請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86216完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 卡艾瑋(Hervé Capart) | |
| dc.contributor.author | Min-Chi Liang | en |
| dc.contributor.author | 梁閔期 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:42:51Z | - |
| dc.date.copyright | 2022-09-30 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-30 | |
| dc.identifier.citation | Bishop, A. W. (1971). The influence of progressive failure on the choice of the method of stability analysis. Géotechnique, 21(2):168–172 (doi:10.1680/geot.1971.21.2.168). Brodsky, E. E., Gordeev, E., and Kanamori, H. (2003). Landslide basal friction as measured by seismic waves. Geophysical Research Letters, 30(24(doi:https://doi.org/10.1029/2003GL018485)). Capart, H. (2022). Basal boundary conditions for flows of granular materials with distinct peak and residual strengths. Preprint, National Taiwan University, Taiwan. Capart, H., Hung, C. Y., and Stark, C. P. (2015). Depthintegrated equations for entraining granular flows in narrow channels. Journal of Fluid Mechanics, 765:R4 (doi:10.1017/jfm.2014.713). Capart, H., Young, D. L., and Zech, Y. (2002). Vorono imaging methods for the measurement of granular flows. Experiments in Fluids, 32(1):121–135 (doi:10.1007/s003480200013). Ching, K.E.,Hsieh, M.L.,Johnson, K. M., Chen, K.H.,Rau, R.J.,and Yang, M. (2011).Modern vertical deformation rates and mountain building in Taiwan from precise leveling and continuous GPS observations, 2000–2008. Journal of Geophysical Research:Solid Earth, 116(B8):(doi:https://doi.org/10.1029/2011JB008242). Chou, T.Y.(2021). Synchronized measurements of active landslide area and mass flow rate in steep sandbox experiment. M.S. thesis, Graduate Institute of Civil Engineering,National Taiwan University, Taiwan. Ekström, G. and Stark, C. P. (2013). Simple scaling of catastrophic landslide dynamics.Science, 339(6126):1416–1419 (doi:10.1126/science.1232887). Evesque, P. (1991). Analysis of the statistics of sandpile avalanches using soilmechanics results and concepts. Physical Review A, 43(6):2720–2740 (doi:10.1103/PhysRevA.43.2720). Fischer, R., Gondret, P., and Rabaud, M. (2009). Transition by intermittency in granular matter: from discontinuous avalanches to continuous flow. Physical review letters,103(12):128002. Hsu, L.Y.(2020). Granular flows on the transition of basal boundary conditions: depthaveraged model and smallscale experiments. M.S. thesis, Graduate Department of soil and water conservation,National Chung Hsing University,Taiwan. Hung, C.Y.(2015). Boundary erosion by granular flow : experiments and theory. Ph.D. thesis, Graduate Institute of Civil Engineering, National Taiwan University, Taiwan,doi:10.6342/NTU.2015.00276.Hung, C. Y., Stark, C. P.,and Capart, H. (2016). Granular flow regimes in rotating drums from depthintegrated theory. Physical Review E, 93(3):030902 (doi:10.1103/PhysRevE.93.030902). Hung, J.J.(2020). Intermittent avalanching of dry sand in loose boundary channels. M.S.thesis, Graduate Institute of Civil Engineering, National Taiwan University, Taiwan. Jop, P., Forterre, Y., and Pouliquen, O. (2005). Crucial role of sidewalls in granular surface flows: consequences for the rheology. Journal of Fluid Mechanics, 541:167–192(doi:10.1017/S0022112005005987). Kanamori, H., Given, J. W., and Lay, T. (1984). Analysis of seismic body waves excited by the Mount St. Helens eruption of May 18, 1980. Journal of Geophysical Research:Solid Earth, 89(B3):1856–1866 (doi:https://doi.org/10.1029/JB089iB03p01856). KEEFER, D. K. (1984). Landslides caused by earthquakes. GSA Bulletin, 95(4):406–421(doi:10.1130/0016–7606(1984)). Lee, C.F.,Chou, H.T.,and Capart, H. (2013). Granular segregation in narrow rotational drums with different wall roughness: Symmetrical and asymmetrical patterns. Powder Technology, 233:103–115 (doi:https://doi.org/10.1016/j.powtec.2012.08.034). Liggett, J. A. (1994). Fluid mechanics. McGrawHill,Inc., New York.Lin, C.W.,Chang, W.S.,Liu, S.H.,Tsai, T.T.,Lee, S.P.,Tsang, Y.C.,Shieh, C.L.,and Tseng, C.M.