響具有不同5’端非轉譯區(5’UTR)的mRNA轉譯。我們挑選4種mRNA 5’UTR,分別是bS1自身基因且5’UTR具有3個髮夾結構的rpsA、uS15自身基因且具有兩個髮結結構並可以自動轉換成偽結的rpsO、二級結構強度較弱的ET24以及lpp。我們發現bS1可以抑制rpsA的轉譯效率,而此效果與rpsA的結構以及bS1的功能和與核醣體的作用具有相關性。bS1對rpsO的轉譯效率不具有明顯的影響。對ET24以及lpp的轉譯皆具有促進效果,只是隨著bS1濃度提高,ET24促進的效果降低,lpp則是不受影響。另外我們也發現bS1的mutant也會造成不同的影響。相較於bS1-His6(C端有His tag)可以有效抑制rpsA轉譯效率,bS1-dD6(去除domain 6)則可以促進。然而bS1-His6以及bS1-dD6皆是促進rpsO的轉譯效率。我們的結果顯示,bS1和mRNA 5’UTR之間的交互作用可以影響轉譯效率,但其中的機制還未明朗,需要更深入的探討。zh_TW
dc.description.abstractbS1 is the largest ribosomal protein in bacteria. It acts like a bridge between messenger RNA (mRNA) and the ribosome and has the ability to unfold weak secondary structures of the mRNA. Some mRNAs with structures require bS1 for efficient translation. In addition, bS1 is indispensable for mRNA which lacks the Shine-Dalgarno sequence, such that the ribosome binds weakly to it. In our study, we investigate how bS1 affects translation of mRNA with different 5’ untranslated region (5’ UTR) by in vitro translation, followed by renilla luciferase assay. Four 5’ UTRs are chosen in this study: rpsA, which encodes the bS1, has three hairpin structures; rpsO, which encodes the uS15, has two hairpin structures that can be spontaneously converted to a pseudoknot; ET24 and lpp are single-stranded RNA with weak structures. We observed that bS1 could inhibit the translation of rpsA; this inhibition is dependent on the rpsA structure and correlated with the bS1 function and its interaction with the ribosome. bS1 did not apparently affect the translation of rpsO, whereas bS1 promoted translation of ET24 and lpp. The level of promotion for ET24, but not for lpp, decreased with increasing bS1 concentration. Additionally, we also found that bS1 mutants could differently affect the translation. While bS1-His6 (with a His tag at the C terminal) greatly inhibited translation of rpsA, bS1-dD6 (Domain 6 removed) promoted it. However, both bS1-His6 and bS1-dD6 promoted the translation of rpsO. Our results suggest that bS1 can interact with the 5’ UTR and affect the translation efficiency of mRNA, but the molecular mechanism remains elusive.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:43:35Z (GMT). No. of bitstreams: 1
U0001-3008202218215700.pdf: 3798343 bytes, checksum: cb5eec4da9992b42f461096448499e63 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents審定書 i 致謝 ii 摘要 iv Abstract v 目錄 vi 圖目錄 ix 第一章 導論 1 1.1 mRNA 5’UTR結構的調節 1 1.2核醣體蛋白bS1 2 1.3 Luciferase assay 3 1.4 研究動機 3 第二章 實驗材料與方法 4 2.1材料 4 2.1.1勝任細胞品系 4 2.1.2質體 4 2.1.3 DNA oligomers 5 2.1.4 Primers 8 2.1.5 試劑組 8 2.1.6 藥品 9 2.1.7 酵素 9 2.1.8 溶液 10 2.2方法 11 2.2.1 質體建構 11 2.2.2 細胞外轉錄(In Vitro Transcription) 13 2.2.3 細胞外轉譯(In Vitro Translation) 14 2.2.4 冷光素酶檢測法(Luciferase assay) 15 2.2.5 Normalization 15 2.2.6 bS1-dD12蛋白純化 15 第三章 結果 17 3.1 bS1-dD12蛋白純化 17 3.2以rpsO-R來測試Luciferase model可行性 17 3.2.1不同量之rpsO-R於luciferase model的表現量 17 3.2.2 rpsO-R添加uS15的細胞外轉譯表現 18 3.3 bS1對rpsA-R轉譯的影響 18 3.3.1 Wild-type bS1在低濃度時促進,高濃度時抑制rpsA-R轉譯的量 18 3.3.2 bS1-His6對rpsA-R的轉譯具有明顯的抑制效果 19 3.3.3 bS1-dD6 對rpsA-R的轉譯具有明顯的促進效果 19 3.3.4 bS1-dD12 對rpsA-R的轉譯沒有明顯地影響 19 3.4 rpsA及mutant的細胞外轉譯 20 3.4.1 具完整結構的rpsA-R,轉譯效率比結構不完整的dhp1及dhp12較優 20 3.4.2 bS1對dhp1的轉譯具有促進的效果 20 3.5 bS1對rpsO-R轉譯的影響 20 3.5.1 Wild type bS1對 rpsO-R的轉譯沒有明顯的影響 20 3.5.2 bS1-His6濃度越高,對rpsO-R的轉譯促進效果越強 21 3.5.3 bS1-dD6對rpsO-R的轉譯具有促進的效果 21 3.6 rpsO及mutant的細胞外轉譯 21 3.6.1 mS1L的轉譯效率最優,rpsO-R次之,mS2L則是最低 21 3.6.2 在PURExpress ∆Ribosome Kit中,rpsO-R的轉譯效率優於mS1L,且bS1蛋白可以幫助30S-S1恢復功能 22 3.6.3 mS1L的DNA進行轉錄及轉譯的效率比rpsO的DNA效優 22 3.7 bS1在低濃度時促進ET24-R的轉譯效率,且隨著蛋白濃度提高而降低促進效果 23 3.8 bS1對lpp-R的轉譯具有顯著的促進效果 23 第四章 討論 25 參考文獻 30
dc.language.isozh-TW
dc.subjectrpsAzh_TW
dc.subject核醣體蛋白bS1zh_TW
dc.subjectmRNA 5’UTR結構zh_TW
dc.subject細胞外轉譯zh_TW
dc.subjectrpsOzh_TW
dc.subjectin vitro translationen
dc.subjectrpsOen
dc.subjectrpsAen
dc.subjectribosomal protein bS1en
dc.subjectmRNA 5’UTR structureen
dc.title藉由細胞外轉譯方式研究核醣體蛋白bS1對mRNA 5’端非轉譯區的調控表現zh_TW
dc.titleStudy of Ribosomal Protein bS1-Mediated mRNA Expression at the 5’ Untranslated Region by In Vitro Translationen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張功耀(Kung-Yao Chang),余建泓(Chien-Hung Yu)
dc.subject.keyword核醣體蛋白bS1,mRNA 5’UTR結構,細胞外轉譯,rpsO,rpsA,zh_TW
dc.subject.keywordribosomal protein bS1,mRNA 5’UTR structure,in vitro translation,rpsO,rpsA,en
dc.relation.page56
dc.identifier.doi10.6342/NTU202202985
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-08-31
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
dc.date.embargo-lift2023-08-31-
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
U0001-3008202218215700.pdf3.71 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved