請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86195
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李家岩 | zh_TW |
dc.contributor.advisor | Chia-Yen Lee | en |
dc.contributor.author | 張鎧 | zh_TW |
dc.contributor.author | Kai Chang | en |
dc.date.accessioned | 2023-03-19T23:41:35Z | - |
dc.date.available | 2023-12-27 | - |
dc.date.copyright | 2022-09-07 | - |
dc.date.issued | 2022 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | An, J., & Cho, S. (2015). Variational autoencoder based anomaly detection using reconstruction probability. Special Lecture on IE, 2(1), 1-18. Bifet, A., & Gavalda, R. (2007). Learning from time-changing data with adaptive windowing. Proceedings of the 2007 SIAM international conference on data mining, Blue, J., Gleispach, D., Roussy, A., & Scheibelhofer, P. (2012). Tool condition diagnosis with a recipe-independent hierarchical monitoring scheme. IEEE Transactions on Semiconductor Manufacturing, 26(1), 82-91. Blue, J., Roussy, A., & Pinaton, J. (2014). FDC R2R variation monitoring for sensor level diagnosis in tool condition hierarchy. 25th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC 2014), Breunig, M. M., Kriegel, H.-P., Ng, R. T., & Sander, J. (2000). LOF: identifying density-based local outliers. Proceedings of the 2000 ACM SIGMOD international conference on Management of data, Chen, A., & Blue, J. (2009). Recipe-independent indicator for tool health diagnosis and predictive maintenance. IEEE Transactions on Semiconductor Manufacturing, 22(4), 522-535. Chen, C.-C., Ting, W.-J., & Chien, C.-F. (2019). Big Data Analytics for Tool Health Monitoring in Panel Industry. 2019 IEEE International Conference on Smart Manufacturing, Industrial & Logistics Engineering (SMILE), Cleveland, R. B., Cleveland, W. S., McRae, J. E., & Terpenning, I. (1990). STL: A seasonal-trend decomposition. J. Off. Stat, 6(1), 3-73. Cook, R. D., & Weisberg, S. (1983). Diagnostics for heteroscedasticity in regression. Biometrika, 70(1), 1-10. Johnson, R. A., & Wichern, D. W. (2014). Applied multivariate statistical analysis (Vol. 6). Pearson London, UK:. Keogh, E., Chu, S., Hart, D., & Pazzani, M. (2004). Segmenting time series: A survey and novel approach. In Data mining in time series databases (pp. 1-21). World Scientific. Kwak, M., & Kim, S. B. (2021). Unsupervised Abnormal Sensor Signal Detection With Channelwise Reconstruction Errors. IEEE Access, 9, 39995-40007. https://doi.org/10.1109/access.2021.3064563 Lee, C.-Y., Wu, C.-S., & Hung, Y.-H. (2020). In-line predictive monitoring framework. IEEE Transactions on Automation Science and Engineering. Liu, B., Do, P., Iung, B., & Xie, M. (2019). Stochastic filtering approach for condition-based maintenance considering sensor degradation. IEEE Transactions on Automation Science and Engineering, 17(1), 177-190. Liu, F. T., Ting, K. M., & Zhou, Z.-H. (2008). Isolation forest. 2008 eighth ieee international conference on data mining, Lucas, J. M. (1985). Counted data CUSUM's. Technometrics, 27(2), 129-144. Meng, H., & Li, Y.-F. (2019). A review on prognostics and health management (PHM) methods of lithium-ion batteries. Renewable and Sustainable Energy Reviews, 116. https://doi.org/10.1016/j.rser.2019.109405 Mobley, R. K. (2002). An introduction to predictive maintenance. Elsevier. Montgomery, D. C. (2020). Introduction to statistical quality control. John Wiley & Sons. Morales, V. H., Panza, C. A., & Blanco, J. (2021). Monitoring the Nonconforming Fraction with a Dynamic Scheme When Sample Sizes are Time-varying. Ng, A. (2011). Sparse autoencoder. CS294A Lecture notes, 72(2011), 1-19. Sakurada, M., & Yairi, T. (2014). Anomaly detection using autoencoders with nonlinear dimensionality reduction. Proceedings of the MLSDA 2014 2nd workshop on machine learning for sensory data analysis, Schölkopf, B., Williamson, R. C., Smola, A. J., Shawe-Taylor, J., & Platt, J. C. (1999). Support vector method for novelty detection. NIPS, Shen, X., Zou, C., Jiang, W., & Tsung, F. (2013). Monitoring poisson count data with probability control limits when sample sizes are time varying. Naval Research Logistics (NRL), 60(8), 625-636. https://doi.org/10.1002/nav.21557 Tighkhorshid, E., Amiri, A., & Amirkhani, F. (2019). A risk-adjusted EWMA chart with dynamic probability control limits for monitoring survival time. Communications in Statistics-Simulation and Computation, 1-22. West, M. (1997). Time series decomposition. Biometrika, 84(2), 489-494. Wold, S., Johansson, E., & Cocchi, M. (1993). PLS: partial least squares projections to latent structures. Ye, Z. S., & Xie, M. (2015). Stochastic modelling and analysis of degradation for highly reliable products. Applied Stochastic Models in Business and Industry, 31(1), 16-32. Yeh, A. B., Lin, D. K., & McGrath, R. N. (2006). Multivariate control charts for monitoring covariance matrix: a review. Quality Technology & Quantitative Management, 3(4), 415-436. Zhai, Q., & Ye, Z.-S. (2017). RUL prediction of deteriorating products using an adaptive Wiener process model. IEEE Transactions on Industrial Informatics, 13(6), 2911-2921. Zhang, X., & Woodall, W. H. (2015). Dynamic probability control limits for risk-adjusted Bernoulli CUSUM charts. Stat Med, 34(25), 3336-3348. https://doi.org/10.1002/sim.6547 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86195 | - |