(2011). Landslides triggered by the 7 August 2009 Typhoon Morakot in southern Taiwan. Engineering Geology, 123(1):3–12 (doi:https://doi.org/10.1016/j.enggeo.2011.06.007). MiDi, G. D. R. (2004). On dense granular flows. The European Physical Journal E,14(4):341–365 (doi:10.1140/epje/i2003–10153–0). Ni, W.J.and Capart, H. (2006). Groundwater drainage and recharge by networks of irregular channels. Journal of Geophysical Research: Earth Surface, 111(F2):(doi:https://doi.org/10.1029/2005JF000410). Parez, S., Aharonov, E., and Toussaint, R. (2016). Unsteady granular flows down an inclined plane. Physical Review E, 93(4):042902 (doi:10.1103/PhysRevE.93.042902). Perrin, H., Clavaud, C., Wyart, M., Metzger, B., and Forterre, Y. (2019). Interparticle friction leads to nonmonotonic flow curves and hysteresis in viscous suspensions. Physical Review X, 9(3):031027 (doi:10.1103/PhysRevX.9.031027). Rajchenbach, J. (1990). Flow in powders: From discrete avalanches to continuous regime.Physical Review Letters, 65(18):2221–2224 (doi:10.1103/PhysRevLett.65.2221). Skempton, A. W. and Hutchinson, J. M. C. (1971). Stability of natural slopes and embankment foundations. Wang, C.C.(2016). Dry granular dambreak flows over erodible sloping deposits : experiments and depthaveraged modeling. M.S. thesis, Graduate Institute of Civil Engineering, National Taiwan University, Taiwan. Wu, C.H., Chen, S.C., and Chou, H.T. (2011). Geomorphologic characteristics of catastrophic landslides during typhoon Morakot in the Kaoping Watershed, Taiwan. Engineering Geology, 123(1):13–21 (doi:https://doi.org/10.1016/j.enggeo.2011.04.018). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86216 | - |
| dc.description.abstract | 本論文針對渠道以固定速率增加斜率的產生的流動,會有間歇性的運動行為進行探討, 利用理論以及實驗研究間歇性崩塌的成因。理論部分,本研究以質量守恆、動量守恆方程式搭配動能方程式,加上滾筒的邊界條件來作為本研究的控制方程式,並且在求解過程使用深度積分適度簡化來模擬非穩態狀況下的流場變化。實驗則是利用固定低轉速的滾筒實驗來重現間歇性崩塌,並透過粒子影像分析方法,紀錄崩塌事件發生時的表面流速,用以與理論比較。 實驗結果顯示,間歇性崩塌的開始和結束分別會有最高以及最低的斜率控制,當流場表面斜率超過最高斜率就會開始流動,直至流場表面達到最低斜率。在理論方面,本研究提出簡化的侵蝕與堆積模式,利用流動曾底部的剪率大小區分流動狀況並加以預測,將模式預估結果與實驗相比較,順利預測了間歇性崩塌的現象以及崩塌發生時的表面流速.最後藉由尺度分析定義了一個無因次化參數並將數值模型應用到現地模擬土石流。 | zh_TW |
| dc.description.abstract | This thesis examines the intermittent motion of a flow generated by a drum with a constant rate of increasing slope, and investigates the causes of intermittent collapse both theoretically and experimentally. The equations of conservation of mass, momentum, and kinetic energy, which together with the boundary conditions of the drums serve as the controlling equations for the simulation of the unsteady flow field in this study. By using depth integration, we are able to simulate flow field variation under unsteady conditions. To reproduce the intermittent avalanches, we used a drum with a constant low rotational speed, then measured the surface flow velocity during the avalanches event using PTV for comparison with theory. Experimental results indicate that intermittent avalanches begin and terminate based on the slope of the flow surface, where the flow begins when the slope reaches the highest slope and ends when the flow field surface reaches the lowest slope. Through theory, we propose a simplified erosion and deposition model based on estimating the shear rate at the base of the flow layer to differentiate the flow conditions. We compared the results of the model prediction with those obtained from the experiment. We were able to predict the phenomenon of intermittent avalanches and the surface velocity at the time of avalanches. Finally, we perform a scale analysis and define a dimensionless number called, which controls the behavior of landslides, then we apply the numerical model to the in situ simulation of landslides. