Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86194
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳逸民(Yih-Min Wu)
dc.contributor.authorChin-Yao Huangen
dc.contributor.author黃勁堯zh_TW
dc.date.accessioned2023-03-19T23:41:32Z-
dc.date.copyright2022-09-06
dc.date.issued2022
dc.date.submitted2022-09-02
dc.identifier.citation[1] Arai, H., & Tokimatsu, K. (2000). Effects of Rayleigh and Love waves on microtremor H/V spectra. In Proceedings of the 12th world conference on earthquake engineering (Vol. 2232, pp. 1-8). New Zealand Society for Earthquake Engineering Inc, Auckland, New Zealand. [2] Bahavar, M., & North, R. (2002). Estimation of background noise for international monitoring system seismic stations. In Monitoring the Comprehensive Nuclear-Test-Ban Treaty: Data Processing and Infrasound (pp. 911-944). Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8144-9_2 [3] Beauduin, R., Lognonné, P., Montagner, J. P., Cacho, S., Karczewski, J. F., & Morand, M. (1996). The effects of the atmospheric pressure changes on seismic signals or how to improve the quality of a station. Bulletin of the Seismological Society of America, 86(6), 1760-1769. https://doi.org/10.1785/BSSA0860061760 [4] Berbellini, A., Morelli, A., & Ferreira, A. M. (2016). Ellipticity of Rayleigh waves in basin and hard-rock sites in Northern Italy. Geophysical Journal International, 206(1), 395-407. https://doi.org/10.1093/gji/ggw159 [5] Berbellini, A., Morelli, A., & G. Ferreira, A. M. (2017). Crustal structure of northern Italy from the ellipticity of Rayleigh waves. Physics of the Earth and Planetary Interiors, 265, 1-14. https://doi.org/10.1016/j.pepi.2016.12.005 [6] Berbellini, A., Schimmel, M., Ferreira, A. M., & Morelli, A. (2019). Constraining S-wave velocity using Rayleigh wave ellipticity from polarization analysis of seismic noise. Geophysical Journal International, 216(3), 1817-1830. https://doi.org/10.1093/gji/ggy512 [7] Bonnefoy-Claudet, S., Köhler, A., Cornou, C., Wathelet, M., & Bard, P. Y. (2008). Effects of Love waves on microtremor H/V ratio. Bulletin of the Seismological Society of America, 98(1), 288-300. https://doi.org/10.1785/0120070063 [8] Bromirski, P. D., Cayan, D. R., & Flick, R. E. (2005). Wave spectral energy variability in the northeast Pacific. Journal of Geophysical Research: Oceans, 110(C3). https://doi.org/10.1029/2004JC002398 [9] Bromirski, P. D., & Duennebier, F. K. (2002). The near‐coastal microseism spectrum: Spatial and temporal wave climate relationships. Journal of Geophysical Research: Solid Earth, 107(B8), ESE-5. https://doi.org/10.1029/2001JB000265 [10] Burtin, A., Bollinger, L., Vergne, J., Cattin, R., & Nábělek, J. L. (2008). Spectral analysis of seismic noise induced by rivers: A new tool to monitor spatiotemporal changes in stream hydrodynamics. Journal of Geophysical Research: Solid Earth, 113(B5). https://doi.org/10.1029/2007JB005034 [11] Chen, C. T., Kuo, C. H., Lin, C. M., Huang, J. Y., & Wen, K. L. (2022). Investigation of shallow S-wave velocity structure and site response parameters in Taiwan by using high-density microtremor measurements. Engineering Geology, 297, 106498. https://doi.org/10.1016/j.enggeo.2021.106498 [12] Chen, R. F., Lin, C. W., Lin, H. H., Hsieh, Y. C., Wang, C. L., Cheng, K. P., & Chen, T. C. (2019). The influence of thrust faulting on deep-seated slope gravitational deformation in southern Taiwan. 17th European Conference on Soil Mechanics and Geotechnical Engineering, ECSMGE 2019 - Proceedings. International Society for Soil Mechanics and Geotechnical Engineering. https://doi.org/0.32075/17ECSMGE-2019-0474 [13] Fäh, D., Kind, F., & Giardini, D. (2001). A theoretical investigation of average H/V ratios. Geophysical Journal International, 145(2), 535-549. https://doi.org/10.1046/j.0956-540x.2001.01406.x [14] Fäh, D., Kind, F., & Giardini, D. (2003). Inversion of local S-wave velocity structures from average H/V ratios, and their use for the estimation of site-effects. Journal of Seismology, 7(4), 449-467. https://doi.org/10.1023/B:JOSE.0000005712.86058.42 [15] Ferreira, A. M., & Woodhouse, J. H. (2007). Observations of long period Rayleigh wave ellipticity. Geophysical Journal International, 169(1), 161-169. https://doi.org/10.1111/j.1365-246X.2006.03276.x [16] Field, E., & Jacob, K. (1993). The theoretical response of sedimentary layers to ambient seismic noise. Geophysical research letters, 20(24), 2925-2928. https://doi.org/10.1029/93GL03054 [17] Gerstoft, P., & Tanimoto, T. (2007). A year of microseisms in southern California. Geophysical Research Letters, 34(20). https://doi.org/10.1029/2007GL031091 [18] Hasselmann, K. (1963). A statistical analysis of the generation of microseisms. Reviews of Geophysics, 1(2), 177-210. https://doi.org/10.1029/RG001i002p00177 [19] Herrmann, R. B. (2013). Computer programs in seismology: An evolving tool for instruction and research. Seismological Research Letters, 84(6), 1081-1088. https://doi.org/10.1785/0220110096 [20] Hobiger, M., Bard, P. Y., Cornou, C., & Le Bihan, N. (2009). Single station determination of Rayleigh wave ellipticity by using the random decrement technique (RayDec). Geophysical Research Letters, 36(14). https://doi.org/10.1029/2009GL038863 [21] Hobiger, M., Cornou, C., Wathelet, M., Giulio, G. D., Knapmeyer-Endrun, B., Renalier, F., ... & Theodoulidis, N. (2013). Ground structure imaging by inversions of Rayleigh wave ellipticity: sensitivity analysis and application to European strong-motion sites. Geophysical Journal International, 192(1), 207-229. https://doi.org/10.1093/gji/ggs005 [22] Kumar, M. A., & Kumar, P. (2018). Site characterisation in Kangra Valley (NW Himalaya, India) by inversion of H/V spectral ratio from ambient noise measurements and its validation by multichannel analysis of surface waves technique. Near Surface Geophysics, 16(3), 314-327. https://doi.org/10.3997/1873-0604.2018008 [23] Lepore, S., Markowicz, K., & Grad, M. (2016). Impact of wind on ambient noise recorded by seismic array in northern Poland. Geophysical Journal International, 205(3), 1406-1413. https://doi.org/10.1093/gji/ggw093 [24] Lin, F. C., Schmandt, B., & Tsai, V. C. (2012). Joint inversion of Rayleigh wave phase velocity and ellipticity using USArray: Constraining velocity and density structure in the upper crust. Geophysical Research Letters, 39(12). https://doi.org/10.1029/2012GL052196 [25] Longuet-Higgins, M. S. (1950), A theory on the origin of microseisms, Philos. Trans. R. Soc. London, 243, 1–35. https://doi.org/10.1098/rsta.1950.0012 [26] M. Picozzi, S. P. & S. M. Richwalski. (2005). Joint inversion of H/V ratios and dispersion curves from seismic noise : Estimating the S-wave velocity of bedrock. Geophysical Research Letters, 32(11). https://doi.org/10.1029/2005GL022878 [27] McNamara, D. E., & Buland, R. P. (2004). Ambient noise levels in the continental United States. Bulletin of the seismological society of America, 94(4), 1517-1527. https://doi.org/10.1785/012003001 [28] Nakamura, Y. (1989). A method for dynamic characteristics estimation of subsurface usingmicrotremor on the ground surface, Quarterly Report of RTRI, 30(1), 25–33. [29] Okabe A., Boots B., Sugihara K. 1992. Spatial Tessellations Concepts and Applications of Voronoi Diagrams, John Wiley & Sons, New York. [30] Parolai, S., Picozzi, M., Richwalski, S. M., & Milkereit, C. (2005). Joint inversion of phase velocity dispersion and H/V ratio curves from seismic noise recordings using a genetic algorithm, considering higher modes. Geophysical research letters, 32(1). https://doi.org/10.1029/2004GL021115 [31] Picozzi, M., Parolai, S., & Richwalski, S. M. (2005). Joint inversion of H/V ratios and dispersion curves from seismic noise: Estimating the S‐wave velocity of bedrock. Geophysical Research Letters, 32(11). https://doi.org/10.1029/2005GL022878 [32] Poggi, V., Fäh, D., Burjanek, J., & Giardini, D. (2012). The use of Rayleigh-wave ellipticity for site-specific hazard assessment and microzonation: application to the city of Lucerne, Switzerland. Geophysical Journal International, 188(3), 1154-1172. https://doi.org/10.1111/j.1365-246X.2011.05305.x [33] Sambridge, M. (1999). Geophysical inversion with a neighbourhood algorithm—I. Searching a parameter space. Geophysical journal international, 138(2), 479-494. https://doi.org/10.1046/j.1365-246X.1999.00876.x [34] Sambridge, M. (1999). Geophysical inversion with a neighbourhood algorithm—II. Appraising the ensemble. Geophysical Journal International, 138(3), 727-746. https://doi.org/10.1046/j.1365-246x.1999.00900.x [35] Sambridge, M., Braun, J., & McQueen, H. (1995). Geophysical parametrization and interpolation of irregular data using natural neighbours. Geophysical Journal International, 122(3), 837-857. https://doi.org/10.1111/j.1365-246X.1995.tb06841.x [36] Savage, W.Z., Varnes, D.J. (1987), Mechanics of gravitational spreading of steep-sided ridges ('sacking'). Bulletin of the International Association of Engineering Geology, 35, 31–36. https://doi.org/10.1007/BF02590474 [37] Schimmel, M., & Gallart, J. (2003). The use of instantaneous polarization attributes for seismic signal detection and image enhancement. Geophysical Journal International, 155(2), 653-668. https://doi.org/10.1046/j.1365-246X.2003.02077.x [38] Schimmel, M. & Gallart, J. (2004). Degree of polarization filter for frequency-dependent signal enhancement through noise suppression. Bulletin of the Seismological Society of America, 94(3), 1016–1035. https://doi.org/10.1785/0120030178 [39] Schimmel, M., Stutzmann, E., Ardhuin, F., & Gallart, J. (2011). Polarized Earth's ambient microseismic noise. Geochemistry, Geophysics, Geosystems, 12(7), 1-14. https://doi.org/10.1029/2011GC003661 [40] Schulte‐Pelkum, V., Earle, P. S., & Vernon, F. L. (2004). Strong directivity of ocean‐generated seismic noise. Geochemistry, Geophysics, Geosystems, 5(3). https://doi.org/10.1029/2003GC000520 [41] Stockwell, R. G., Mansinha, L., & Lowe, R. P. (1996). Localization of the complex spectrum: the S transform. IEEE transactions on signal processing, 44(4), 998-1001. https://doi.org/10.1109/78.492555 [42] Tün, M., Pekkan, E., Özel, O., & Guney, Y. (2016). An investigation into the bedrock depth in the Eskisehir Quaternary Basin (Turkey) using the microtremor method. Geophysical Journal International, 207(1), 589-607. https://doi.org/10.1093/gji/ggw294 [43] Rezaei, S., Shooshpasha, I., & Rezaei, H. (2020). Evaluation of ground dynamic characteristics using ambient noise measurements in a landslide area. Bulletin of Engineering Geology and the Environment, 79(4), 1749-1763. [44] Wang, L., Xu, Y., Xia, J., & Luo, Y. (2015). Effect of near-surface topography on high-frequency Rayleigh-wave propagation. Journal of Applied Geophysics, 116, 93-103. https://doi.org/10.1016/j.jappgeo.2015.02.028 [45] Woodhouse, J. H. (1974). Surface waves in a laterally varying layered structure. Geophysical Journal International, 37(3), 461-490. [46] Wu, C. C., & Kuo, Y. H. (1999). Typhoons affecting Taiwan: Current understanding and future challenges. Bulletin of the American Meteorological Society, 80(1), 67-80. https://doi.org/10.1175/1520-0477(1999)080<0067:TATCUA>2.0.CO;2 [47] Zhou, Jw., Xu, Fg., Yang, Xg. et al. (2016). Comprehensive analyses of the initiation and landslide-generated wave processes of the 24 June 2015 Hongyanzi landslide at the Three Gorges Reservoir, China. Landslides, 13, 589–601. https://doi.org/10.1007/s10346-016-0704-8 [48] Zürn, W., & Widmer, R. (1995). On noise reduction in vertical seismic records below 2 mHz using local barometric pressure. Geophysical Research Letters, 22(24), 3537-3540. https://doi.org/10.1029/95GL03369 [49] 宋國城、林慶偉、林偉雄、林文正(2000)甲仙圖幅及說明書。經濟部中央地質調查所,五萬分之一臺灣地質圖幅,第五十一號,共57頁。 [50] 唐昭榮, 呂喬茵, 王珮玲, 謝有忠, 侯進雄, 胡植慶、林冠全(2014). 利用顆粒體離散元素法評估高雄寶來村竹林地區之山崩潛在影響範圍. 工程環境會刊, (32), 57-72. https://doi.org/10.6562/JEE.2014.32.4 [51] 經濟部中央地質調查所(2012)99 年度國土保育之地質敏感區調查分析計畫成果―莫拉克災區潛在大規模崩塌地區分析報告,經濟部中央地質調查所報告,共33頁。 [52] 經濟部中央地質調查所與青山工程顧問股份有限公司(2017)山崩觀測技術發展應用研究(3/4):期末報告書,經濟部中央地質調查所報告。 [53] 颱風資料庫(2022),交通部中央氣象局。(最後訪問時間為2022年6月) 取自https://rdc28.cwb.gov.tw/TDB/public/typhoon_detail?typhoon_id=202109
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86194-
dc.description.abstract大規模深層山崩是遍佈全世界的高危害度自然災害之一,往往會造成人們生命與財產的損失。位於南臺灣的竹林地區崩塌地是其中一種具有幾何複雜性的大型深層山崩,具有許多不同滑動行為和深度的子塊體。因此,探討其地下構造對於了解滑動面、斷層帶和可能發生崩塌的潛在弱帶是至關重要的。為此,本研究團隊自2019年7月起在竹林崩塌區架設了包含17個地震站的地震觀測網,以便進行全面的監測。本研究使用DOP-E方法(Berbellini et al., 2019)計算時頻域的極化度(Degree-of-polarization)來有效地從環境噪訊中提取雷利波,並估計雷利波橢圓度及反方位角。由反方位角的分析表明,雷利波能量的來源主要來自荖濃溪的河道噪訊。為了反演的穩定性,我們僅使用來自河道訊號的雷利波橢圓度,並利用鄰居演算法反演每個地震測站地下的一維剪力波速度構造剖面。透過高斯平滑內插出平面空間上的速度剖面,可以對整個崩塌區進行分析與解釋,了解不同子塊體的滑動深度和分層結構。從結果可知,速度剖面的速度對比所顯示的深度和局部鑽井指示的滑動面深度呈現高度相似。我們也將此方法進一步擴展至分析盧壁颱風滑動事件如何影響滑動界面和崩積層的剪力波速度變化的時序研究。zh_TW