dc.description.abstract | 隨著數據量的增長以及技術的成熟,現今各個行業都開始仰賴各種人工智慧及資料科學相關的技術來幫助解決各種問題,而在擁有大量資料並且器材昂貴的製造業中,更為準確的量測以及進一步的預測更是需要資料科學的技術輔助,其中異常偵測又為製造業最常探討的議題。異常偵測旨在透過機台數值的分析來得知機台的健康狀況並且進一步進行機台維護策略,藉此取代過往只能透過人工檢查機台的方式來節省時間並減少不必要的成本,但過往異常偵測的議題往往圍繞在機台本身,每當機台數值發生異常便認為機台可能需要進行維護,實際上造成數值異常的原因有另一大主因,便是量測異常,也就是負責偵測數值的感測器本身發生了異常,此時需要維護的不是機台本身而是感測器。因此,本研究以自編碼器為基礎提出了一個能夠線上動態偵測製程與量測異常的PSAD架構,並且透過一系列的實驗設計來嘗試證實架構的有效性及穩固性。本研究貢獻在於能夠偵測到過往較少探討的量測異常情形並且同時對兩種異常進行線上動態偵測,以幫助各種使用到感測器進行數值量測的實際場域做出更好的維護決策。 | zh_TW |
dc.description.abstract | With the growth of data volume and the maturity of technology, various industries have begun to rely on various artificial intelligence and data science-related technologies to help solve various problems. In the manufacturing industry with a large amount of data and expensive equipment, more accurate measurement and further prediction require technical assistance from data science. Among this, anomaly detection is the most frequently discussed topic in the manufacturing industry. The purpose of anomaly detection is to know the health status of the machine through the analysis of the machine value and further implement the machine maintenance strategy to replace the manual inspection of the machine in the past to save time and reduce unnecessary costs. However, in the past, the issue of anomaly detection often revolved around the machine process itself. Whenever the machine value was abnormal, it was considered that the machine might need to be maintained. In fact, there is another major reason for the anomaly. That is, the sensor responsible for detecting the value itself has an anomaly. At this time, it is not the machine itself but the sensor that needs to be maintained. Therefore, based on the autoencoder, this research proposes a PSAD architecture that can dynamically detect process and sensor anomalies online, and try to verify the effectiveness and robustness of the architecture through a series of experimental designs. The contribution of this research lies in the ability to detect sensor anomalies that have been less discussed in the past and perform online dynamic detection of two anomalies at the same time, so as to help various practical fields that use sensors for numerical measurement to make better maintenance decisions. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T23:41:35Z (GMT). No. of bitstreams: 1 U0001-0109202204163700.pdf: 2695505 bytes, checksum: b199f936ae84bfc1038685efd216b13e (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | List of Contents V List of Tables VI List of Figures VII Chapter 1. Introduction 1 1.1 Background and Motivation 1 1.2 Research objective 2 1.3 Research Architecture 3 Chapter 2. Literature Review 4 2.1 Health Indicators 4 2.2 Dynamic Control Limits 6 2.3 Sensor Anomaly 8 Chapter 3. PSAD Framework 11 3.1 Model Framework 11 3.2 Assumption 15 3.3 Methodology 16 Chapter 4. Simulation Study and Experiment Result 21 4.1 Simulation Study and Experiment Design 21 4.2 Result & Discussion 42 Chapter 5. Conclusion and Future Research 49 5.1 Conclusion 49 5.2 Future Study 49 References 50 | - |
dc.language.iso | zh_TW | - |
dc.title | 基於自編碼器的動態管制界線偵測製程與量測異常 | zh_TW |
dc.title | Autoencoder-based Dynamic Control Limits for Process and Sensor Anomaly Detection | en |
dc.type | Thesis | - |
dc.date.schoolyear | 110-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 許嘉裕;莊皓鈞;魏志平 | zh_TW |
dc.contributor.oralexamcommittee | Chia-Yu Hsu;Hao-Chun Chuang;Chih-Ping Wei | en |
dc.subject.keyword | 故障預測與健康管理,製程異常,量測異常,動態管制界線,異常偵測,深度學習, | zh_TW |
dc.subject.keyword | Prognostic and Health Management,Process Anomaly,Sensor Anomaly,Dynamic Control Limits,Anomaly Detection,Deep Learning, | en |
dc.relation.page | 56 | - |
dc.identifier.doi | 10.6342/NTU202203045 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2022-09-02 | - |
dc.contributor.author-college | 管理學院 | - |
dc.contributor.author-dept | 資訊管理學系 | - |
dc.date.embargo-lift | 2025-09-01 | - |
顯示於系所單位: | 資訊管理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-110-2.pdf 此日期後於網路公開 2025-09-01 | 2.63 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。