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:42:51Z (GMT). No. of bitstreams: 1 U0001-1608202212523600.pdf: 69125103 bytes, checksum: f56ee36a68c5bddb1f2e30b3e8c16fab (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員審定書 i Acknowledgements iii 摘要 v Abstract vii Contents i List of Figures iii List of Tables xi Introduction xii Chapter 1 Theory for Parallel Granular Flows with Hysteresis 1 1.1 Assumptions and governing equations . . . . . . . . . . . . . . . . . 1 1.2 Steady flow solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Unsteady momentum and kinetic energy equations . . . . . . . . . . 11 1.4 Equations for entrainment, bypass and detrainment . . . . . . . . . . 13 Chapter 2 Experimental Apparatus and Procedure 21 2.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2 Laser and calibration tools . . . . . . . . . . . . . . . . . . . . . . . 22 2.3 Measurement system . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.4 Experimental procedure . . . . . . . . . . . . . . . . . . . . . . . . 25 Chapter 3 Image Processing Methods 29 3.1 Camera Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2 Particle capture and tracking . . . . . . . . . . . . . . . . . . . . . . 35 Chapter 4 Experimental Results 41 4.1 Surface inclination measurements . . . . . . . . . . . . . . . . . . . 42 4.2 Surface velocity measurements . . . . . . . . . . . . . . . . . . . . . 45 Chapter 5 Application to intermittent avalanching theory 57 5.1 Drum governing equations . . . . . . . . . . . . . . . . . . . . . . . 57 5.2 Numerical solution and parametric study . . . . . . . . . . . . . . . 60 5.3 Parameter calibration . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.4 Comparison between model and experiments . . . . . . . . . . . . . 73 Chapter 6 Application to landslides 79 6.1 Relation between seismic force and landslide momentum . . . . . . . 80 6.2 Scaling analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.3 Preliminary comparison with field data . . . . . . . . . . . . . . . . 87 Chapter 7 Conclusion and Future Work 91 References 93 | |
| dc.language.iso | en | |
| dc.subject | 滾筒實驗 | zh_TW |
| dc.subject | 深度積分方程式 | zh_TW |
| dc.subject | 間歇性崩塌 | zh_TW |
| dc.subject | 粒子影像分析 | zh_TW |
| dc.subject | 土石流 | zh_TW |
| dc.subject | 顆粒流 | zh_TW |
| dc.subject | landslide | en |
| dc.subject | Intermittent sand avalanching | en |
| dc.subject | depth-averaged equation | en |
| dc.subject | drum flow | en |
| dc.subject | granular flow | en |
| dc.subject | particle tracking velocimetry | en |
| dc.title | 以滾筒實驗及理論研究間歇性崩塌與土石流應用 | zh_TW |
| dc.title | Intermittent sand avalanching in a rotating drum : Experiment, theory and application to landslides | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 周憲德(Hsien-Ter Chou),楊馥菱(Fu-Ling Yang),洪啟耀(Chi-Yao Hung),Colin Stark(Colin Stark) | |
| dc.subject.keyword | 間歇性崩塌,滾筒實驗,深度積分方程式,顆粒流,粒子影像分析,土石流, | zh_TW |
| dc.subject.keyword | Intermittent sand avalanching,depth-averaged equation,drum flow,granular flow,particle tracking velocimetry,landslide, | en |
| dc.relation.page | 96 | |
| dc.identifier.doi | 10.6342/NTU202202447 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-08-31 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-09-30 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1608202212523600.pdf | 67.5 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