dc.description.abstractLarge-scale deep-seated landslides are one of the most catastrophic natural hazards which threaten lives and property in the world. The Chulin landslide in southern Taiwan is one of such composed of complex morphology, showing multiple sub-blocks with different deformation behaviors. As a result, constraining its subsurface structure is crucial to understand the detailed geometry of sliding interface, fault zones and potential weak zones prone to failure. For this purpose, a seismic network containing 17 stations was installed relatively uniformly across the Chulin landslide area in July 2019 to provide comprehensive observations. We apply a method, named DOP-E (Berbellini et al., 2019), to estimate degree-of-polarization (DOP) in the time-frequency domain to effectively extract the Rayleigh waves and estimate the Rayleigh wave ellipticity from seismic noise. The polarization analysis shows the sources of Rayleigh wave energy vary a lot azimuthally but mainly come from the direction of river bends. For the consistency and stability of inversion, we measure the ellipticity on signals only from the river bend and invert for 1-D shear-wave velocity profile at each station using neighborhood algorithm. The velocity profiles are then spatially mapped over the landslide area through Gaussian smoothing to investigate the possible sliding depth and layering structure of different sub-blocks. The depth variations derived by the major velocity contrast are consistent locally with the sliding depths at four drilling sites. The approach is further extended to analyze the velocity variations of the sliding interface and colluvium after a sliding event during Typhoon Lupit.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:41:32Z (GMT). No. of bitstreams: 1
U0001-0109202219185500.pdf: 14178807 bytes, checksum: 56f3d921c365288325797939e7c217a9 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審定書...i 致謝...ii 中文摘要...iii ABSTRACT...iv 目錄...v 圖目錄...vii 表目錄....xii Chapter 1 緒論...1 1.1 前言...1 1.2 研究動機與背景...3 1.3 文獻回顧...4 1.3.1 地質背景...4 1.3.2 前人研究...6 1.3.3 雷利波橢圓度研究發展...9 1.4 研究內容...10 Chapter 2 研究資料與方法...11 2.1 研究資料...11 2.2 雷利波特性...17 2.2.1 極化度Degree-of-polarization...17 2.2.2 雷利波橢圓度 Rayleigh waves ellipticity...19 2.2.3 雷利波反方位角...19 2.3 速度構造反演 Neighbourhood Algorithm ...21 2.4 研究流程...22 Chapter 3 研究結果...24 3.1 雷利波參數量測...24 3.2 雷利波主要訊號源分析...26 3.3 雷利波橢圓度...31 3.4 一維速度構造...35 Chapter 4 討論...40 4.1 一維速度構造剖面...40 4.2 滑動面深度...43 4.3 盧壁颱風滑動事件前後的坡體速度構造變化...50 4.3.1 事件簡介...50 4.3.2 常規橢圓度穩定性分析...55 4.3.3 岩層速度變化...57 4.4 研究方法之可行性探討...60 Chapter 5 結論...64 參考文獻...65 附錄A 各站之速度構造(2021/01-2021/04)...73 附錄B 各站之速度構造(2021/08-2021/12)...77 附錄C CL13測站2021一整年的時頻圖(<50Hz)...81 附錄D 常規橢圓度分群比較...85 附錄E 滑動事件前後速度構造比較...89
dc.language.isozh-TW
dc.title利用雷利波橢圓度反演竹林地區深層山崩的速度構造zh_TW
dc.titleConstraining Chulin deep-seated landslide velocity structure with Rayleigh wave ellipticityen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.coadvisor黃信樺(Hsin-Hua Huang)
dc.contributor.oralexamcommittee林正洪(Cheng-Horng Lin),趙韋安(Wei-an Chao),陳俊德(Chun-Te Chen)
dc.subject.keyword大型深層山崩,竹林山崩,極化度,雷利波橢圓度,盧碧颱風,zh_TW
dc.subject.keywordlarge-scale deep-seated landslides,Chulin landslide,degree-of-polarization,Rayleigh waves ellipticity,Typhoon Lupit,en
dc.relation.page92
dc.identifier.doi10.6342/NTU202203080
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-09-02
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
dc.date.embargo-lift2022-09-06-
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
U0001-0109202219185500.pdf13.85 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved